1
|
Westbrook AM. A review of the neurophysiology of the turtle retina III. Amacrine and ganglion cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb06538.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
2
|
Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J Neurosci 2019; 39:1881-1891. [PMID: 30622167 DOI: 10.1523/jneurosci.2085-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Elevation of intraocular pressure (IOP) causes retinal ganglion cell (RGC) dysfunction and death and is a major risk factor for glaucoma. We used a bead injection technique to increase IOP in mice of both genders by an average of ∼3 mmHg for 2 weeks. This level of IOP elevation was lower than that achieved in other studies, which allowed for the study of subtle IOP effects. We used multielectrode array recordings to determine the cellular responses of RGCs exposed to this mild degree of IOP elevation. We found that RGC photopic receptive field (RF) center size and whole-field RGC firing rates were unaffected by IOP elevation. In contrast, we found that the temporal properties of RGC photopic responses in the RF center were accelerated, particularly in ON sustained cells. We also detected a loss of antagonistic surround in several RGC subtypes. Finally, spontaneous firing rate, interspike interval variance, and contrast sensitivity were altered according to the magnitude of IOP exposure and also displayed an IOP-dependent effect. Together, these results suggest that individual RGC physiologic parameters have unique IOP-related functional thresholds that exist concurrently and change following IOP elevation according to specific patterns. Furthermore, even subtle IOP elevation can impart profound changes in RGC function, which in some cases may occur in an IOP-dependent manner. This system of overlapping functional thresholds likely underlies the complex effects of elevated IOP on the retina.SIGNIFICANCE STATEMENT Retinal ganglion cells (RGCs) are the obligate output neurons of the retina and are injured by elevated intraocular pressure (IOP) in diseases such as glaucoma. In this study, a subtle elevation of IOP in mice for 2 weeks revealed distinct IOP-related functional thresholds for specific RGC physiologic parameters and sometimes showed an IOP-dependent effect. These data suggest that overlapping IOP-related thresholds and response profiles exist simultaneously in RGCs and throughout the retina. These overlapping thresholds likely explain the range of RGC responses that occur following IOP elevation and highlight the wide capacity of neurons to respond in a diseased state.
Collapse
|
3
|
Cowan CS, Sabharwal J, Wu SM. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields. Physiol Rep 2017; 4:4/17/e12952. [PMID: 27604400 PMCID: PMC5027358 DOI: 10.14814/phy2.12952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reverse correlation methods such as spike‐triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space–time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space–time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Joint Encoding of Object Motion and Motion Direction in the Salamander Retina. J Neurosci 2017; 36:12203-12216. [PMID: 27903729 DOI: 10.1523/jneurosci.1971-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/17/2016] [Accepted: 09/23/2016] [Indexed: 11/21/2022] Open
Abstract
The processing of motion in visual scenes is important for detecting and tracking moving objects as well as for monitoring self-motion through the induced optic flow. Specialized neural circuits have been identified in the vertebrate retina for detecting motion direction or for distinguishing between object motion and self-motion, although little is known about how information about these distinct features of visual motion is combined. The salamander retina, which is a widely used model system for analyzing retinal function, contains object-motion-sensitive (OMS) ganglion cells, which strongly respond to local motion signals but are suppressed by global image motion. Yet, direction-selective (DS) ganglion cells have been conspicuously absent from characterizations of the salamander retina, despite their ubiquity in other model systems. We here show that the retina of axolotl salamanders contains at least two distinct classes of DS ganglion cells. For one of these classes, the cells display a strong preference for local over global motion in addition to their direction selectivity (OMS-DS cells) and thereby combine sensitivity to two distinct motion features. The OMS-DS cells are further distinct from standard (non-OMS) DS cells by their smaller receptive fields and different organization of preferred motion directions. Our results suggest that the two classes of DS cells specialize to encode motion direction of local and global motion stimuli, respectively, even for complex composite motion scenes. Furthermore, although the salamander DS cells are OFF-type, there is a strong analogy to the systems of ON and ON-OFF DS cells in the mammalian retina. SIGNIFICANCE STATEMENT The retina contains specialized cells for motion processing. Among the retinal ganglion cells, which form the output neurons of the retina, some are known to report the direction of a moving stimulus (direction-selective cells), and others distinguish the motion of an object from a moving background. But little is known about how information about local object motion and information about motion direction interact. Here, we report that direction-selective ganglion cells can be identified in the salamander retina, where their existence had been unclear. Furthermore, there are two independent systems of direction-selective cells, and one of these combines direction selectivity with sensitivity to local motion. The output of these cells could assist in tracking moving objects and estimating their future position.
Collapse
|
5
|
All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 2015; 25:2763-2773. [PMID: 26441349 DOI: 10.1016/j.cub.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/15/2015] [Accepted: 09/05/2015] [Indexed: 11/22/2022]
Abstract
Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
Collapse
|
6
|
Abstract
To make up for delays in visual processing, retinal circuitry effectively predicts that a moving object will continue moving in a straight line, allowing retinal ganglion cells to anticipate the object's position. However, a sudden reversal of motion triggers a synchronous burst of firing from a large group of ganglion cells, possibly signaling a violation of the retina's motion prediction. To investigate the neural circuitry underlying this response, we used a combination of multielectrode array and whole-cell patch recordings to measure the responses of individual retinal ganglion cells in the tiger salamander to reversing stimuli. We found that different populations of ganglion cells were responsible for responding to the reversal of different kinds of objects, such as bright versus dark objects. Using pharmacology and designed stimuli, we concluded that ON and OFF bipolar cells both contributed to the reversal response, but that amacrine cells had, at best, a minor role. This allowed us to formulate an adaptive cascade model (ACM), similar to the one previously used to describe ganglion cell responses to motion onset. By incorporating the ON pathway into the ACM, we were able to reproduce the time-varying firing rate of fast OFF ganglion cells for all experimentally tested stimuli. Analysis of the ACM demonstrates that bipolar cell gain control is primarily responsible for generating the synchronized retinal response, as individual bipolar cells require a constant time delay before recovering from gain control.
Collapse
|
7
|
Abstract
Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system.
Collapse
|
8
|
Chen X, Hsueh HA, Greenberg K, Werblin FS. Three forms of spatial temporal feedforward inhibition are common to different ganglion cell types in rabbit retina. J Neurophysiol 2010; 103:2618-32. [PMID: 20220071 DOI: 10.1152/jn.01109.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There exist more than 30 different morphological amacrine cell types, but there may be fewer physiological types. Here we studied the amacrine cell outputs by measuring the temporal and spatial properties of feedforward inhibition to four different types of ganglion cells. These ganglion cells, each with concentric receptive field organization, appear to receive a different relative contribution of the same three forms of feed-forward inhibition, namely: local glycinergic, local sustained GABAergic, and broad transient GABAergic inhibition. Two of these inhibitory components, local glycinergic inhibition and local sustained GABAergic inhibition were localized to narrow regions confined to the dendritic fields of the ganglion cells. The third, a broad transient GABAergic inhibition, was driven from regions peripheral to the dendritic area. Each inhibitory component is also correlated with characteristic kinetics expressed in all ganglion cells: broad transient GABAergic inhibition had the shortest latency, local glycinergic inhibition had an intermediate latency, and local sustained GABAergic inhibition had the longest latency. We suggest each of these three inhibitory components represents the output from a distinct class of amacrine cell, mediates a specific visual function, and each forms a basic functional component for the four ganglion cell types. Similar subunits likely exist in the circuits of other ganglion cell types as well.
Collapse
Affiliation(s)
- Xin Chen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
9
|
Mora-Ferrer C, Neumeyer C. Neuropharmacology of vision in goldfish: A review. Vision Res 2009; 49:960-9. [DOI: 10.1016/j.visres.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 07/16/2008] [Accepted: 08/11/2008] [Indexed: 11/27/2022]
|
10
|
Abstract
In the vertebrate inner retina, the second stage of the visual system, different components of the visual scene are transformed, discarded, or selected before visual information is transmitted through the optic nerve. This review discusses the connections between higher-level functions of visual processing, mathematical descriptions of the neural code, inner retinal circuitry, and visual computations. In the inner plexiform layer, bipolar cells deliver spatially and temporally filtered input to approximately ten anatomical strata. These layers receive a unique combination of excitation and inhibition, causing cells in different layers to respond with different kinetics to visual input. These distinct temporal channels interact through amacrine cells, a diverse class of inhibitory interneurons, which transmit signals within and between layers. In particular, wide-field amacrine cells transmit transient inhibition over long distances within a layer. These mechanisms and properties are combined into computations to detect the presence of differential motion and suppress the visual effects of eye movements.
Collapse
Affiliation(s)
- Stephen A Baccus
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
11
|
Grzywacz NM, Zucker CL. Modeling Starburst cells' GABA(B) receptors and their putative role in motion sensitivity. Biophys J 2006; 91:473-86. [PMID: 16648160 PMCID: PMC1483088 DOI: 10.1529/biophysj.105.072256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 04/10/2006] [Indexed: 11/18/2022] Open
Abstract
Neal and Cunningham (Neal, M. J., and J. R. Cunningham. 1995. J. Physiol. (Lond.). 482:363-372) showed that GABA(B) agonists and glycinergic antagonists enhance the light-evoked release of retinal acetylcholine. They proposed that glycinergic cells inhibit the cholinergic Starburst amacrine cells and are in turn inhibited by GABA through GABA(B) receptors. However, as recently shown, glycinergic cells do not appear to have GABA(B) receptors. In contrast, the Starburst amacrine cell has GABA(B) receptors in a subpopulation of its varicosities. We thus propose an alternate model in which GABA(B)-receptor activation reduces the release of ACh from some dendritic compartments onto a glycinergic cell, which then feeds back and inhibits the Starburst cell. In this model, the GABA necessary to make these receptors active comes from the Starburst cell itself, making them autoreceptors. Computer simulations of this model show that it accounts quantitatively for the Neal and Cunningham data. We also argue that GABA(B) receptors could work to increase the sensitivity to motion over other stimuli.
Collapse
Affiliation(s)
- Norberto M Grzywacz
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center For Visual Science and Technology, University of Southern California, Los Angeles, California, USA.
| | | |
Collapse
|
12
|
Thiel A, Greschner M, Ammermüller J. The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. J Comput Neurosci 2006; 21:131-51. [PMID: 16732489 DOI: 10.1007/s10827-006-7863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/15/2006] [Accepted: 02/22/2006] [Indexed: 11/27/2022]
Abstract
A subpopulation of transient ON/OFF ganglion cells in the turtle retina transmits changes in stimulus intensity as series of distinct spike events. The temporal structure of these event sequences depends systematically on the stimulus and thus carries information about the preceding intensity change. To study the spike events' intra-retinal origins, we performed extracellular ganglion cell recordings and simultaneous intracellular recordings from horizontal and amacrine cells. Based on these data, we developed a computational retina model, reproducing spike event patterns with realistic intensity dependence under various experimental conditions. The model's main features are negative feedback from sustained amacrine onto bipolar cells, and a two-step cascade of ganglion cell suppression via a slow and a fast transient amacrine cell. Pharmacologically blocking glycinergic transmission results in disappearance of the spike event sequence, an effect predicted by the model if a single connection, namely suppression of the fast by the slow transient amacrine cell, is weakened. We suggest that the slow transient amacrine cell is glycinergic, whereas the other types release GABA. Thus, the interplay of amacrine cell mediated inhibition is likely to induce distinct temporal structure in ganglion cell responses, forming the basis for a temporal code.
Collapse
Affiliation(s)
- Andreas Thiel
- Neurobiology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | | | | |
Collapse
|
13
|
Chiao CC, Masland RH. Contextual tuning of direction-selective retinal ganglion cells. Nat Neurosci 2003; 6:1251-2. [PMID: 14595442 DOI: 10.1038/nn1147] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/25/2003] [Indexed: 11/09/2022]
Abstract
A direction-selective (DS) retinal ganglion cell responds well to a small object moving within its receptive field center, but less well when there is also a moving stimulus in the surrounding area; this has been described as tuning for local motion. We show here an additional selectivity, such that the surround has less effect if there is a discontinuity--that is, a difference in spatial phase, spatial frequency or velocity--between the center stimulus and that present in the surround.
Collapse
Affiliation(s)
- Chuan-Chin Chiao
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Wellman 429, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
14
|
Slaughter MM, Awatramani GB. On bipolar cells: following in the footsteps of phototransduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:477-92. [PMID: 12596940 DOI: 10.1007/978-1-4615-0121-3_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The electrical signals resulting from phototransduction are decomposed by bipolar cells and then encoded into spike trains by ganglion cells. The signal decomposition by bipolar cells includes formation of ON and OFF pathways and separation of tonic and phasic signals. The decomposition is accomplished by post-synaptic receptors in the ON and OFF bipolar cells. This chapter focuses on these phenomena in ON bipolar cells and the role of metabotropic glutamate receptors in these processes.
Collapse
Affiliation(s)
- Malcolm M Slaughter
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14214, USA.
| | | |
Collapse
|
15
|
Olveczky BP, Baccus SA, Meister M. Segregation of object and background motion in the retina. Nature 2003; 423:401-8. [PMID: 12754524 DOI: 10.1038/nature01652] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 03/18/2003] [Indexed: 11/08/2022]
Abstract
An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects.
Collapse
Affiliation(s)
- Bence P Olveczky
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
16
|
Shields CR, Lukasiewicz PD. Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells. J Neurophysiol 2003; 89:2449-58. [PMID: 12611993 DOI: 10.1152/jn.00916.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inhibitory surround signal in retinal ganglion cells is usually attributed to lateral horizontal cell signaling in the outer plexiform layer (OPL). However, recent evidence suggests that lateral inhibition at the inner plexiform layer (IPL) also contributes to the ganglion cell receptive field surround. Although amacrine cell input to ganglion cells mediates a component of this lateral inhibition, it is not known if presynaptic inhibition to bipolar cell terminals also contributes to surround signaling. We investigated the role of presynaptic inhibition by recording from bipolar cells in the salamander retinal slice. TTX reduced light-evoked GABAergic inhibitory postsynaptic currents (IPSCs) in bipolar cells, indicating that presynaptic pathways mediate lateral inhibition in the IPL. Photoreceptor and bipolar cell synaptic transmission were unaffected by TTX, indicating that its main effect was in the IPL. To rule out indirect actions of TTX, we bypassed lateral signaling in the outer retina by either electrically stimulating bipolar cells or by puffing kainate (KA) directly onto amacrine cell processes lateral to the recorded cell. In bipolar and ganglion cells, TTX suppressed laterally evoked IPSCs, demonstrating that both pre- and postsynaptic lateral signaling in the IPL depended on action potentials. By contrast, locally evoked IPSCs in both cell types were only weakly suppressed by TTX, indicating that local inhibition was not as dependent on action potentials. Our results show a TTX-sensitive lateral inhibitory input to bipolar cell terminals, which acts in concert with direct lateral inhibition to give rise to the GABAergic surround in ganglion cells.
Collapse
Affiliation(s)
- Colleen R Shields
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
17
|
Cohen ED. Synaptic mechanisms shaping the light-response in retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2001; 131:215-28. [PMID: 11420942 DOI: 10.1016/s0079-6123(01)31018-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E D Cohen
- Department of Cellular and Molecular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Abstract
Cholinergic amacrine cells in the tiger salamander retina were observed for the first time by using antibodies against choline acetyltransferase (ChAT). ChAT-immunoreactive cells were present in the inner nuclear layer (INL) and in the ganglion cell layer (GCL), and the somas of the former population (average diameter = 15.13 microm) were slightly smaller than those of the latter population (average diameter = 16.42 microm). The processes of these cells form two distinct narrow bands in the inner plexiform layer (IPL), one located near 0.2 inner plexiform units (IU) and the other near 0.65-0.7 IU. Soma size, cell density and spatial distribution of ChAT-positive cells were quantitatively analyzed. Our results suggest that cholinergic amacrine cells in the salamander retina are very similar to their counter parts in other species, and they can be used as a model system for studying cholinergic functions in the visual system.
Collapse
Affiliation(s)
- J Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Masland RH, Raviola E. Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu Rev Neurosci 2000; 23:249-84. [PMID: 10845065 DOI: 10.1146/annurev.neuro.23.1.249] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian retina contains upward of 50 distinct functional elements, each carrying out a specific task. Such diversity is not rare in the central nervous system, but the retina is privileged because its physical location, the distinctive morphology of its neurons, the regularity of its architecture, and the accessibility of its inputs and outputs permit a unique variety of experiments. Recent strategies for confronting the retina's complexity attempt to marry genetic approaches to new kinds of anatomical and electrophysiological techniques.
Collapse
Affiliation(s)
- R H Masland
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston 02114, USA.
| | | |
Collapse
|
20
|
Arnarsson A, Eysteinsson T. Modification of the Xenopus electroretinogram by actions of glycine in the proximal retina. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:249-58. [PMID: 10886039 DOI: 10.1046/j.1365-201x.2000.00736.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The electroretinogram (ERG) was recorded from the Xenopus retina, to examine the effects of glycine and strychnine on these responses and to determine the origins of these changes. Glycine at concentrations between 0.1 and 10 mM reduced the b- and d-waves of the ERG in a dose-dependent manner, while strychnine increased their amplitude. 2-Amino-4-phosphonobutyric acid (APB) reduced the b-wave and blocked the effect of glycine, but not strychnine, on the d-wave. When the d-wave had first been blocked by kynurenic acid (KYN) or reduced by (+/-)cis-2,3-piperidine dicarboxylic acid (PDA) the b-wave was enhanced by glycine, but not by strychnine. N-methyl-DL-aspartate (NMDLA), which alters responses in the proximal retina only, blocked the effects of glycine and strychnine on the ERG. This suggests that the glycinergic effects on the ERG are at least partly mediated by processes in the proximal retina. The results further support the suggestion that inhibitory neurotransmitters in the proximal retina may modulate both the b- and d-waves of the Xenopus ERG.
Collapse
Affiliation(s)
- A Arnarsson
- Department of Physiology, University of Iceland, Reykjavik, Iceland
| | | |
Collapse
|
21
|
Abstract
Recently we found that the theories related to information theory existent in the literature cannot explain the behavior of the extent of the lateral inhibition mediated by retinal horizontal cells as a function of background light intensity. These theories can explain the fall of the extent from intermediate to high intensities, but not its rise from dim to intermediate intensities. We propose an alternate hypothesis that accounts for the extent's bell-shape behavior. This hypothesis proposes that the lateral-inhibition adaptation in the early retina is part of a system to extract several image attributes, such as occlusion borders and contrast. To do so, this system would use prior probabilistic knowledge about the biological processing and relevant statistics in natural images. A key novel statistic used here is the probability of the presence of an occlusion border as a function of local contrast. Using this probabilistic knowledge, the retina would optimize the spatial profile of lateral inhibition to minimize attribute-extraction error. The two significant errors that this minimization process must reduce are due to the quantal noise in photoreceptors and the straddling of occlusion borders by lateral inhibition.
Collapse
Affiliation(s)
- R M Balboa
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115-1813, USA
| | | |
Collapse
|
22
|
Gao F, Maple BR, Wu SM. I4AA-Sensitive chloride current contributes to the center light responses of bipolar cells in the tiger salamander retina. J Neurophysiol 2000; 83:3473-82. [PMID: 10848563 DOI: 10.1152/jn.2000.83.6.3473] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Light-evoked currents in depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) were recorded under voltage-clamp conditions in living retinal slices of the larval tiger salamander. Responses to illumination at the center of the DBCs' and HBCs' receptive fields were mediated by two postsynaptic currents: DeltaI(C), a glutamate-gated cation current with a reversal potential near 0 mV, and DeltaI(Cl), a chloride current with a reversal potential near -60 mV. In DBCs DeltaI(C) was suppressed by L-2-amino-4-phosphonobutyric acid (L-AP4), and in HBCs it was suppressed by 6,7-dinitroquinoxaline-2,3-dione (DNQX). In both DBCs and HBCs DeltaI(Cl) was suppressed by imidazole-4-acetic acid (I4AA), a GABA receptor agonist and GABA(C) receptor antagonist. In all DBCs and HBCs examined, 10 microM I4AA eliminated DeltaI(Cl) and the light-evoked current became predominately mediated by DeltaI(C). The addition of 20 microM L-AP4 to the DBCs or 50 microM DNQX to HBCs completely abolished DeltaI(C). Focal application of glutamate at the inner plexiform layer elicited chloride currents in bipolar cells by depolarizing amacrine cells that release GABA at synapses on bipolar cell axon terminals, and such glutamate-induced chloride currents in DBCs and HBCs could be reversibly blocked by 10 microM I4AA. These experiments suggest that the light-evoked, I4AA-sensitive chloride currents (DeltaI(Cl)) in DBCs and HBCs are mediated by narrow field GABAergic amacrine cells that activate GABA(C) receptors on bipolar cell axon terminals. Picrotoxin (200 microM) or (1,2,5,6-tetrahydropyridine-4yl) methyphosphinic acid (TPMPA) (2 other GABA(C) receptor antagonists) did not block (but enhanced and broadened) the light-evoked DeltaI(Cl), although they decreased the chloride current induced by puff application of GABA or glutamate. The light response of narrow field amacrine cells were not affected by I4AA, but were substantially enhanced and broadened by picrotoxin. These results suggest that there are at least two types of GABA(C) receptors in bipolar cells: one exhibits stronger I4AA sensitivity than the other, but both can be partially blocked by picrotoxin. The GABA receptors in narrow field amacrine cells are I4AA insensitive and picrotoxin sensitive. The light-evoked DeltaI(Cl) in bipolar cells are mediated by the more strongly I4AA-sensitive GABA(C) receptors. Picrotoxin, although acting as a partial GABA(C) receptor antagonist in bipolar cells, does not suppress DeltaI(Cl) because its presynaptic effects on amacrine cell light responses override its antagonistic postsynaptic actions.
Collapse
Affiliation(s)
- F Gao
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
23
|
Nguyen LT, Grzywacz NM. Colocalization of choline acetyltransferase and gamma-aminobutyric acid in the developing and adult turtle retinas. J Comp Neurol 2000; 420:527-38. [PMID: 10805925 DOI: 10.1002/(sici)1096-9861(20000515)420:4<527::aid-cne9>3.0.co;2-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholine and gamma -aminobutyric acid (GABA) are putative neurotransmitters in the adult vertebrate retina. In this study, cells that coexpress choline acetyltransferase (ChAT) and GABA or glutamic acid decarboxylase (GAD) were investigated in turtle retinas from stage 14 (S14) to adulthood by using a double-labeling immunofluorescence technique. ChAT immunoreactivity was observed at S15 and included not only the presumptive starburst cholinergic amacrine cells but also a population in the ganglion cell layer (GCL) that expressed ChAT transiently during the embryonic stages (see the accompanying paper: Nguyen et al. [2000] J. Comp. Neurol. 420:512-526).
Collapse
Affiliation(s)
- L T Nguyen
- The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115, USA
| | | |
Collapse
|
24
|
Maguire G. Spatial heterogeneity and function of voltage- and ligand-gated ion channels in retinal amacrine neurons. Proc Biol Sci 1999; 266:987-92. [PMID: 10380682 PMCID: PMC1689933 DOI: 10.1098/rspb.1999.0734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spatial distribution of ion channels within amacrine cells of the tiger salamander retina was studied using patch recording in the retinal slice preparation. By focally puffing kainate, GABA and glycine at amacrine cell processes in the inner plexiform layer, it was determined that the cell's glutamate receptors were located in a confined region of the processes near the soma, while glycine and GABA receptors were located throughout the processes. Likewise, similar techniques in conjunction with voltage steps demonstrated that voltage-gated sodium channels were located throughout the cell and were shown to generate sodium-dependent spikes, while only the processes contained voltage-gated calcium channels. These results suggest that this form of transient amacrine cell collects its excitatory synaptic inputs in a region confined to a central annular region near the soma, that the signal is actively propagated throughout its processes by voltage-gated sodium channels and that calcium-dependent neurotransmitter release of glycine from this neuron can occur throughout its processes. Thus, excitatory signals are collected in the processes near the soma, inhibitory signals throughout the processes and excitation is probably propagated throughout the processes of the amacrine cell.
Collapse
Affiliation(s)
- G Maguire
- Department of Ophthalmology, University of California, San Diego, La Jolla 92093-0946, USA.
| |
Collapse
|
25
|
Maguire G. Rapid desensitization converts prolonged glutamate release into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells. Eur J Neurosci 1999; 11:353-62. [PMID: 9987038 DOI: 10.1046/j.1460-9568.1999.00439.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms underlying the conversion of prolonged glutamate release from ribbon synapses in bipolar cells to sustained and transient excitatory postsynaptic responses in identified retinal amacrine cells were studied in tiger salamander (Ambystoma tigrinum) retina. A retina slice preparation with whole cell patch recording techniques under voltage- and current-clamp conditions was used to assay the electrical properties of bipolar and amacrine cells. Amacrine cells were categorized into two basic forms: (i) transient amacrine cells that respond to a step of light with a burst of spikes only at the transitions of the step; and (ii) sustained amacrine cells that respond with continuous spiking during the entire light step. The two cell types each had a characteristic morphology: transient amacrine cells possessed wide dendritic fields (chi = 375 microns), while sustained cells had much more narrowly confined dendritic fields (chi = 85 microns). Whole cell voltage-gated currents of the transient and sustained cell types were not significantly different. Both cell types had spikes that were sensitive to tetradotoxin (TTX, 0.3 microM) with voltage deflections of up to 100 mV. Light-evoked excitatory synaptic currents relaxed rapidly in transient neurons (tau 1/2 = 100 ms) and more slowly in sustained neurons (tau 1/2 = 1.2 s). EPSCs in both cells reversed near 0 mV. Rapid application of glutamate or kainate elicited rapidly desensitizing ionic currents (tau 1/2 = 85 ms) followed by a slowly desensitizing component. Cyclothiazide, a drug that eliminates rapid desensitization, lengthened the time course of the glutamate gated current from tau 1/2 = 85 ms to about 3 s, and the relaxation kinetics of the glutamatergic EPSC from tau 1/2 = 85 ms to about 1.0 s. These data suggest that a key determinant in forming transient versus sustained responses in amacrine cells of vertebrate retina is the differences in their excitatory, glutamatergic synaptic inputs, and that rapid desensitization of glutamate receptors plays a role in converting the presynaptic signal associated with sustained glutamate release into a postsynaptic, transient signal at the ribbon synapse.
Collapse
Affiliation(s)
- G Maguire
- Department of Ophthalmology, University of California, San Diego, La Jolla 92093, USA.
| |
Collapse
|
26
|
Cook PB, McReynolds JS. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci 1998; 1:714-9. [PMID: 10196588 DOI: 10.1038/3714] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The center-surround receptive-field organization in retinal ganglion cells is widely believed to result mainly from lateral inhibition at the first synaptic level (in the outer retina). Inhibition at the second synaptic level (in the inner retina) is thought to mediate more complex response properties. Here we show that much of the sustained surround antagonism in certain on-center ganglion cells results from lateral inhibition in the inner retina, via GABAergic amacrine cells, and that the lateral conduction of this signal requires voltage-gated sodium currents. Blocking lateral inhibition in the inner retina eliminates the preference of small-center ganglion cells for small stimuli but has little effect on ganglion cells with large receptive-field centers. These results illustrate how lateral inhibition at successive synaptic stages can selectively control the size of neural receptive-field centers.
Collapse
Affiliation(s)
- P B Cook
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48109-0622, USA.
| | | |
Collapse
|
27
|
Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. J Neurosci 1998. [PMID: 9547252 DOI: 10.1523/jneurosci.18-09-03451.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most retinal ganglion cells respond only transiently, for approximately 150 msec at the onset and termination of a light flash. The responses are transient because it has been shown that bipolar-to-ganglion cell transmission is truncated after 150 msec by a feedback inhibition to bipolar cell terminals. The feedback inhibition itself must be delayed by approximately 150 msec to allow the initial bipolar-ganglion cell transmission. This study identifies a three-component serial synaptic pathway from glycinergic amacrine cells to GABAergic amacrine cells to bipolar cell terminals as one source of this delay. We used perforated and whole-cell patch-clamp recordings to measure the timing of light responses in amacrine, bipolar, and ganglion cells under control and glycine and GABA receptor-blocked conditions. Our results suggest that, after a light flash, a population of glycinergic amacrine cells responds first, inhibiting a population of GABAergic amacrine cells for approximately 150 msec. The GABAergic amacrine cells feed back to bipolar terminals, but only after the 150 msec delay, allowing the bipolar terminals to excite ganglion cells for the first 150 msec. Blocking the glycinergic amacrine cell activity with strychnine allows the GABAergic system to become active earlier. GABAergic amacrine cells then inhibit release from bipolar cells earlier. Under these conditions, the ganglion cell response to change would be decreased.
Collapse
|
28
|
Dong CJ, Werblin FS. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J Neurophysiol 1998; 79:2171-80. [PMID: 9535976 DOI: 10.1152/jn.1998.79.4.2171] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most retinal amacrine (ACs) and ganglion cells (GCs) express temporal contrast by generating action potentials at only the onset and offset of the light stimulus. This study investigated the neural mechanisms that underlie this temporal contrast enhancement. Whole cell patch recordings were made from bipolar cells (BCs), ACs, and GCs in the retinal slice preparation. The cells were identified by the locations of their somas in the inner nuclear layer and ganglion cell layers, their characteristic light responses, and morphology revealed by Lucifer yellow staining. Depolarizing a single BC with a brief voltage pulse elicited a Cl- tail current that was completely abolished when Ca2+ entry to bipolar terminals was prevented, by either removing Ca2+ from the Ringer solution or blocking Ca2+ channels with Co2+. This suggests that the Cl- current is Ca2+-dependent. In those bipolar cells whose axon terminals were cutoff during slicing no Cl- current was observed, indicating that this current is generated at the synaptic terminals. The Cl- current consists of a predominant synaptic component that can be blocked by the non-N-methyl--aspartate (NMDA) glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or by the gamma-aminobutyric acid-C (GABAC) receptor antagonist picrotoxin. There also exists a relatively small nonsynaptic component. Thus both glutamatergic and GABAergic transmission were involved in the generation of this Cl- current, suggesting that it is mediated by a recurrent feedback to bipolar cells. Picrotoxin, which blocks both GABAC receptors at BC terminals and GABAA receptors on the dendrites of ACs and GCs, converted the light-elicited voltage response in most - ACs and GCs from transient to sustained. Bicuculline, which blocks only the GABAA receptors, did not prolong the transient response in - ACs and GCs. This suggests that a negative feedback mediated by the GABAC receptor on the bipolar terminals is responsible for making these responses transient. After the GABAergic feedback was blocked with picrotoxin the light-elicited voltage responses (recorded under current clamp) were more sustained than the current responses (recorded under voltage clamp) to the same light stimuli. This suggests that a voltage-dependent conductance converts the relatively transient current responses to more sustained voltage responses. Our results imply a synaptically driven local GABAergic feedback at bipolar terminals, mediated by GABAC receptors. This feedback appears to be a significant component of the mechanism underlying temporal contrast enhancement in - ACs and GCs.
Collapse
Affiliation(s)
- C J Dong
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
29
|
Cook PB, McReynolds JS. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation. J Neurophysiol 1998; 79:197-204. [PMID: 9425191 DOI: 10.1152/jn.1998.79.1.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two functionally and anatomically distinct types of lateral inhibition contribute to the receptive field organization of ganglion cells in the vertebrate retina: sustained lateral inhibition (SLI), which is present during steady illumination and transient lateral inhibition (TLI), evoked by changes in illumination. We studied adaptive changes in these two lateral inhibitory mechanisms in the mudpuppy retina by measuring the responses of ON-OFF ganglion cells to spots of light in the receptive field center, in the absence and presence of a concentric broken annulus (windmill) pattern, which was either stationary or rotating. SLI was measured as the percent suppression of the centered spot response by the stationary windmill and TLI was measured as the additional suppression produced when the windmill was rotating. In dark-adapted retinas SLI was elicited by windmills of 600 or 1,200 micron ID, but TLI could not be elicited by windmills of any size, over a wide range of windmill intensities and rotation rates. Exposure of dark-adapted retinas to diffuse adapting light caused an immediate decrease in the response to the spot alone, followed by slowly developing changes in both SLI and TLI: SLI produced by 1,200 micron ID windmills became weaker, whereas SLI produced by 600 micron ID windmills became stronger. After several minutes strong TLI could be elicited by both 600 and 1,200 micron ID windmills. The changes in SLI and TLI were usually complete within 5 and 15 min, respectively, and recovered to dark-adapted levels slightly more slowly after the adapting light was turned off. However the changes in sensitivity of the spot response were complete within one minute after onset and termination of the adapting light. The adaptive changes in SLI and TLI did not depend on the presence of the adapting light; after a brief (1 min) exposure to the adapting light, the changes in SLI and TLI slowly developed and then decayed back to the dark-adapted level. The effects of the adapting light on SLI were mimicked by dopamine and blocked by D1 dopamine receptor antagonists. However dopamine did not enable TLI in dark-adapted retinas and dopamine antagonists did not prevent enablement of TLI when dark-adapted retinas were exposed to light or disable TLI when applied to light-adapted retinas. The results suggest that light-adaptive changes in SLI are mediated by dopamine and are consistent with a reduction in electrical coupling between neurons that conduct the SLI signal laterally in the retina. In contrast, TLI appears to be switched off or suppressed in the dark-adapted retina and enabled in light-adapted retinas, by a relatively slow modulatory mechanism that does not involve dopamine.
Collapse
Affiliation(s)
- P B Cook
- Department of Physiology, The University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
30
|
Zhang DQ, Yang XL. OFF pathway is preferentially suppressed by the activation of GABA(A) receptors in carp retina. Brain Res 1997; 759:160-2. [PMID: 9219876 DOI: 10.1016/s0006-8993(97)00340-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examines the effect of gamma-aminobutyric acid (GABA) on the ON and OFF pathways in isolated, superfused carp retina. In most (76%) of amacrine cells bath-applied GABA preferentially suppressed the OFF response. The effect of GABA was blocked by bicuculline. Baclofen did not cause a similar effect. Furthermore, GABA produced a substantial suppression of the OFF bipolar cell response. We conclude that the preferential suppression of the OFF pathway may be due to a presynaptic inhibition mediated via GABA(A) receptors at the terminals of OFF bipolar cells.
Collapse
Affiliation(s)
- D Q Zhang
- Shanghai Institute of Physiology, Chinese Academy of Sciences
| | | |
Collapse
|
31
|
Abstract
Physiological and pharmacological properties of possible subtypes of the native glycine receptor were investigated in retinal neurons using whole-cell voltage-clamp techniques. Two discrete inhibitory glycine responses were identified in ganglion cells. The responses could be distinguished pharmacologically: one was sensitive to strychnine and the other to 5,7-dichlorokynurenic acid. The two responses had different kinetics: the former had a fast onset and fast desensitization, whereas the latter had a slower onset and was much more sustained. The physiological and pharmacological distinctions suggest that the responses are mediated by different receptors. These receptors transduce glycinergic synaptic signals to ganglion cells, where they serve as low- and high-pass filters, respectively, of EPSPs.
Collapse
|
32
|
Abstract
Whole-cell voltage clamp in the retinal slice and intracellular current clamp in the intact retina were used to study inhibitory interactions in the inner plexiform layer. Picrotoxin or strychnine reduced inhibitory, light-evoked currents in a majority of ganglion cells. However, in nearly a third of the ganglion cells, each of these antagonists enhanced the inhibitory synaptic current. All inhibitory current was blocked by the addition of the other antagonist. This indicates a cross-inhibition between GABAergic and glycinergic feedforward pathways. Blocking of GABAARs with SR95531 shortened the time course of both excitatory and inhibitory synaptic currents in ganglion cells. Application of picrotoxin, which blocked both GABAARs and GABACRs, produced the opposite effect. Recordings in the intact retina indicated that the light responses of ON bipolar cells, sustained ON, and transient ON-OFF third-order neurons were all made more transient by SR95531 and made more sustained by picrotoxin. The data suggest that a GABAC feedback pathway to bipolar cells makes light responses more phasic and that this feedback is inhibited through a GABAAR pathway. Consequently, the balance between GABAAR and GABACR inhibition regulates the time course of inputs to ganglion cells.
Collapse
Affiliation(s)
- J Zhang
- Department of Physiology, School of Medicine, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
33
|
Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M. Adaptation of retinal processing to image contrast and spatial scale. Nature 1997; 386:69-73. [PMID: 9052781 DOI: 10.1038/386069a0] [Citation(s) in RCA: 412] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Owing to the limited dynamic range of a neuron's output, neural circuits are faced with a trade-off between encoding the full range of their inputs and resolving gradations among those inputs. For example, the ambient light level varies daily over more than nine orders of magnitude, whereas the firing rate of optic nerve fibres spans less than two. This discrepancy is alleviated by light adaptation: as the mean intensity increases, the retina becomes proportionately less sensitive. However, image statistics other than the mean intensity also vary drastically during routine visual processing. Theory predicts that an efficient visual encoder should adapt its strategy not only to the mean, but to the full shape of the intensity distribution. Here we report that retinal ganglion cells, the output neurons of the retina, adapt to both image contrast-the range of light intensities-and to spatial correlations within the scene, even at constant mean intensity. The adaptation occurs on a scale of seconds, one hundred times more slowly than the immediate light response, and involves 2-5-fold changes in the firing rate. It is mediated within the retinal network: two independent sites of modulation after the photoreceptor cells appear to be involved. Our results demonstrate a remarkable plasticity in retinal processing that may contribute to the contrast adaptation of human vision.
Collapse
Affiliation(s)
- S M Smirnakis
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
34
|
Grzywacz NM, Tootle JS, Amthor FR. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit's retinal directional selectivity? Vis Neurosci 1997; 14:39-54. [PMID: 9057267 DOI: 10.1017/s0952523800008749] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined contrast, direction of motion, and concentration dependencies of the effects of GABAergic and cholinergic antagonists, and anticholinesterases on responses to movement of On-Off directionally selective (DS) ganglion cells of the rabbit's retina. The drugs tested were curare and hexamethonium bromide (cholinergic antagonists), physostigmine (anticholinesterase), and picrotoxin (GABAergic antagonist). They all reduced the cells' directional selectivity, while maintaining their preferred-null axis. However, cholinergic antagonists did not block directional selectivity completely even at saturating concentrations. The failure to eliminate directional selectivity was probably not due to an incomplete blockade of cholinergic receptors. In a extension of a Masland and Ames (1976) experiment, saturating concentrations of antagonists blocked the effects of exogenous acetylcholine or nicotine applied during synaptic blockade. Consequently, a noncholinergic pathway may be sufficient to account for at least some directional selectivity. This putative pathway interacts with the cholinergic pathway before spike generation, since physostigmine eliminated directional selectivity at contrasts lower than those saturating responses. This elimination apparently resulted from cholinergic-induced saturation, since reduction of contrast restored directional selectivity. Under picrotoxin, directional selectivity was lost in 33% of the cells regardless of contrast. However, 47% maintained their preferred direction despite saturating concentrations of picrotoxin, and 20% reversed the preferred and null directions. Therefore, models based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model or solely on a cholinergic implementation of asymmetric-excitation models are not complete models of directional selectivity in the rabbit. We propose an alternate model for this retinal property.
Collapse
Affiliation(s)
- N M Grzywacz
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
35
|
Teeters J, Jacobs A, Werblin F. How neural interactions form neural responses in the salamander retina. J Comput Neurosci 1997; 4:5-27. [PMID: 9046449 DOI: 10.1023/a:1008840709467] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A wide range of experimental data characterizing properties of individual salamander retinal cells and synaptic interactions are integrated to form a quantitative computational model of visual function in the salamander retina. The model is used to show how specific interactions between neurons and between networks of neurons can lead-to the integrated response behavior of individual cells deep in the retina. The model is also used to illustrate how the representation of moving and stationary stimuli is encoded in a series of layer-by-layer transformations leading to the final retinal output at the ganglion cell layer.
Collapse
Affiliation(s)
- J Teeters
- University of California at Berkeley, USA
| | | | | |
Collapse
|
36
|
Abstract
Postsynaptic receptors in bipolar cells were studied by focal application of glutamate and GABA to the outer and inner plexiform layers (OPL and IPL) under visual guidance in living retinal slices of the tiger salamander. Two different types of conductance change could be elicited in bipolar cells by applying glutamate to the OPL. In off-center cells, which had axon telodendria ramifying in the distal 55% of the IPL, glutamate elicited a conductance increase associated with a reversal potential near -5 mV. In on-center cells, which had telodendria stratified in the proximal 45% of the IPL, glutamate caused a conductance decrease associated with a reversal potential near -11 mV. These observations suggest that glutamate gates relatively nonspecific cation channels at synapses between photoreceptors and bipolar cell dendrites. Application of glutamate to the IPL elicited no conductance change in Co2+ Ringer's solution, but in normal Ringer's it generated a conductance increase associated with a reversal potential near the chloride equilibrium potential (ECl). These findings are consistent with the notion that glutamate receptors exist in GABAergic and/or glycinergic amacrine cells, and that glutamate in the IPL depolarizes these cells, causing GABA and/or glycine release and the opening of chloride channels in bipolar cell axon terminals. In Co2+ Ringer's, application of GABA at the OPL elicited no conductance changes in bipolar cells, suggesting that GABA receptors do not exist on bipolar cell dendrites. Applied at the IPL, GABA elicited large conductance increases associated with a reversal potential near ECl. Implications of these results for the functional circuitry of the tiger salamander retina are discussed.
Collapse
Affiliation(s)
- B R Maple
- Cullen Eye Institute, Baylor College of Medicine, Houston TX 77030, USA
| | | |
Collapse
|
37
|
Smith RD, Grzywacz NM, Borg-Graham LJ. Is the input to a GABAergic synapse the sole asymmetry in turtle's retinal directional selectivity? Vis Neurosci 1996; 13:423-39. [PMID: 8782370 DOI: 10.1017/s0952523800008105] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the effects of picrotoxin and pentylenetetrazol (PTZ) on the responses to motions of ON-OFF directionally selective (DS) ganglion cells of the turtle's retina. These drugs are antagonists of the inhibitory neurotransmitter GABA. For continuous motions, picrotoxin markedly reduced the overall directionality of the cells. In 21% of the cells, directional selectivity was lost regardless of speed and contrast. However, other cells maintained their preferred direction despite saturating concentrations of picrotoxin. And in most cells, loss, maintenance, or even reversal of preferred and null directions could occur as speed and contrast were modulated. In 50% of the cells, reversal of preferred and null directions occurred at some condition of visual stimuli. However, picrotoxin did not tend to alter the preferred-null axis for directional selectivity. For apparent motions, picrotoxin made motion facilitation, which normally occurs exclusively in preferred-direction responses, to become erratic and often occur during null-direction motions. Finally, PTZ had effects similar to picrotoxin but with less potency. The results in this paper indicated that models of directional selectivity based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model do not apply to the turtle retina. Alternative models may comprise multiple directional mechanisms and/or a symmetric inhibitory one, but not asymmetric facilitation.
Collapse
Affiliation(s)
- R D Smith
- Center for Biological Information Processing, Massachusetts Institute of Technology, Cambridge, USA
| | | | | |
Collapse
|
38
|
Abstract
To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.
Collapse
Affiliation(s)
- M Meister
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
39
|
Toris CB, Eiesland JL, Miller RF. Morphology of ganglion cells in the neotenous tiger salamander retina. J Comp Neurol 1995; 352:535-59. [PMID: 7721999 DOI: 10.1002/cne.903520405] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The morphology of retinal ganglion cells in the neotenous tiger salamander (Ambystoma tigrinum) was analyzed with the aid of morphometric techniques to determine the diversity of cell types and to evaluate the widely held notion that this form of Ambystoma has a simple retina, with little variance among its cell morphologies. Single-cell staining was achieved through retrograde labeling with horseradish peroxidase injected around the optic nerve sheath followed by a period of several days before tissue processing; 83 well-labelled cells with axons were studied in detail with light microscopy and a computer-aided reconstruction system. Five different morphological cell classes were devised based on broad morphometric criteria such as the dendritic area of influence; the number, length, and complexity of dendritic branches; and the amount of overlap between neighboring dendrites. These classes included small simple, small complex, medium simple, medium complex, and large cells. In addition, a class of cells with numerous varicosities among the dendrites was separately analyzed. These swellings did not stain for catecholamines. Based on optical determinations of the dendritic sublamination pattern within the inner plexiform layer, presumed On-Off cells are present in all subclasses, whereas On cells predominate in the smaller cell groups. Presumed Off cells are well represented in the large field units, although the small total number of cells in this latter class leads to uncertainty regarding the significance of this observation. The diversity of ganglion cell morphology revealed in the present study argues against the assumption that the neotenous tiger salamander has a simple retina, with a relatively invariant set of ganglion cells. On the contrary, it appears that this aquatic form shows morphological diversity in the retinal ganglion cell population rivaling that reported for other vertebrates, including mammals. A functional role for the different cell classes is briefly considered.
Collapse
Affiliation(s)
- C B Toris
- Department of Physiology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
40
|
Abstract
Retinal ganglion cells in the turtle, Pseudemys scripta elegans, were examined by intracellular recording with a protocol of stationary and moving lights. Responses were apportioned among OFF, ON, and ON-OFF categories, and directional selectivity. Cells were injected with Neurobiotin, then later conjugated with avidin-horseradish peroxidase in standard procedure. Morphological analysis of the stained cells included measurements of soma and dendritic field sizes, dendritic stratification, number of cell processes, dendritic branchings, and dendritic symmetry ratios. ON and ON-OFF cells are at least bistratified, sometimes tristratified, in both sublaminae A and B whether directionally selective or not. OFF cells, in contrast, are monostratified, or at least confined to sublamina A. Morphological parameters of somal and dendritic field areas, branch point densities, and dendritic field asymmetries do not predict directional selectivity. Membrane polarization accompanying moving stimulation is discussed in terms of shunting inhibition and recording site.
Collapse
Affiliation(s)
- C A Kittila
- School of Life Sciences, University of Delaware Newark 19716
| | | |
Collapse
|
41
|
Yang CY, Yazulla S. Glutamate-, GABA-, and GAD-immunoreactivities co-localize in bipolar cells of tiger salamander retina. Vis Neurosci 1994; 11:1193-203. [PMID: 7841126 DOI: 10.1017/s0952523800006994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the "push-pull" modulation of ganglion cell responses.
Collapse
Affiliation(s)
- C Y Yang
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230
| | | |
Collapse
|
42
|
Abstract
Amacrine and ganglion cells in the amphibian retina contain GABAB, as well as GABAA, receptors. Baclofen, a GABAB agonist, hyperpolarizes the dark membrane potential of these third order neurons and makes their light responses more transient. GABAB receptors in the retina have a similar agonist profile to GABAB receptors described at other sites in the brain. Namely, preferential activation by the R-enantiomer of baclofen, and agonist sensitivity in the order 3-aminopropylphosphinic acid > baclofen >> 3-aminopropylphosphonic acid. The GABAB receptor was not activated by 4-aminobutylphosphonic acid. Several antagonists, such as phaclofen, saclofen, and 2-hydroxysaclofen, were ineffective in the amphibian retina. However, CGP35348 blocked the action of applied baclofen and produced effects on the light response that were opposite to those of baclofen. Applied agonists and antagonists support the hypothesis that GABAB receptors serve to regulate the balance of sustained and transient signals to the inner retina.
Collapse
Affiliation(s)
- N Tian
- Department of Biophysical Sciences, School of Medicine, State University of New York, Buffalo 14214
| | | |
Collapse
|
43
|
Guiloff GD, Kolb H. Ultrastructural and immunocytochemical analysis of the circuitry of two putative directionally selective ganglion cells in turtle retina. J Comp Neurol 1994; 347:321-39. [PMID: 7822488 DOI: 10.1002/cne.903470302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two well-stained, horseradish peroxidase-filled varieties of putative ON-OFF directionally selective ganglion cells, G14a and G15, that project to the dorsolateral optic tectum (Guiloff and Kolb [1992a] Vis. Neurosci. 8:295-313) were studied qualitatively and quantitatively. Both were bistratified ganglion cells with one tier of dendrites in the OFF sublamina and the other in the ON sublamina of the inner plexiform layer (IPL). The cells were serially sectioned and examined for synaptic inputs by electron microscopy. Portions of the dendritic trees were also analyzed after postembedding immunocytochemistry for neurotransmitter candidates gamma aminobutyric acid (GABA), glycine, choline acetyltransferase (ChAT), and glutamate in presynaptic neurons. Both G14a and G15 are dominated by amacrine cell inputs and have only minor bipolar cell involvement. Probably at least two different types of bipolar cell are presynaptic. Both ganglion cells receive some GABA-positive (GABA+) amacrine inputs and G14a receives ChAT+ amacrine inputs. Glycine+ and glutamate+ inputs could not be detected in either cell. The GABA+ inputs appeared to be regionally arranged in the dendritic trees. The general distribution of amacrine and bipolar inputs to the two tiers of dendrites in both cell types appeared to be asymmetrical, both along the radial extent of the dendritic trees and within the depth of the IPL. Our data support some aspects of the current models for directional selectivity. We suggest candidate bipolar and amacrine cells that could have input to these ganglion cells. Since many of the putative presynaptic amacrine cells coincide with directionally selective types recorded and stained by other authors, we propose that in turtle retina directional selectivity arises in neurons presynaptic to the ganglion cells.
Collapse
Affiliation(s)
- G D Guiloff
- Physiology and Ophthalmology Department, University of Utah, Salt Lake City 84132
| | | |
Collapse
|
44
|
Grzywacz NM, Amthor FR, Merwine DK. Directional hyperacuity in ganglion cells of the rabbit retina. Vis Neurosci 1994; 11:1019-25. [PMID: 7947395 DOI: 10.1017/s0952523800003953] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological visual systems can detect positional changes that are finer than these systems' acuity to sine-wave gratings, a property known as hyperacuity. Some systems can even detect changes finer that the photoreceptor spacing. We report here that rabbit's directionally selective ganglion cells not only detect positional changes in the hyperacuity range, but also discriminate the direction of their motion. Our experiments show that directional selectivity occurs for edges of light moving as little as 1.1 microns (26" of visual angle) across the retina. This distance corresponds to a hyperacuity, since the acuity to sine-wave gratings of rabbit's On-Off DS ganglion cells is about 125 microns (50'). In addition, this distance is smaller than the minimal spacing between rabbit photoreceptors (1.9 microns or 46"), as estimated from cell-density studies (Young & Vaney, 1991). Such a hyperacuity suggests low-noise high-gain signal transmission from photoreceptors to ganglion cells and that directional selectivity can arise in small portions of retinal dendritic processes.
Collapse
Affiliation(s)
- N M Grzywacz
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115
| | | | | |
Collapse
|
45
|
Schütte M, Schlemermeyer E. Depolarization elicits, while hyperpolarization blocks uptake of endogenous glutamate by retinal horizontal cells of the turtle. Cell Tissue Res 1993; 274:553-8. [PMID: 7904899 DOI: 10.1007/bf00314553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have employed an immunoreaction against glutamate to qualitatively demonstrate varying levels of glutamate in retinal horizontal cells of the turtle. Glutamate-like immunoreactivity (GLI) in horizontal cells could be demonstrated after glutamate decarboxylase was inhibited by aminooxyacetic acid (AOAA) and its degradation to GABA was blocked. Depolarization of horizontal cells by kainic acid (KA) induces strong glutamate immunoreactivity in these cells, whereas hyperpolarization by 2,3-cis piperidine dicarboxylate (PDA) abolishes glutamate-like immunoreactivity in horizontal cells. When glutamate release from cones and bipolar cells is blocked in the absence of calcium, or when glutamate uptake is blocked by DL-threo beta-hydroxy aspartate, KA/AOAA treatment of the retina does not induce GLI in horizontal cells. Our data show that horizontal cells are capable of taking up glutamate from the endogenous retinal pool in an activity dependent way. Our interpretation of these findings is that retinal horizontal cells are capable of regulating glutamate levels in the extracellular space of the cone pedicle complex by an activity-dependent uptake system. We suggest that inhibition of glutamate uptake upon hyperpolarization rather than inhibition of GABA release may evoke the antagonistic surround response of retinal bipolar cells.
Collapse
Affiliation(s)
- M Schütte
- Department of Ophthalmology, New York University Medical Center, NY 10016
| | | |
Collapse
|
46
|
Slaughter MM, Pan ZH. The physiology of GABAB receptors in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 1992; 90:47-60. [PMID: 1378638 DOI: 10.1016/s0079-6123(08)63608-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Writing a chapter on retinal GABAB receptors is premature, as evidenced by the paucity of citations more than two years old. Despite that, this area of retinal pharmacology has made significant strides and, although it is a story without an ending, it has had an exciting beginning. To date, the experiments indicate that horizontal cell feedback to cones is mediated, at least in part, by the GABAB receptor system which probably regulates a potassium conductance. In the inner retina, GABAB receptors are found on bipolar cells, amacrines, and ganglion cells. Here, the actions are a subtle regulation of channel conductance, but the effects are a dramatic reorganization of a fundamental coding property of the retina, namely the distinction between tonic and phasic responses to light. In both the distal and proximal retina, the GABAB receptor does not appear to work alone, but instead works in concert with the GABAA receptor. The full significance of these interactions has yet to be determined. Although the discovery of the GABAB receptor has led to the resolution of several retinal mysteries, the case is far from closed. At this juncture, what can be said is that the GABAB receptor represents a unique and ubiquitous system that reveals the power of regulating calcium and potassium conductances, as opposed to the more familiar properties of the glutamate/acetylcholine regulated cationic conductances or the GABAA/glycine controlled chloride channels.
Collapse
Affiliation(s)
- M M Slaughter
- Department of Biophysical Sciences, School of Medicine, State University of New York, Buffalo 14214
| | | |
Collapse
|
47
|
Abstract
Dry autoradiography was used to determine the distribution of GABAA binding sites in tiger salamander retina. High-affinity binding of [3H]-flunitrazepam [( 3H]-FNZ) was used to localize benzodiazepine receptors (BZR) and [3H]-muscimol was used to localize the GABAA recognition site. Specific [3H]-FNZ binding was present only in the inner retina, primarily in the inner plexiform layer (IPL). Co-incubation with GABA enhanced [3H]-FNZ binding by 20-50%. [3H]-muscimol binding was found throughout the IPL and in the outer plexiform layer (OPL). Mouse monoclonal antibodies 62-3G1 and BD-17, that recognize the GABAA beta 2, beta 3 polypeptides, and BD-24, that recognizes the GABAA alpha 1 polypeptide, did not label either the OPL or IPL, despite numerous variations in the fixation and immunoprocessing methods. GABAA receptor location, as revealed by [3H]-muscimol binding, matches the distribution of presumed GABAergic terminals in the OPL and IPL. We suggest that there are at least two subtypes of GABAA receptor in the tiger salamander retina: one type is present only in the inner retina, primarily in the IPL and is functionally coupled to BZRs; the other type is located in the OPL and is not coupled to the BZRs. Furthermore, GABAA receptors in the tiger salamander retina appear to be of a different epitope than GABAA receptors in numerous other preparations that are recognized by mAbs 62-3G1, BD-17, and BD-24.
Collapse
Affiliation(s)
- C Y Yang
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794-5230
| | | | | |
Collapse
|
48
|
Wu SM. Functional organization of GABAergic circuitry in ectotherm retinas. PROGRESS IN BRAIN RESEARCH 1992; 90:93-106. [PMID: 1631312 DOI: 10.1016/s0079-6123(08)63610-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
49
|
Jensen RJ. Intracellular recording of light responses from visually identified ganglion cells in the rabbit retina. J Neurosci Methods 1991; 40:101-12. [PMID: 1800846 DOI: 10.1016/0165-0270(91)90058-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this report electrophysiological recordings were made from fluorescently labeled ganglion cells in the rabbit retina. Using a retinal strip preparation, cells in the ganglion cell layer were stained following a brief application of the fluorescent dye acridine orange to the bathing solution. Through an epifluorescence microscope the tip of a recording microelectrode could be positioned near a cell of interest. Extracellular recordings from ganglion cells showed that good recovery of light responses was obtained following a brief exposure of the retina to fluorescent light (400-440 nm excitation). The rate of recovery, however, depended upon the prevailing background light level. Large acridine orange-stained cell bodies in the peripheral retina were impaled under visual control by micropipette electrodes filled with either Lucifer Yellow or the fluorescent dye pyranine. When stained intracellularly, all possessed an axon identifying them as ganglion cells. The majority (approximately 80%) of the cells recorded intracellularly were identified physiologically as either ON-center or OFF-center brisk ganglion cells. The other cells encountered were ON-OFF directionally selective ganglion cells.
Collapse
Affiliation(s)
- R J Jensen
- Department of Biomedical Sciences, Southern College of Optometry, Memphis, TN 38104
| |
Collapse
|
50
|
Yang CY, Lukasiewicz P, Maguire G, Werblin FS, Yazulla S. Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification. J Comp Neurol 1991; 312:19-32. [PMID: 1683878 DOI: 10.1002/cne.903120103] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amacrine cells of the vertebrate retina comprise multiple neurochemical types. Yet details of their electrophysiological and morphology properties as they relate to neurotransmitter content are limited. This issue of relating light responsiveness, dendritic projection, and neurotransmitter content has been addressed in the retinal slice preparation of the tiger salamander. Amacrine cells were whole-cell clamped and stained with Lucifer yellow (LY), then processed to determine their immunoreactivity (IR) to GABA, glycine, dopamine or tyrosine hydroxylase (TOH), and glucagon antisera. Widefield, ON-OFF amacrine cells were glycine-IR. The processes of these cells extended laterally in the inner plexiform layer (IPL) from 250-600 microns. They were either multistratified in the IPL or monostratified near the IPL midline. Three multistratified ON-OFF narrowfield glycine-IR cells also were found. Four types of ON amacrine cells were found to be GABA-IR; all types had their processes concentrated in the proximal IPL (sublamina b). Type I cells were narrowfield (approximately 100 microns) with a compact projection. Type II cells were widefield (220-300 microns) with a sparse projection. Type III cells had an asymmetrical projection and varicose processes. Type IV cells were pyriform and monostratified in sublamina b. One narrowfield ON-OFF amacrine cell, with processes broadly distributed in the middle of the IPL, was GABA-IR. This cell appeared similar to an ON-OFF cell that was glycine-IR and may comprise a type in which GABA and glycine colocalize. Another class of amacrine cell, with processes forming a major plexus along the distal border of the IPL and a lesser plexus in the proximal IPL, produced slow responses at light ON and OFF; these cells were dopamine/TOH-IR. A narrowfield class of transient ON-OFF amacrine cell, with processes ramifying throughout both sublaminae a and b of the IPL, were glucagon-IR; these cells appeared to be dye-coupled at the soma. We have shown that, with respect to GABA, glycine, dopamine, and glucagon, salamander amacrine cells fall into rather discrete groups on the basis of ramification patterns in the IPL and responses to photic stimulation. The physiological, structural, and neurochemical diversity of amacrine cells is indicative of multiple and complex roles in retinal processing.
Collapse
Affiliation(s)
- C Y Yang
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| | | | | | | | | |
Collapse
|