1
|
O’Grady K, Hong S, Putsathit P, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, McGlinchey A, Levy A, Moore CV, Nimmo G, Prendergast L, Robson J, Speers DJ, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV, Knight DR. Defining the phylogenetics and resistome of the major Clostridioides difficile ribotypes circulating in Australia. Microb Genom 2024; 10:001232. [PMID: 38717815 PMCID: PMC11165652 DOI: 10.1099/mgen.0.001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9 %), 1/36 RT056 strains (2.78 %) and none of 77 RT002 strains. Notably, ~90 % of strains were resistant to MLSB agents in vitro, but only ~5.9 % harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63 % (12/19) comprised isolates from the same Australian State and 37 % (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.
Collapse
Affiliation(s)
- Keeley O’Grady
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Stacey Hong
- Communicable Disease Control Directorate, WA Department of Health, East Perth, Western Australia, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Narelle George
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | | | - Peter G. Huntington
- Department of Microbiology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Tony M. Korman
- Monash University, Monash Health, Clayton, Victoria, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Monica Lahra
- Department of Microbiology, The Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | | | | - Avram Levy
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Casey V. Moore
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide, South Australia, Australia
| | - Graeme Nimmo
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | | | - Jennifer Robson
- Sullivan Nicolaides Pathology, Taringa, Queensland, Australia
| | - David J. Speers
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | | | | | - Gerhard F. Weldhagen
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide, South Australia, Australia
| | - Richard M. Wilson
- Australian Clinical Labs, Microbiology Department, Wayville, South Australia, Australia
| | - Thomas V. Riley
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Daniel R. Knight
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
Heuler J, Chandra H, Sun X. Mucosal Vaccination Strategies against Clostridioides difficile Infection. Vaccines (Basel) 2023; 11:vaccines11050887. [PMID: 37242991 DOI: 10.3390/vaccines11050887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) presents a major public health threat by causing frequently recurrent, life-threatening cases of diarrhea and intestinal inflammation. The ability of C. difficile to express antibiotic resistance and to form long-lasting spores makes the pathogen particularly challenging to eradicate from healthcare settings, raising the need for preventative measures to curb the spread of CDI. Since C. difficile utilizes the fecal-oral route of transmission, a mucosal vaccine could be a particularly promising strategy by generating strong IgA and IgG responses that prevent colonization and disease. This mini-review summarizes the progress toward mucosal vaccines against C. difficile toxins, cell-surface components, and spore proteins. By assessing the strengths and weaknesses of particular antigens, as well as methods for delivering these antigens to mucosal sites, we hope to guide future research toward an effective mucosal vaccine against CDI.
Collapse
Affiliation(s)
- Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Harish Chandra
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Csukovich G, Kramer N, Pratscher B, Gotic I, Freund P, Hahn R, Himmler G, Brandt S, Burgener IA. Neutralising Effects of Different Antibodies on Clostridioides difficile Toxins TcdA and TcdB in a Translational Approach. Int J Mol Sci 2023; 24:ijms24043867. [PMID: 36835278 PMCID: PMC9962434 DOI: 10.3390/ijms24043867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Given the high prevalence of intestinal disease in humans and animals, there is a strong need for clinically relevant models recapitulating gastrointestinal systems, ideally replacing in vivo models in accordance with the principles of the 3R. We established a canine organoid system and analysed the neutralising effects of recombinant versus natural antibodies on Clostridioides difficile toxins A and B in this in vitro system. Sulforhodamine B cytotoxicity assays in 2D and FITC-dextran barrier integrity assays on basal-out and apical-out organoids revealed that recombinant, but not natural antibodies, effectively neutralised C. difficile toxins. Our findings emphasise that canine intestinal organoids can be used to test different components and suggest that they can be further refined to also mirror complex interactions between the intestinal epithelium and other cells.
Collapse
Affiliation(s)
- Georg Csukovich
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Nina Kramer
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Barbara Pratscher
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | | | - Patricia Freund
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Rainer Hahn
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Iwan Anton Burgener
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
4
|
Csukovich G, Pratscher B, Burgener IA. The World of Organoids: Gastrointestinal Disease Modelling in the Age of 3R and One Health with Specific Relevance to Dogs and Cats. Animals (Basel) 2022; 12:ani12182461. [PMID: 36139322 PMCID: PMC9495014 DOI: 10.3390/ani12182461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
One Health describes the importance of considering humans, animals, and the environment in health research. One Health and the 3R concept, i.e., the replacement, reduction, and refinement of animal experimentation, shape today’s research more and more. The development of organoids from many different organs and animals led to the development of highly sophisticated model systems trying to replace animal experiments. Organoids may be used for disease modelling in various ways elucidating the manifold host–pathogen interactions. This review provides an overview of disease modelling approaches using organoids of different kinds with a special focus on animal organoids and gastrointestinal diseases. We also provide an outlook on how the research field of organoids might develop in the coming years and what opportunities organoids hold for in-depth disease modelling and therapeutic interventions.
Collapse
|
5
|
Leahy RG, Serio AW, Wright K, Traczewski MM, Tanaka SK. Activity of omadacycline in vitro against Clostridioides difficile and preliminary efficacy assessment in a hamster model of C. difficile-associated diarrhea. J Glob Antimicrob Resist 2022; 30:96-99. [DOI: 10.1016/j.jgar.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
|
6
|
Gowler CD, Slayton RB, Reddy SC, O’Hagan JJ. Improving mathematical modeling of interventions to prevent healthcare-associated infections by interrupting transmission or pathogens: How common modeling assumptions about colonized individuals impact intervention effectiveness estimates. PLoS One 2022; 17:e0264344. [PMID: 35226689 PMCID: PMC8884501 DOI: 10.1371/journal.pone.0264344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Mathematical models are used to gauge the impact of interventions for healthcare-associated infections. As with any analytic method, such models require many assumptions. Two common assumptions are that asymptomatically colonized individuals are more likely to be hospitalized and that they spend longer in the hospital per admission because of their colonization status. These assumptions have no biological basis and could impact the estimated effects of interventions in unintended ways. Therefore, we developed a model of methicillin-resistant Staphylococcus aureus transmission to explicitly evaluate the impact of these assumptions. We found that assuming that asymptomatically colonized individuals were more likely to be admitted to the hospital or spend longer in the hospital than uncolonized individuals biased results compared to a more realistic model that did not make either assumption. Results were heavily biased when estimating the impact of an intervention that directly reduced transmission in a hospital. In contrast, results were moderately biased when estimating the impact of an intervention that decolonized hospital patients. Our findings can inform choices modelers face when constructing models of healthcare-associated infection interventions and thereby improve their validity.
Collapse
Affiliation(s)
- Camden D. Gowler
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel B. Slayton
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sujan C. Reddy
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Justin J. O’Hagan
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lanzas C, Jara M, Tucker R, Curtis S. A review of epidemiological models of Clostridioides difficile transmission and control (2009-2021). Anaerobe 2022; 74:102541. [PMID: 35217149 DOI: 10.1016/j.anaerobe.2022.102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is the leading cause of infectious diarrhea and one of the most common healthcare-acquired infections worldwide. We performed a systematic search and a bibliometric analysis of mathematical and computational models for Clostridioides difficile transmission. We identified 33 publications from 2009 to 2021. Models have underscored the importance of asymptomatic colonized patients in maintaining transmission in health-care settings. Infection control, antimicrobial stewardship, active testing, and vaccination have often been evaluated in models. Despite active testing and vaccination being not currently implemented, they are the most commonly evaluated interventions. Some aspects of C. difficile transmission, such community transmission and interventions in health-care settings other than in acute-care hospitals, remained less evaluated through modeling.
Collapse
Affiliation(s)
- Cristina Lanzas
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA.
| | - Manuel Jara
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Rachel Tucker
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Savannah Curtis
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | -
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Frentrup M, Thiel N, Junker V, Behrens W, Münch S, Siller P, Kabelitz T, Faust M, Indra A, Baumgartner S, Schepanski K, Amon T, Roesler U, Funk R, Nübel U. Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ Microbiol 2021; 23:7591-7602. [PMID: 33998128 DOI: 10.1111/1462-2920.15601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Abstract
During a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.
Collapse
Affiliation(s)
- Martinique Frentrup
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nadine Thiel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wiebke Behrens
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Paul Siller
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Matthias Faust
- Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Alexander Indra
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria.,Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | | | - Thomas Amon
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany.,Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| |
Collapse
|
10
|
Mutai WC, Mureithi MW, Anzala O, Revathi G, Kullin B, Burugu M, Kyany'a C, Odoyo E, Otieno P, Musila L. High Prevalence of Multidrug-Resistant Clostridioides difficile Following Extensive Use of Antimicrobials in Hospitalized Patients in Kenya. Front Cell Infect Microbiol 2021; 10:604986. [PMID: 33628744 PMCID: PMC7897694 DOI: 10.3389/fcimb.2020.604986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Clostridioides difficile is a neglected pathogen in many African countries as it is generally not regarded as one of the major contributors toward the diarrheal disease burden in the continent. However, several studies have suggested that C. difficile infection (CDI) may be underreported in many African settings. The aim of this study was to determine the prevalence of CDI in hospitalized patients, evaluate antimicrobial exposure, and detect toxin and antimicrobial resistance profiles of the isolated C. difficile strains. Methods In this cross-sectional study, 333 hospitalized patients with hospital-onset diarrhoea were selected. The stool samples were collected and cultured on cycloserine-cefoxitin egg yolk agar (CCEY). Isolates were presumptively identified by phenotypic characteristics and Gram stain and confirmed by singleplex real-time PCR (qPCR) assays detecting the species-specific tpi gene, toxin A (tcdA) gene, toxin B (tcdB) gene, and the binary toxin (cdtA/cdtB) genes. Confirmed C. difficile isolates were tested against a panel of eight antimicrobials (vancomycin, metronidazole, rifampicin, ciprofloxacin, tetracycline, clindamycin, erythromycin, and ceftriaxone) using E-test strips. Results C. difficile was detected in 57 (25%) of diarrheal patients over the age of two, 56 (98.2%) of whom received antimicrobials before the diarrheal episode. Amongst the 71 confirmed isolates, 69 (97.1%) harbored at least one toxin gene. More than half of the toxigenic isolates harbored a truncated tcdA gene. All isolates were sensitive to vancomycin, while three isolates (2.1%) were resistant to metronidazole (MIC >32 mg/L). High levels of resistance were observed to rifampicin (65/71, 91.5%), erythromycin (63/71, 88.7%), ciprofloxacin (59/71, 83.1%), clindamycin (57/71, 80.3%), and ceftriaxone (36/71, 50.7.8%). Among the resistant isolates, 61 (85.9%) were multidrug-resistant. Conclusion Multidrug-resistant C. difficile strains were a significant cause of healthcare facility-onset C. difficile infections in patients with prior antimicrobial exposure in this Kenyan hospital.
Collapse
Affiliation(s)
- Winnie C Mutai
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Marianne W Mureithi
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Division of Medical Microbiology, Aga Khan University Hospital, Nairobi, Kenya
| | - Brian Kullin
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Magdaline Burugu
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Erick Odoyo
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Peter Otieno
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Lillian Musila
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| |
Collapse
|
11
|
Johnston M, Irwin J, Roberts S, Leung A, Andersson HS, Orme G, Deroles-Main J, Bakker S. Clostridioides difficile Infection in a Rural New Zealand Secondary Care Centre: An Incidence Case-Control Study. Intern Med J 2021; 52:1009-1015. [PMID: 33528096 DOI: 10.1111/imj.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Clostridioides difficile Infection (CDI) is a form of antibiotic associated infectious diarrhoea resulting in significant morbidity and mortality. Community acquired disease in low risk individuals is increasingly recognised. There are limited New Zealand data published. AIM To determine the incidence and location of onset of CDI cases in the Manawatu region, and further describe the demographics, risk factors and prevalent C. difficile ribotypes of the population. METHODS We performed an incidence case-control study of CDI in the Manawatu region between September 2018 and September 2019. Cases were matched to controls with a negative test for C. difficile. Demographic and comorbidity data, location of onset, drug exposure, disease recurrence and 30-day mortality were collected. Ribotype analysis was performed on C. difficile isolates. RESULTS 32 specimens tested toxin positive over twelve months, yielding an incidence of 18.3 cases per 100,000 person-years. 25% of cases had community onset disease. Cases were more likely to have had amoxicillin/clavulanate or ceftriaxone prescribed. Elevated blood white cell count and lower HbA1c were significantly associated with CDI. The dominant ribotype was 014/020, 2 cases were RT 023. CONCLUSION Our data are similar to previous national data. RT 023 has not been previously reported in New Zealand and has been associated with severe colitis. We demonstrated a significant proportion of community acquired cases and the true incidence may be higher. Vigilance for community onset disease is required. This data may allow observation of temporal changes in incidence and infection patterns of CDI in New Zealand. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthew Johnston
- Medical Registrar, ORA Department, Capital and Coast District Health Board, New Zealand
| | - James Irwin
- Department of Gastroenterology, Palmerston North Hospital, New Zealand
| | - Sally Roberts
- Clinical Microbiologist, LabPlus, Auckland City Hospital, New Zealand
| | - Almond Leung
- Medical Registrar, Department of General Medicine, Palmerston North Hospital, New Zealand
| | | | - Gareth Orme
- Director of Information Systems, Medlab Central, Palmerston North Hospital, New Zealand
| | - Jan Deroles-Main
- Charge Scientist and Manager, Microbiology Department, Medlab Central, Palmerston North Hospital, New Zealand
| | - Sarah Bakker
- Principal Technician, Nosocomial Infections Laboratory, Institute of Environmental Science and Research (ESR)
| |
Collapse
|
12
|
McLure A, Glass K. Some simple rules for estimating reproduction numbers in the presence of reservoir exposure or imported cases. Theor Popul Biol 2020; 134:182-194. [PMID: 32304644 PMCID: PMC7159883 DOI: 10.1016/j.tpb.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 02/04/2023]
Abstract
For many diseases, the basic reproduction number (R0) is a threshold parameter for disease extinction or survival in isolated populations. However no human population is fully isolated from other human or animal populations. We use compartmental models to derive simple rules for the basic reproduction number in populations where an endemic disease is sustained by a combination of local transmission within the population and exposure from some other source: either a reservoir exposure or imported cases. We introduce the idea of a reservoir-driven or importation-driven disease: diseases that would become extinct in the population of interest without reservoir exposure or imported cases (since R0<1), but nevertheless may be sufficiently transmissible that many or most infections are acquired from humans in that population. We show that in the simplest case, R0<1 if and only if the proportion of infections acquired from the external source exceeds the disease prevalence and explore how population heterogeneity and the interactions of multiple strains affect this rule. We apply these rules in two case studies of Clostridium difficile infection and colonisation: C. difficile in the hospital setting accounting for imported cases, and C. difficile in the general human population accounting for exposure to animal reservoirs. We demonstrate that even the hospital-adapted, highly-transmissible NAP1/RT027 strain of C. difficile had a reproduction number <1 in a landmark study of hospitalised patients and therefore was sustained by colonised and infected admissions to the study hospital. We argue that C. difficile should be considered reservoir-driven if as little as 13.0% of transmission can be attributed to animal reservoirs.
Collapse
Affiliation(s)
- Angus McLure
- Research School of Population Health, Australian National University, 62 Mills Rd, Acton, 0200, ACT, Australia.
| | - Kathryn Glass
- Research School of Population Health, Australian National University, 62 Mills Rd, Acton, 0200, ACT, Australia
| |
Collapse
|
13
|
Reducing C. difficile in children: An agent-based modeling approach to evaluate intervention effectiveness. Infect Control Hosp Epidemiol 2020; 41:522-530. [PMID: 32052722 DOI: 10.1017/ice.2020.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Clostridioides difficile infection (CDI) is rapidly increasing in children's hospitals nationwide. Thus, we aimed to compare the effectiveness of 9 infection prevention interventions and 6 multiple-intervention bundles at reducing hospital-onset CDI and asymptomatic C. difficile colonization. DESIGN Agent-based simulation model of C. difficile transmission. SETTING Computer-simulated, 80-bed freestanding, tertiary-care pediatric hospital, including 8 identical wards with 10 single-bed patient rooms each. PARTICIPANTS The model includes 5 distinct agent types: patients, visitors, caregivers, nurses, and physicians. INTERVENTIONS Daily and terminal environmental disinfection, screening at admission, reduced intrahospital patient transfers, healthcare worker (HCW), visitor, and patient hand hygiene, and HCW and visitor contact precautions. RESULTS The model predicted that daily environmental disinfection with sporicidal product, combined with screening for asymptomatic C. difficile at admission, was the most effective 2-pronged infection prevention bundle, reducing hospital-onset CDI by 62.0% and asymptomatic colonization by 88.4%. Single-intervention strategies, including daily disinfection, terminal disinfection, asymptomatic screening at admission, HCW hand hygiene, and patient hand hygiene, as well as decreasing intrahospital patient transfers, all also reduced both hospital-onset CDI and asymptomatic colonization in the model. Visitor hand hygiene and visitor and HCW contact precautions were not effective at reducing either measure. CONCLUSIONS Hospitals can achieve substantial reduction in hospital-onset CDIs by implementing a small number of highly effective interventions.
Collapse
|
14
|
McLure A, Furuya-Kanamori L, Clements ACA, Kirk M, Glass K. Seasonality and community interventions in a mathematical model of Clostridium difficile transmission. J Hosp Infect 2019; 102:157-164. [PMID: 30880267 DOI: 10.1016/j.jhin.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Clostridium difficile infection (CDI) is the leading cause of antibiotic-associated diarrhoea with peak incidence in late winter or early autumn. Although CDI is commonly associated with hospitals, community transmission is important. AIM To explore potential drivers of CDI seasonality and the effect of community-based interventions to reduce transmission. METHODS A mechanistic compartmental model of C. difficile transmission in a hospital and surrounding community was used to determine the effect of reducing transmission or antibiotic prescriptions in these settings. The model was extended to allow for seasonal antibiotic prescriptions and seasonal transmission. FINDINGS Modelling antibiotic seasonality reproduced the seasonality of CDI, including approximate magnitude (13.9-15.1% above annual mean) and timing of peaks (0.7-1.0 months after peak antibiotics). Halving seasonal excess prescriptions reduced the incidence of CDI by 6-18%. Seasonal transmission produced larger seasonal peaks in the prevalence of community colonization (14.8-22.1% above mean) than seasonal antibiotic prescriptions (0.2-1.7% above mean). Reducing transmission from symptomatic or hospitalized patients had little effect on community-acquired CDI, but reducing transmission in the community by ≥7% or transmission from infants by ≥30% eliminated the pathogen. Reducing antibiotic prescription rates led to approximately proportional reductions in infections, but limited reductions in the prevalence of colonization. CONCLUSION Seasonal variation in antibiotic prescription rates can account for the observed magnitude and timing of C. difficile seasonality. Even complete prevention of transmission from hospitalized patients or symptomatic patients cannot eliminate the pathogen, but interventions to reduce transmission from community residents or infants could have a large impact on both hospital- and community-acquired infections.
Collapse
Affiliation(s)
- A McLure
- Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - L Furuya-Kanamori
- Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia; Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
| | - A C A Clements
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - M Kirk
- Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - K Glass
- Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|