1
|
DeYoe EA, Huddleston W, Greenberg AS. Are neuronal mechanisms of attention universal across human sensory and motor brain maps? Psychon Bull Rev 2024; 31:2371-2389. [PMID: 38587756 PMCID: PMC11680640 DOI: 10.3758/s13423-024-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
One's experience of shifting attention from the color to the smell to the act of picking a flower seems like a unitary process applied, at will, to one modality after another. Yet, the unique and separable experiences of sight versus smell versus movement might suggest that the neural mechanisms of attention have been separately optimized to employ each modality to its greatest advantage. Moreover, addressing the issue of universality can be particularly difficult due to a paucity of existing cross-modal comparisons and a dearth of neurophysiological methods that can be applied equally well across disparate modalities. Here we outline some of the conceptual and methodological issues related to this problem and present an instructive example of an experimental approach that can be applied widely throughout the human brain to permit detailed, quantitative comparison of attentional mechanisms across modalities. The ultimate goal is to spur efforts across disciplines to provide a large and varied database of empirical observations that will either support the notion of a universal neural substrate for attention or more clearly identify the degree to which attentional mechanisms are specialized for each modality.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- , Signal Mountain, USA.
| | - Wendy Huddleston
- School of Rehabilitation Sciences and Technology, College of Health Professions and Sciences, University of Wisconsin - Milwaukee, 3409 N. Downer Ave, Milwaukee, WI, 53211, USA
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, USA
| |
Collapse
|
2
|
Fujishiro T, Honjo M, Kawasaki H, Aihara M. Visual cortex damage in a ferret model of ocular hypertension. Jpn J Ophthalmol 2022; 66:205-212. [PMID: 35044565 DOI: 10.1007/s10384-022-00901-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE We aimed to analyze the changes in the visual cortex of a ferret model of ocular hypertension (OH) using cytochrome oxidase (CO) staining. STUDY DESIGN Experimental. METHODS OH was induced in 9 ferrets by means of injection of cultured conjunctival cells into the anterior chamber of the right eye. Three ferrets were used as the controls. CO staining was performed to assess the metabolic intensity at the II-III and IVC layers of the visual cortex. RESULTS The intensities of CO staining in the right and left II-III layers of the primary visual cortex (V1) in the OH ferrets were 39.8 ± 10.3 and 41.9 ± 9.2 arbitrary units, respectively. In the control ferrets, the intensity was 88.1 ± 8.1 arbitrary units. The intensity of CO staining of the II-III layers obtained from the OH eyes was significantly lower than that from the control eyes (unpaired t test, P < .01). The intensities of CO staining in the right and left IVC layers of V1 in the OH ferrets were 60.3 ± 12.8 and 60.0 ± 13.5 arbitrary units, respectively. In the control ferrets, the intensity was 111.4 ± 9.6 arbitrary units. The CO staining intensity of the IVC layer obtained from the OH eyes was significantly lower than that from the control eyes (unpaired t test, P < .01). CONCLUSION The CO staining intensity was reduced in the visual cortex from OH eyes. This study revealed that OH causes metabolic change in the visual cortex.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo Bunkyoku, Tokyo, 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo Bunkyoku, Tokyo, 113-8655, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawashi, Kanazawa, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo Bunkyoku, Tokyo, 113-8655, Japan.
| |
Collapse
|
3
|
Economides JR, Adams DL, Horton JC. Interocular Suppression in Primary Visual Cortex in Strabismus. J Neurosci 2021; 41:5522-5533. [PMID: 33941649 PMCID: PMC8221600 DOI: 10.1523/jneurosci.0044-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
People with strabismus acquired during childhood do not experience diplopia (double vision). To investigate how perception of the duplicate image is suppressed, we raised two male monkeys with alternating exotropia by disinserting the medial rectus muscle in each eye at age four weeks. Once the animals were mature, they were brought to the laboratory and trained to fixate a small spot while recordings were made in primary visual cortex (V1). Drifting gratings were presented to the receptive fields of 500 single neurons for eight interleaved conditions: (1) right eye monocular; (2) left eye monocular; (3) right eye's field, right eye fixating; (4) right eye's field, left eye fixating; (5) left eye's field, right eye fixating; (6) left eye's field, left eye fixating; (7) both eyes' fields, right eye fixating; (8) both eyes' fields, left eye fixating. As expected, ocular dominance histograms showed a monocular bias compared with normal animals, but many cells could still be driven via both eyes. Overall, neuronal responses were not affected by switches in ocular fixation. Individual neurons exhibited binocular interactions, but mean population indices indicated no net interocular suppression or facilitation. Even neurons located in cortex with reduced cytochrome oxidase (CO) activity, representing portions of the nasal visual field where perception is suppressed during binocular viewing, showed no net inhibition. These data indicate that V1 neurons do not appear to reflect strabismic suppression and therefore the elimination of diplopia is likely to be mediated at a higher cortical level.SIGNIFICANCE STATEMENT In patients with strabismus, images fall on non-corresponding points in the two retinas. Only one image is perceived, because signals emanating from the other eye that convey the duplicate image are suppressed. The benefit is that diplopia is prevented, but the penalty is that the visual feedback required to adjust eye muscle tone to realign the globes is eliminated. Here, we report the first electrophysiological recordings from the primary visual cortex (V1) in awake monkeys raised with strabismus. The experiments were designed to reveal how perception of double images is avoided.
Collapse
Affiliation(s)
- John R Economides
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, California 94143
| | - Daniel L Adams
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, California 94143
| | - Jonathan C Horton
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, California 94143
| |
Collapse
|
4
|
Yao S, Zhou Q, Li S, Takahata T. Immunoreactivity of Vesicular Glutamate Transporter 2 Corresponds to Cytochrome Oxidase-Rich Subcompartments in the Visual Cortex of Squirrel Monkeys. Front Neuroanat 2021; 15:629473. [PMID: 33679337 PMCID: PMC7930324 DOI: 10.3389/fnana.2021.629473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bβ (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.
Collapse
Affiliation(s)
- Songping Yao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuiyu Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Farias MF, Ungerleider LG, Pereira SS, Amorim AKJ, Soares JGM, Gattass R. Time course of cytochrome oxidase blob plasticity in the primary visual cortex of adult monkeys after retinal laser lesions. J Comp Neurol 2018; 527:600-613. [PMID: 29574781 DOI: 10.1002/cne.24434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/09/2022]
Abstract
We studied the time course of changes of cytochrome oxidase (CytOx) blob spatial density and blob cross-sectional area of deprived (D) and nondeprived (ND) portions of V1 in four capuchin monkeys after massive and restricted retinal laser lesions. Laser shots at the border of the optic disc produced massive retinal lesions, while low power laser shots in the retina produced restricted retinal lesions. These massive and restricted retinal lesions were intended to simulate glaucoma and diabetic retinopathy, respectively. We used a Neodymium-YAG dual frequency laser to make the lesions. We measured Layer III blobs in CytOx-reacted tangential sections of flat-mounted preparations of V1. The plasticity of the blob system and that of the ocular dominance columns (ODC) varied with the degree of retinal lesions. We found that changes in the blob system were different from that of the ODC. Blob sizes changed drastically in the region corresponding to the retinal lesion. Blobs were larger and subjectively darker above and below the non deprived ODC than in the deprived columns. With restricted lesions, blobs corresponding to the ND columns had sizes similar to those from non-lesioned areas. In contrast, blobs corresponding to the deprived columns were smaller than those from nonlesioned areas. With massive lesions, ND blobs were larger than the deprived blobs. Plastic changes in blobs described here occur much earlier than previously described.
Collapse
Affiliation(s)
- Mariana F Farias
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sandra S Pereira
- Department of Ophthalmology, School of Medicine, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ana Karla J Amorim
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Juliana G M Soares
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ricardo Gattass
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Co-localization of glutamic acid decarboxylase and vesicular GABA transporter in cytochrome oxidase patches of macaque striate cortex. Vis Neurosci 2016; 32:E026. [PMID: 26579566 DOI: 10.1017/s0952523815000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The patches in primary visual cortex constitute hot spots of metabolic activity, manifested by enhanced levels of cytochrome oxidase (CO) activity. They are also labeled preferentially by immunostaining for glutamic acid decarboxylase (GAD), γ-aminobutyric acid (GABA), and parvalbumin. However, calbindin shows stronger immunoreactivity outside patches. In light of this discrepancy, the distribution of the vesicular GABA transporter (VGAT) was examined in striate cortex of two normal macaques. VGAT immunoreactivity was strongest in layers 4B, 4Cα, and 5. In tangential sections, the distribution of CO, GAD, and VGAT was compared in layer 2/3. There was a close match between all three labels. This finding indicates that GABA synthesis is enriched in patches, and that inhibitory synapses are more active in patches than interpatches.
Collapse
|
7
|
Adams DL, Piserchia V, Economides JR, Horton JC. Vascular Supply of the Cerebral Cortex is Specialized for Cell Layers but Not Columns. Cereb Cortex 2014; 25:3673-81. [PMID: 25246513 DOI: 10.1093/cercor/bhu221] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The vascular supply to layers and columns was compared in macaque primary visual cortex (V1) by labeling red blood cells via their endogenous peroxidase activity. Alternate sections were processed for cytochrome oxidase to reveal "patches" or "blobs," which anchor the interdigitated column systems of striate cortex. More densely populated cell layers received the most profuse blood supply. In the superficial layers the blood supply was organized into microvascular lobules, consisting of a central venule surrounded by arterioles. Each vessel was identified as an arteriole or venule by matching it with the penetration site where it entered the cortex from a parent arteriole or venule in the pial circulation. Although microvascular lobules and cytochrome oxidase patches had a similar periodicity, they bore no mutual relationship. The size and density of penetrating arterioles and venules did not differ between patches and interpatches. The red blood cell labeling in patches and interpatches was equal. Moreover, patches and interpatches were supplied by an anastomotic pial arteriole system, with no segregation of blood supply to the two compartments. Often a focal constriction was present at the origin of pial arterial branches, indicating that local control of cortical perfusion may be accomplished by vascular sphincters.
Collapse
Affiliation(s)
- Daniel L Adams
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143, USA Center for Mind/Brain Sciences, The University of Trento, Trento, Italy
| | | | - John R Economides
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan C Horton
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Johar K, Priya A, Dhar S, Liu Q, Wong-Riley MTT. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons. J Neurochem 2013; 127:496-508. [PMID: 24032355 DOI: 10.1111/jnc.12433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/20/2022]
Abstract
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.
Collapse
Affiliation(s)
- Kaid Johar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
When an eye becomes deviated in early childhood, a person does not experience double vision, although the globes are aimed at different targets. The extra image is prevented from reaching perception in subjects with alternating exotropia by suppression of each eye's peripheral temporal retina. To test the impact of visual suppression on neuronal activity in primary (striate) visual cortex, the pattern of cytochrome oxidase (CO) staining was examined in four macaques raised with exotropia by disinserting the medial rectus muscles shortly following birth. No ocular dominance columns were visible in opercular cortex, where the central visual field is represented, indicating that signals coming from the central retina in each eye were perceived. However, the border strips at the edges of ocular dominance columns appeared pale, reflecting a loss of activity in binocular cells from disruption of fusion. In calcarine cortex, where the peripheral visual field is represented, there were alternating pale and dark bands resembling ocular dominance columns. To interpret the CO staining pattern, [(3)H]proline was injected into the right eye in two monkeys. In the right calcarine cortex, the pale CO columns matched the labeled proline columns of the right eye. In the left calcarine cortex, the pale CO columns overlapped the unlabeled columns of the left eye in the autoradiograph. Therefore, metabolic activity was reduced in the ipsilateral eye's ocular dominance columns which serve peripheral temporal retina, in a fashion consistent with the topographic organization of suppression scotomas in humans with exotropia.
Collapse
|
10
|
Dhar SS, Johar K, Wong-Riley MTT. Bigenomic transcriptional regulation of all thirteen cytochrome c oxidase subunit genes by specificity protein 1. Open Biol 2013; 3:120176. [PMID: 23516108 PMCID: PMC3718336 DOI: 10.1098/rsob.120176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytochrome c oxidase (COX) is one of only four known bigenomic proteins, with three mitochondria-encoded subunits and 10 nucleus-encoded ones derived from nine different chromosomes. The mechanism of regulating this multi-subunit, bigenomic enzyme is not fully understood. We hypothesize that specificity protein 1 (Sp1) functionally regulates the 10 nucleus-encoded COX subunit genes directly and the three mitochondrial COX subunit genes indirectly by regulating mitochondrial transcription factors A and B (TFAM, TFB1M and TFB2M) in neurons. By means of in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, RNA interference and over-expression experiments, the present study documents that Sp1 is a critical regulator of all 13 COX subunit genes in neurons. This regulation is intimately associated with neuronal activity. Silencing of Sp1 prevented the upregulation of all COX subunits by KCl, and over-expressing Sp1 rescued all COX subunits from being downregulated by tetrodotoxin. Thus, Sp1 and our previously described nuclear respiratory factors 1 and 2 are the three key regulators of all 13 COX subunit genes in neurons. The binding sites for Sp1 on all 10 nucleus-encoded COX subunits, TFAM, TFB1M and TFB2M are highly conserved among mice, rats and humans.
Collapse
Affiliation(s)
- Shilpa S Dhar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
11
|
Wong-Riley MTT. Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:283-304. [PMID: 22729863 DOI: 10.1007/978-1-4614-3573-0_12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transport chain, without which oxidative metabolism cannot be carried to completion. It is one of only four unique, bigenomic proteins in mammalian cells. The holoenzyme is made up of three mitochondrial-encoded and ten nuclear-encoded subunits in a 1:1 stoichiometry. The ten nuclear subunit genes are located in nine different chromosomes. The coordinated regulation of such a multisubunit, multichromosomal, bigenomic enzyme poses a challenge. It is especially so for neurons, whose mitochondria are widely distributed in extensive dendritic and axonal processes, resulting in the separation of the mitochondrial from the nuclear genome by great distances. Neuronal activity dictates COX activity that reflects protein amount, which, in turn, is regulated at the transcriptional level. All 13 COX transcripts are up- and downregulated by neuronal activity. The ten nuclear COX transcripts and those for Tfam and Tfbms important for mitochondrial COX transcripts are transcribed in the same transcription factory. Bigenomic regulation of all 13 transcripts is mediated by nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2). NRF-1, in addition, also regulates critical neurochemicals of glutamatergic synaptic transmission, thereby ensuring the tight coupling of energy metabolism and neuronal activity at the molecular level in neurons.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
12
|
Orientation tuning of cytochrome oxidase patches in macaque primary visual cortex. Nat Neurosci 2011; 14:1574-80. [PMID: 22057193 PMCID: PMC3332086 DOI: 10.1038/nn.2958] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/12/2011] [Indexed: 11/08/2022]
Abstract
The abundant concentration of cytochrome oxidase in patches or blobs of primate striate cortex has never been explained. Patches are thought to contain unoriented, color-opponent neurons. Lacking orientation selectivity, these cells might endow patches with high metabolic activity because they respond to all contours in visual scenes. To test this idea, we measured orientation tuning in layer 2/3 of macaque cortical area V1 using acutely implanted 100-electrode arrays. Each electrode recording site was identified and assigned to the patch or interpatch compartment. The mean orientation bandwidth of cells was 28.4° in patches and 25.8° in interpatches. Neurons in patches were indeed less orientation selective, but the difference was subtle, indicating that the processing of form and color is not strictly segregated in V1. The most conspicuous finding was that patch cells had a 49% greater overall firing rate. This global difference in neuronal responsiveness, rather than an absence of orientation tuning, may account for the rich mitochondrial enzyme activity that defines patches.
Collapse
|
13
|
Chang HM, Mai FD, Lei SL, Ling YC. Impaired sodium levels in the suprachiasmatic nucleus are associated with the formation of cardiovascular deficiency in sleep-deprived rats. J Anat 2010; 217:694-704. [PMID: 20946541 DOI: 10.1111/j.1469-7580.2010.01312.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Biological rhythms are a ubiquitous feature of all higher organisms. The rhythmic center of mammals is located in the suprachiasmatic nucleus (SCN), which projects to a number of brainstem centers to exert diurnal control over many physiological processes, including cardiovascular regulation. Total sleep deprivation (TSD) is a harmful condition known to impair cardiovascular activity, but the molecular mechanisms are unknown. As the inward sodium current has long been suggested as playing an important role in driving the spontaneous firing of the SCN, the present study aimed to determine if changes in sodium expression, together with its molecular machinery (Na-K ATPase) and rhythmic activity within the SCN, would occur during TSD. Adult rats subjected to different periods of TSD were processed for time-of-flight secondary ion mass spectrometry, Na-K ATPase assay, and cytochrome oxidase (COX) (an endogenous bioenergetic marker for neuronal activity) histochemistry. Cardiovascular dysfunction was determined through analysis of heart rate and changes in mean arterial pressure. Results indicated that, in normal rats, strong sodium signals were expressed throughout the entire SCN. Enzymatic data corresponded well with spectrometric findings in which high levels of Na-K ATPase and COX were observed in this nucleus. However, following TSD, all parameters including sodium imaging, sodium intensity as well as COX activities were drastically decreased. Na-K ATPase showed an increase in responsiveness following TSD. Both heart rate and mean arterial pressure measurements indicated an exaggerated pressor effect following TSD treatment. As proper sodium levels are essential for SCN activation, reduced SCN sodium levels may interrupt the oscillatory control, which could serve as the underlying mechanism for the initiation or development of TSD-related cardiovascular deficiency.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | |
Collapse
|
14
|
Abstract
The visual system is one of the most energetically demanding systems in the brain. The currency of energy is ATP, which is generated most efficiently from oxidative metabolism in the mitochondria. ATP supports multiple neuronal functions. Foremost is repolarization of the membrane potential after depolarization. Neuronal activity, ATP generation, blood flow, oxygen consumption, glucose utilization, and mitochondrial oxidative metabolism are all interrelated. In the retina, phototransduction, neurotransmitter utilization, and protein/organelle transport are energy-dependent, yet repolarization-after-depolarization consumes the bulk of the energy. Repolarization in photoreceptor inner segments maintains the dark current. Repolarization by all neurons along the visual pathway following depolarizing excitatory glutamatergic neurotransmission preserves cellular integrity and permits reactivation. The higher metabolic activity in the magno- versus the parvo-cellular pathway, the ON- versus the OFF-pathway in some (and the reverse in other) species, and in specialized functional representations in the visual cortex all reflect a greater emphasis on the processing of specific visual attributes. Neuronal activity and energy metabolism are tightly coupled processes at the cellular and even at the molecular levels. Deficiencies in energy metabolism, such as in diabetes, mitochondrial DNA mutation, mitochondrial protein malfunction, and oxidative stress can lead to retinopathy, visual deficits, neuronal degeneration, and eventual blindness.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Robson J, Mehta N, Polcz JE, Hermer L. Toward the development of a sensitive, pre-clinical screen for neurological diseases from spontaneous neural coordination in juvenile and young–adult C57BK6 mice. Neurosci Lett 2010; 471:74-8. [DOI: 10.1016/j.neulet.2010.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/31/2009] [Accepted: 01/10/2010] [Indexed: 11/28/2022]
|
16
|
Gur M, Snodderly DM. Physiological differences between neurons in layer 2 and layer 3 of primary visual cortex (V1) of alert macaque monkeys. J Physiol 2008; 586:2293-306. [PMID: 18325976 DOI: 10.1113/jphysiol.2008.151795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The physiological literature does not distinguish between the superficial layers 2 and 3 of the primary visual cortex even though these two layers differ in their cytoarchitecture and anatomical connections. To distinguish layer 2 from layer 3, we have analysed the response characteristics of neurons recorded during microelectrode penetrations perpendicular to the cortical surface. Extracellular responses of single neurons to sweeping bars were recorded while macaque monkeys performed a fixation task. Data were analysed from penetrations where cells could be localized to specific depths in the cortex. Although the most superficial cells (depth, 145-371 microm; presumably layer 2) responded preferentially to particular stimulus orientations, they were less selective than cells encountered immediately beneath them (depth, 386-696 microm; presumably layer 3). Layer 2 cells had smaller spikes, higher levels of ongoing activity, larger receptive field activating regions, and less finely tuned selectivity for stimulus orientation and length than layer 3 cells. Direction selectivity was found only in layer 3. These data suggest that layer 3 is involved in generating and transmitting precise, localized information about image features, while the lesser selectivity of layer 2 cells may participate in top-down influences from higher cortical areas, as well as modulatory influences from subcortical brain regions.
Collapse
Affiliation(s)
- Moshe Gur
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| | | |
Collapse
|
17
|
Gur M, Snodderly DM. Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing. J Physiol 2007; 585:383-400. [PMID: 17962332 DOI: 10.1113/jphysiol.2007.143040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In primary visual cortex (V1) of macaque monkeys, motion selective cells form three parallel pathways. Two sets of direction selective cells, one in layer 4B, and the other in layer 6, send parallel direct outputs to area MT in the dorsal cortical stream. We show that these two outputs carry different types of spatial information. Direction selective cells in layer 4B have smaller receptive fields than those in layer 6, and layer 4B cells are more selective for orientation. We present evidence for a third direction selective pathway that flows through V1 layers 4Cm (the middle tier of layer 4C) to layer 3. Cells in layer 3 are very selective for orientation, have the smallest receptive fields in V1, and send direct outputs to area V2. Layer 3 neurons are well suited to contribute to detection and recognition of small objects by the ventral cortical stream, as well as to sense subtle motions within objects, such as changes in facial expressions.
Collapse
Affiliation(s)
- Moshe Gur
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, 32000, Israel.
| | | |
Collapse
|
18
|
Zhaoping L, May KA. Psychophysical tests of the hypothesis of a bottom-up saliency map in primary visual cortex. PLoS Comput Biol 2007; 3:e62. [PMID: 17411335 PMCID: PMC1847698 DOI: 10.1371/journal.pcbi.0030062] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/16/2007] [Indexed: 11/22/2022] Open
Abstract
A unique vertical bar among horizontal bars is salient and pops out perceptually. Physiological data have suggested that mechanisms in the primary visual cortex (V1) contribute to the high saliency of such a unique basic feature, but indicated little regarding whether V1 plays an essential or peripheral role in input-driven or bottom-up saliency. Meanwhile, a biologically based V1 model has suggested that V1 mechanisms can also explain bottom-up saliencies beyond the pop-out of basic features, such as the low saliency of a unique conjunction feature such as a red vertical bar among red horizontal and green vertical bars, under the hypothesis that the bottom-up saliency at any location is signaled by the activity of the most active cell responding to it regardless of the cell's preferred features such as color and orientation. The model can account for phenomena such as the difficulties in conjunction feature search, asymmetries in visual search, and how background irregularities affect ease of search. In this paper, we report nontrivial predictions from the V1 saliency hypothesis, and their psychophysical tests and confirmations. The prediction that most clearly distinguishes the V1 saliency hypothesis from other models is that task-irrelevant features could interfere in visual search or segmentation tasks which rely significantly on bottom-up saliency. For instance, irrelevant colors can interfere in an orientation-based task, and the presence of horizontal and vertical bars can impair performance in a task based on oblique bars. Furthermore, properties of the intracortical interactions and neural selectivities in V1 predict specific emergent phenomena associated with visual grouping. Our findings support the idea that a bottom-up saliency map can be at a lower visual area than traditionally expected, with implications for top-down selection mechanisms. Only a fraction of visual input can be selected for attentional scrutiny, often by focusing on a limited extent of the visual space. The selected location is often determined by the bottom-up visual inputs rather than the top-down intentions. For example, a red dot among green ones automatically attracts attention and is said to be salient. Physiological data have suggested that the primary visual cortex (V1) in the brain contributes to creating such bottom-up saliencies from visual inputs, but indicated little on whether V1 plays an essential or peripheral role in creating a saliency map of the input space to guide attention. Traditional psychological frameworks, based mainly on behavioral data, have implicated higher-level brain areas for the saliency map. Recently, it has been hypothesized that V1 creates this saliency map, such that the image location whose visual input evokes the highest response among all V1 output neurons is most likely selected from a visual scene for attentional processing. This paper derives nontrivial predictions from this hypothesis and presents their psychophysical tests and confirmations. Our findings suggest that bottom-up saliency is computed at a lower brain area than previously expected, and have implications on top-down attentional mechanisms.
Collapse
Affiliation(s)
- Li Zhaoping
- Department of Psychology, University College London, London, United Kingdom.
| | | |
Collapse
|
19
|
Duffy KR, Murphy KM, Frosch MP, Livingstone MS. Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex. Cereb Cortex 2006; 17:1283-91. [PMID: 16831856 PMCID: PMC2628812 DOI: 10.1093/cercor/bhl038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies of human primary visual cortex (V1) have demonstrated a significant eye-specific decrease in cytochrome oxidase (CO) staining following monocular enucleation. We have extended these results by examining CO staining and neurofilament labeling in V1 from a patient with long-standing monocular blindness. A pattern of reduced neurofilament reactivity was found to align with pale CO-stained ocular dominance columns. Neurons located within deprived ocular dominance columns were significantly smaller compared with those in nondeprived columns. A spatial analysis of the relationship between CO blobs and ocular dominance columns revealed that both deprived and nondeprived blobs tended to align with the centers of ocular dominance columns.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
20
|
Gulyás AI, Buzsáki G, Freund TF, Hirase H. Populations of hippocampal inhibitory neurons express different levels of cytochromec. Eur J Neurosci 2006; 23:2581-94. [PMID: 16817861 DOI: 10.1111/j.1460-9568.2006.04814.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c (CC) immunoreactivity was quantified in functionally distinct rat hippocampal inhibitory neuron populations using double immunocytochemistry and laser scanning confocal microscopy to measure the CC expression level as well as the amount of mitochondria within the cells, which is a sign of neuronal activity. The CC signal showed a similar distribution to cytochrome c oxidase histochemical staining. Strongly stained somata, dendrites and axon terminal clouds were dispersed over the low intensity neuropil staining. The staining was granular and electron microscopic investigation confirmed that the signal was localized in mitochondria. Intensively labeled neurons, showing the morphological features of inhibitory cells, were most frequently found in the principal cell layers, stratum oriens of the CA1-3 areas, stratum lucidum and hilus. These neurons contained not only a higher number of mitochondria than the principal cells but the intensity of the mitochondrial staining was evidently stronger. Among the examined interneuronal populations, parvalbumin-immunoreactive neurons were intensively labeled for CC. Calbindin D28k- (CB), somatostatin- and cholecystokinin-labeled cells showed heterogeneous CC levels, whereas calretinin-immunoreactive cells never showed a strong CC signal. CB cells in stratum oriens and alveus layers, lucidum and the hilus were strongly labeled for CC. CB cells in such regions are known to project to the medial septum and contain somatostatin. We have demonstrated that the CA1 interneurons that project to the medial septum (hippocampo-septal neurons) express a high level of CC. Thus, similar to the parvalbumin-containing basket and axo-axonic cells, the hippocampo-septal neurons potentially have a high average activity level.
Collapse
Affiliation(s)
- Attila I Gulyás
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
21
|
Abstract
We used cytochrome oxidase (CO) histochemistry in conjunction with other histological methods to investigate the histochemoarchitecture of barrel hollows in rat somatosensory cortex. We found that individual large barrels in the posteromedial barrel subfield encompass two or three discrete subbarrel domains. Detailed analysis revealed, further, that subbarrel domains are relatively consistent in size, each having average dimensions that approximate those of large barrels in mouse S1. Unexpectedly, subbarrel domains are organized into a few distinct, repeated patterns. The small barrels in rat anterolateral barrel subfield and all barrel hollows in mouse S1 appear to consist of single CO domains. Subbarrel domains revealed here by CO are columnar entities that correspond with cyto- and myeloarchitectonic inhomogeneities within the barrels and are enriched in thalamocortical axon terminals. The present findings together with existing data indicate that barrels in rat posteromedial barrel subfield are structurally and functionally heterogeneous.
Collapse
Affiliation(s)
- Peter W Land
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
22
|
Gur M, Snodderly DM. High Response Reliability of Neurons in Primary Visual Cortex (V1) of Alert, Trained Monkeys. Cereb Cortex 2005; 16:888-95. [PMID: 16151177 DOI: 10.1093/cercor/bhj032] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reliability of neuronal responses determines the resources needed to represent the external world and constrains the nature of the neural code. Studies of anesthetized animals have indicated that neuronal responses become progressively more variable as information travels from the retina to the cortex. These results have been interpreted to indicate that perception must be based on pooling across relatively large numbers of cells. However, we find that in alert monkeys, responses in primary visual cortex (V1) are as reliable as the inputs from the retina and the thalamus. Moreover, when the effects of fixational eye movements were minimized, response variability (variance/mean - Fano factor, FF) in all V1 layers was low. When presenting optimal stimuli, the median FF was 0.3. High variability, FF approximately 1, was found only near threshold. Our results suggest that in natural vision, suprathreshold perception can be based on small numbers of optimally stimulated cells.
Collapse
Affiliation(s)
- Moshe Gur
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| | | |
Collapse
|
23
|
Wong-Riley MTT, Yang SJ, Liang HL, Ning G, Jacobs P. Quantitative immuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex. Vis Neurosci 2005; 22:1-18. [PMID: 15842736 DOI: 10.1017/s0952523805221016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/07/2022]
Abstract
The macaque visual cortex is exquisitely organized into columns, modules, and streams, much of which can be correlated with its metabolic organization revealed by cytochrome oxidase (CO). Plasticity in the adult primate visual system has also been documented by changes in CO activity. Yet, the molecular mechanism of regulating this enzyme remains not well understood. Being one of only four bigenomic enzymes in mammalian cells, the transcriptional regulation of this enzyme necessitates a potential bigenomic coordinator. Nuclear respiratory factor 2 (NRF-2) or GA-binding protein is a transcription factor that may serve such a critical role. The goal of the present study was to determine if the two major subunits of NRF-2, 2alpha and 2beta, had distinct subcellular distribution in neurons of the rat and monkey visual cortex, if major metabolic neuronal types in the macaque exhibited different levels of the two subunits, and if they would respond differently to monocular impulse blockade. Quantitative immuno-electron microscopy was used. In both rats and monkeys, nuclear labeling of alpha and beta subunits was mainly over euchromatin rather than heterochromatin, consistent with their active participation in transcriptional activity. Cytoplasmic labeling was over free ribosomes, the Golgi apparatus, and occasionally the nuclear envelope, signifying sites of synthesis and possible posttranslational modifications. The density of both subunits was much higher in the nucleus than in the cytoplasm for all neurons examined, again indicating that their major sites of cellular action is in the nucleus.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | |
Collapse
|
24
|
Sakata JT, Crews D, Gonzalez-Lima F. Behavioral correlates of differences in neural metabolic capacity. ACTA ACUST UNITED AC 2005; 48:1-15. [PMID: 15708625 DOI: 10.1016/j.brainresrev.2004.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/21/2022]
Abstract
Cytochrome oxidase is a rate-limiting enzyme in oxidative phosphorylation, the major energy-synthesizing pathway used by the central nervous system, and cytochrome oxidase histochemistry has been extensively utilized to map changes in neural metabolism following experimental manipulations. However, the value of cytochrome oxidase activity in predicting behavior has not been analyzed. We argue that this endeavor is important because genetic composition and embryonic environment can engender differences in baseline neural metabolism in pertinent neural circuits, and these differences could represent differences in the degree to which specific behaviors are 'primed.' Here we review our studies in which differences in cytochrome oxidase activity and in behavior were studied in parallel. Using mammalian and reptilian models, we find that embryonic experiences that shape the propensity to display social behaviors also affect cytochrome oxidase activity in limbic brain areas, and elevated cytochrome oxidase activity in preoptic, hypothalamic, and amygdaloid nuclei correlates with heightened aggressive and sexual tendencies. Selective breeding regimes were used to create rodent genetic lines that differ in their susceptibility to display learned helplessness and in behavioral excitability. Differences in cytochrome oxidase activity in areas like the paraventricular hypothalamus, frontal cortex, habenula, septum, and hippocampus correlate with differences in susceptibility to display learned helplessness, and differences in activity in the dentate gyrus and perirhinal and posterior parietal cortex correlate with differences in hyperactivity. Thus, genetic and embryonic manipulations that engender specific behavioral differences produce specific neurometabolic profiles. We propose that knowledge of neurometabolic differences can yield valuable predictions about behavioral phenotype in other systems.
Collapse
Affiliation(s)
- Jon T Sakata
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
25
|
Gur M, Kagan I, Snodderly DM. Orientation and direction selectivity of neurons in V1 of alert monkeys: functional relationships and laminar distributions. ACTA ACUST UNITED AC 2004; 15:1207-21. [PMID: 15616136 DOI: 10.1093/cercor/bhi003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We studied orientation selectivity in V1 of alert monkeys and its relationship to other physiological parameters and to anatomical organization. Single neurons were stimulated with drifting bars or with sinusoidal gratings while compensating for eye position. Orientation selectivity based on spike counts was quantified by circular variance and by the bandwidth of the orientation tuning curve. The circular variance distribution was bimodal, suggesting groups with low and with high selectivity. Orientation selectivity was clearly correlated with spontaneous activity, classical receptive field (CRF) size and the strength of surround suppression. Laminar distributions of neuronal properties were distinct. Neurons in the output layers 2/3, 4B and 5 had low spontaneous activity, small CRFs and high orientation selectivity, while the input layers had greater diversity. Direction-selective cells were among the neurons most selective for orientation and most had small CRFs. A narrow band of direction- and orientation-selective cells with small CRFs was located in the middle of layer 4C, indicating appearance of very selective cells at an early stage of cortical processing. We suggest that these results reflect interactions between excitatory and inhibitory mechanisms specific to each sublamina. Regions with less inhibition have higher spontaneous activity, larger CRFs and broader orientation tuning. Where inhibition is stronger, spontaneous activity almost disappears, CRFs shrink, and orientation selectivity is high.
Collapse
Affiliation(s)
- Moshe Gur
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| | | | | |
Collapse
|
26
|
Wong-Riley MTT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2004; 280:4761-71. [PMID: 15557336 DOI: 10.1074/jbc.m409650200] [Citation(s) in RCA: 609] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Far red and near infrared (NIR) light promotes wound healing, but the mechanism is poorly understood. Our previous studies using 670 nm light-emitting diode (LED) arrays suggest that cytochrome c oxidase, a photoacceptor in the NIR range, plays an important role in therapeutic photobiomodulation. If this is true, then an irreversible inhibitor of cytochrome c oxidase, potassium cyanide (KCN), should compete with LED and reduce its beneficial effects. This hypothesis was tested on primary cultured neurons. LED treatment partially restored enzyme activity blocked by 10-100 microm KCN. It significantly reduced neuronal cell death induced by 300 microm KCN from 83.6 to 43.5%. However, at 1-100 mm KCN, the protective effects of LED decreased, and neuronal deaths increased. LED significantly restored neuronal ATP content only at 10 microm KCN but not at higher concentrations of KCN tested. Pretreatment with LED enhanced efficacy of LED during exposure to 10 or 100 microm KCN but did not restore enzyme activity to control levels. In contrast, LED was able to completely reverse the detrimental effect of tetrodotoxin, which only indirectly down-regulated enzyme levels. Among the wavelengths tested (670, 728, 770, 830, and 880 nm), the most effective ones (830 nm, 670 nm) paralleled the NIR absorption spectrum of oxidized cytochrome c oxidase, whereas the least effective wavelength, 728 nm, did not. The results are consistent with our hypothesis that the mechanism of photobiomodulation involves the up-regulation of cytochrome c oxidase, leading to increased energy metabolism in neurons functionally inactivated by toxins.
Collapse
|
27
|
Murphy KM, Duffy KR, Jones DG. Experience-dependent changes in NMDAR1 expression in the visual
cortex of an animal model for amblyopia. Vis Neurosci 2004; 21:653-70. [PMID: 15579228 DOI: 10.1017/s0952523804214146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Indexed: 11/05/2022]
Abstract
When normal binocular visual experience is disrupted during postnatal
development, it affects the maturation of cortical circuits and often
results in the development of poor visual acuity known as amblyopia.
Two main factors contribute to the development of amblyopia: visual
deprivation and reduced binocular competition. We investigated the
affect of these two amblyogenic factors on the expression of the NMDAR1
subunit in the visual cortex because activation of the NMDA receptor is
a key mechanism of developmental neural plasticity. We found that
disruption of binocular correlations by monocular deprivation promoted
a topographic loss of NMDAR1 expression within the cortical
representations of the central visual field and the vertical and
horizontal meridians. In contrast, binocular deprivation, which
primarily affects visual deprivation, promoted an increase in NMDAR1
expression throughout the visual cortex. These different changes in
NMDAR1 expression can be described as topographic and homeostatic
plasticity of NMDA expression, respectively. In addition, the changes
in NMDA expression in the visual cortex provide a greater understanding
of the neural mechanisms that underlie the development of amblyopia and
the potential for visual recovery.
Collapse
Affiliation(s)
- Kathryn M Murphy
- Department of Psychology, McMaster University, Hamilton ON, Canada.
| | | | | |
Collapse
|
28
|
Konkle ATM, Bielajew C. Tracing the Neuroanatomical Profiles of Reward Pathways with Markers of Neuronal Activation. Rev Neurosci 2004; 15:383-414. [PMID: 15656286 DOI: 10.1515/revneuro.2004.15.6.383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Functional neuroanatomical tools have played an important role in proposing which structures underlie brain stimulation reward circuitry. This review focuses on studies employing metabolic markers of neuronal and glial activation, including 2-deoxyglucose, cytochrome oxidase, and glycogen phosphorylase, and a marker of cellular activation, the immediate early gene c-fos. The principles underlying each method, their application to the study of brain stimulation reward, and their strengths and limitations are described. The usefulness of this strategy in identifying candidate structures, and the degree of overlap in the patterns of activation arising from different markers is addressed in detail. How these data have contributed to an understanding of the organization of reward circuitry and directed our thinking towards an alternative framework of neuronal arrangement is discussed in the final section.
Collapse
Affiliation(s)
- Anne T M Konkle
- University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | | |
Collapse
|
29
|
Meilin S, Mendelman A, Sonn J, Manor T, Zarchin N, Mayevsky A. Metabolic and hemodynamic oscillations monitored optically in the brain exposed to various pathological states. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 471:141-6. [PMID: 10659141 DOI: 10.1007/978-1-4615-4717-4_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- S Meilin
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Guo A, Nie F, Wong-Riley M. Human nuclear respiratory factor 2 alpha subunit cDNA: isolation, subcloning, sequencing, and in situ hybridization of transcripts in normal and monocularly deprived macaque visual system. J Comp Neurol 2000; 417:221-32. [PMID: 10660899 DOI: 10.1002/(sici)1096-9861(20000207)417:2<221::aid-cne7>3.0.co;2-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nuclear respiratory factor 2 (NRF-2) has been shown to contribute to the transcriptional regulation of a number of subunits of respiratory chain enzymes, including cytochrome c oxidase (CO). Our recent study demonstrated a parallel distribution of the alpha subunit proteins of NRF-2 (NRF-2 alpha) with CO in the monkey striate cortex, and that it can be regulated by neuronal activity. To determine whether this regulation is at the transcriptional level, the present study examined the expression of NRF-2 alpha mRNA in normal and monocularly deprived adult monkeys. A partial NRF-2 alpha cDNA was isolated from a human brain cDNA library. Sequence analysis revealed that it shared 99% identity with the published sequence from human HeLa cells. Riboprobes of NRF-2 alpha was generated and labeled with digoxigenin-11-UTP for in situ hybridization. The expression pattern of NRF-2 alpha mRNA in the normal striate cortex paralleled that of CO activity. It was highly expressed in layers IVC and VI, which contained high levels of CO, and more densely expressed in puffs of layers II and III than in interpuffs. In monkeys monocularly treated with tetrodotoxin for 1 day to 2 weeks, both NRF-2 alpha expression and CO activity were reduced in deprived ocular dominance columns of the visual cortex and in deprived layers of the lateral geniculate nucleus. These data indicate that, in the normal and visually deprived adult monkeys, NRF-2 alpha is regulated by neuronal activity at the transcriptional level.
Collapse
Affiliation(s)
- A Guo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
31
|
Konkle AT, Wilson P, Bielajew C. Histochemical mapping of the substrate for brain-stimulation reward with glycogen phosphorylase. J Neurosci Methods 1999; 93:111-9. [PMID: 10634496 DOI: 10.1016/s0165-0270(99)00136-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycogen phosphorylase is the enzyme that regulates glycogenolysis and it appears that there is a relationship between central levels of glycogen and neuronal activity, which is influenced by a variety of neurotransmitters. In the present study, glycogen phosphorylase histochemistry was used to correlate changes in metabolic activity in response to rewarding lateral hypothalamic stimulation. Rats were allowed to self-stimulate for 1 h per day for ten consecutive days following which postmortem phosphorylase a activity was examined. Significant differences in optical density between the stimulated and contralateral hemispheres were found in three of the eight analyzed structures, two of which, the diagonal band of Broca and the caudate nucleus, showed a greater density of glycogen phosphorylase a on the stimulated side and the third, the habenula, had greater contralateral activity. In conclusion, our data suggest that glycogen phosphorylase activity is a viable but not weighty marker of energy alterations induced by chronic exposure to intracranial self-stimulation, and that it is generally consistent with the patterns revealed by other metabolic indices such as cytochrome oxidase and 2-deoxyglucose autoradiography.
Collapse
Affiliation(s)
- A T Konkle
- School of Psychology, University of Ottawa, Ont., Canada
| | | | | |
Collapse
|
32
|
Abstract
Misalignment of the ocular axes induces double vision and rivalry. To prevent these unpleasant sensations, most subjects fixate preferentially with one eye and suppress entirely the deviating eye or else suppress portions of the visual field of either eye. To explore the mechanism of visual suppression, a divergent strabismus (exotropia) was induced in six normal, adult Macaca fascicularis by disinserting the medial rectus muscles. After 4-8 weeks, each animal was chaired to measure its exotropia and to determine its ocular fixation preference. Five of the monkeys developed a clearly dominant eye. It was injected with [(3)H]proline. Alternate sections from flat-mounts of striate cortex were then processed either for autoradiography to label the ocular dominance columns or for cytochrome oxidase (CO) to assess local metabolic activity. Two CO patterns were seen, often in the same cortex. The first consisted of thin dark columns alternating with wide pale columns. This pattern arose from reduced CO activity in the suppressed eye's monocular core zones and both eyes' binocular border strips. The second pattern consisted of thin pale bands from reduced metabolic activity in both eyes' border strips. The thin dark-wide pale CO pattern was more widespread in the three animals with a strong fixation preference. The dark CO columns usually fit in register with the ocular dominance columns of the fixating eye, suggesting that perception was suppressed in the deviating eye. In most animals, however, the correlation switched in peripheral cortex contralateral to the deviating eye, implying local suppression of the fixating eye's temporal retina (beyond 10 degrees), as reported in humans with divergent strabismus. In the two animals with a weak fixation preference, pale border strips were found within the central visual field representation in both hemispheres. This CO pattern was consistent with alternating visual suppression. These experiments provide the first anatomical evidence for changes in cortical metabolism that can be correlated with suppression scotomas in subjects with strabismus.
Collapse
|
33
|
Nie F, Wong-Riley M. Nuclear respiratory factor-2 subunit protein: correlation with cytochrome oxydase and regulation by functional activity in the monkey primary visual cortex. J Comp Neurol 1999; 404:310-20. [PMID: 9952350 DOI: 10.1002/(sici)1096-9861(19990215)404:3<310::aid-cne3>3.0.co;2-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that a transcription factor of the Ets family, nuclear respiratory factor 2 (NRF-2), can activate in vitro the gene expression of cytochrome oxidase (CO), a mitochondrial enzyme of oxidative metabolism. The goals of our present study were to determine whether the distribution of NRF-2 alpha subunit proteins correlated with that of CO activity in the macaque monkey visual cortex and whether the level could be perturbed by visual deprivation. We generated polyclonal antibodies specifically against human NRF-2 alpha subunit. In normal monkeys, patterns of NRF-2 alpha distribution resembled closely that of CO activity: 1) NRF-2 alpha immunoreactivity was localized in both nuclei and cytoplasm of neurons, but the levels differed among various laminae; 2) layers IVA, IVC, and VI, which had high CO activity, were labeled more densely by NRF-2 alpha than layers I, IVB, and V, which contained lower levels of both NRF-2 alpha and CO activity; and 3) CO-rich puffs in layers II and III contained a higher level of NRF-2 alpha than CO-poor interpuffs. From 1 day to 7 days after monocular impulse blockade with tetrodotoxin, there was a progressive reduction of NRF-2 alpha in deprived ocular dominance columns, in parallel with decreases in CO activity. These results suggest that local levels of NRF-2 in the monkey visual cortex closely reflect neuronal physiological and metabolic levels revealed by CO activity and that the expression of NRF-2 alpha, like that of CO, is regulated tightly by neural functional activity.
Collapse
Affiliation(s)
- F Nie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
34
|
Abstract
The ethylene-vinyl acetate copolymer Elvax has been used as a vehicle to deliver bioactive substances to discrete areas of the nervous system. Here we report a novel use of Elvax to chronically block retinal activity. Small pieces of Elvax containing the sodium channel blocker tetrodotoxin (TTX) were surgically implanted into the vitreous humor of ferret eyes. Observations of the light-induced pupillary reflex combined with electrophysiological assays of vitreous humor confirmed that these implants completely blocked retinal activity for up to 25 days without apparent retinal damage. The advantages of this procedure over previous methods requiring multiple daily injections of TTX, and alternative experimental applications are discussed.
Collapse
Affiliation(s)
- G T Prusky
- Department of Psychology and Neuroscience, The University of Lethbridge, Alberta, Canada.
| | | |
Collapse
|
35
|
Vargas C, Sousa A, Bittencourt F, Santos C, Pereira A, Bernardes R, Rocha-Miranda C, Volchan E. Cytochrome oxidase and NADPH-diaphorase on the afferent relay branch of the optokinetic reflex in the opossum. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980824)398:2<206::aid-cne4>3.0.co;2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Hatanpää K, Chandrasekaran K, Brady DR, Rapoport SI. No association between Alzheimer plaques and decreased levels of cytochrome oxidase subunit mRNA, a marker of neuronal energy metabolism. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:13-21. [PMID: 9729244 DOI: 10.1016/s0169-328x(98)00117-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been proposed that neuritic plaques or toxic substances diffusing from them contribute to neurodegeneration in Alzheimer disease. We examined this hypothesis by looking for evidence of decreased neuronal energy metabolism in the proximity of neuritic plaques. Levels of mitochondrial DNA-encoded mRNA for subunit III of cytochrome oxidase, a marker of neuronal energy metabolism, were determined in post mortem brain samples. Consistent with earlier results, overall cytochrome oxidase subunit III mRNA levels were decreased in Alzheimer midtemporal cortex compared with controls. However, this reduction did not correlate with plaque density. In Alzheimer brains, cytochrome oxidase subunit III mRNA levels in neurons bearing neurofibrillary tangles were lower than in tangle-free neurons. However, neuronal cell bodies in close proximity of neuritic plaques showed no decrease in cytochrome oxidase subunit III mRNA or total polyadenylated mRNA compared with more distant neurons. Cytochrome oxidase enzyme activity in neuronal processes also showed no local reduction around neuritic plaques. These results suggest that neuritic plaques do not contribute to reduced neuronal energy metabolism in Alzheimer disease.
Collapse
Affiliation(s)
- K Hatanpää
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-1582, USA.
| | | | | | | |
Collapse
|
37
|
Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 1998. [PMID: 9651225 DOI: 10.1523/jneurosci.18-14-05433.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In primate striate cortex, geniculocortical afferents in layer IVc terminate in parallel stripes called ocular dominance columns. We propose that this segregation of ocular inputs generates a related but distinct columnar system of monocular core zones alternating with binocular border strips. Evidence for this functional parcellation was obtained by comparing the effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase (CO) activity in eight macaques. Enucleation produced a high-contrast pattern of dark and light columns in layer IVc, corresponding precisely to the ocular dominance columns, whereas eyelid suture produced a low-contrast pattern of thin dark columns alternating with wide pale columns. [3H]Proline eye injection showed that the thin dark columns corresponded to the core zones of the open eye's ocular dominance columns. The wide pale columns resulted from loss of CO activity in the sutured eye's core zones and within both eyes' border strips. Loss of CO activity within both eyes' border strips suggested that these regions are binocular. To confirm our findings, we compared different CO patterns in the same cortex by making retinal laser lesions in four animals. They produced a CO pattern tantamount to "focal" enucleation, although contrast was low when laser damage was confined to the outer retina. CO levels in cortical scotomas remained severely depressed for months after retinal lesions, even when the other eye was enucleated. This observation provided little anatomical support for the notion of topographic plasticity after visual deafferentation. In a single human subject with macular degeneration, CO revealed a low-contrast pattern of ocular dominance columns, resembling the pattern in monkeys with laser-induced photoreceptor damage.
Collapse
|
38
|
Wong-Riley M, Anderson B, Liebl W, Huang Z. Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with Na+K+ATPase, NADPH-diaphorase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1. Neuroscience 1998; 83:1025-45. [PMID: 9502244 DOI: 10.1016/s0306-4522(97)00432-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously, we found that cytochrome oxidase-rich zones in the supragranular layers of the macaque striate cortex had more asymmetric, glutamate-immunoreactive synapses than the surrounding, cytochrome oxidase-poor regions. A major glutamate receptor family is N-methyl-D-aspartate, which is implicated in the stimulation of nitric oxide synthase and in the production of nitric oxide, a gaseous intra- and inter-cellular messenger. To determine if energy-generating and energy-utilizing enzymes bore any spatial relationship with neurochemicals associated with glutamatergic neurotransmission in the monkey visual cortex, serial cortical sections were processed histochemically for cytochrome oxidase and NADPH-diaphorase, and immunohistochemically for sodium/potassium-ATPase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1 protein, respectively. The general patterns were similar among the five neurochemicals, with layers 4C, 6 and supragranular puffs being labelled, although the intensity of labelling differed among them. Monocular impulse blockade with tetrodotoxin for two to four weeks induced a down-regulation of all five neurochemicals not only in deprived layer 4C ocular dominance columns, but also in deprived rows of puffs. Thus, the regulation of all five neurochemicals in the mature visual cortex is activity-dependent. Combined cytochrome oxidase histochemistry and nitric oxide synthase immunohistochemistry in the same sections revealed that double-labelled cells were primarily medium-sized non-pyramidals in various cortical layers. Likewise, those that were double-labelled by N-methyl-D-aspartate receptor subunit 1 immunohistochemistry and nitric oxide synthase immunogold silver staining in the same sections were of the medium-sized non-pyramidal neurons. At the ultrastructural level, combined cytochrome oxidase cytochemistry and postembedding immunogold labelling for nitric oxide synthase showed that immunogold particles for nitric oxide synthase were more heavily concentrated in cytochrome oxidase-rich type C cells. These medium-sized non-pyramidal cells were previously found to be gamma aminobutyric acid-immunoreactive and received both gamma aminobutyric acid- and glutamate-immunoreactive axosomatic synapses. Thus, our results are consistent with an enrichment of excitatory synaptic interactions in metabolically active regions of the primate visual cortex that involves glutamate-related neurochemicals, such as N-methyl-D-aspartate receptors and nitric oxide synthase. These interactions impose a higher energy demand under normal conditions and are down-regulated by retinal impulse blockade.
Collapse
Affiliation(s)
- M Wong-Riley
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
39
|
Stepniewska I, Kaas JH. Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis Neurosci 1997; 14:1043-60. [PMID: 9447687 DOI: 10.1017/s0952523800011767] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Architectonic subdivisions of the inferior pulvinar (PI) complex were delineated in New World owl and squirrel monkeys and Old World macaque monkeys. Brain sections were processed for Nissl substance, myelin, cytochrome oxidase (CO), acetylcholinesterase (AChE), calbindin-D28K (Cb), or with the monoclonal antibody Cat-301. In all three primates, we identified the posterior nucleus (PIp) and the medial nucleus (PIm) of previous reports, and divided the previously recognized central nucleus (PIc) into two subdivisions, medial (PIcM) and lateral (PIcL). Each nucleus had several features that allowed it to be readily distinguished. (1) PIp was dark in Cb, and moderately dark in AChE and CO preparations. (2) PIm was Cb light, and AChE and CO dark. (3) PIcM was Cb dark, and AChE and CO light. (4) PIcL was Cb moderate with a scattering of dark neurons, and moderately dark for AChE and CO. (5) In sections processed for Cat-301, PIm in macaque monkeys and PIcM and PIp in squirrel monkeys stained darkly, while little staining was apparent in owl monkeys. The results allowed subdivisions of the inferior pulvinar to be more clearly defined, homologized, and compared across taxa. All monkeys appear to have the same four subdivisions of the PI, although properties vary.
Collapse
Affiliation(s)
- I Stepniewska
- Department of Psychology, Vanderbilt University, Nashville 37240, USA
| | | |
Collapse
|
40
|
GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior. J Neurosci 1997. [PMID: 9204933 DOI: 10.1523/jneurosci.17-14-05509.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological data from the rodent whisker/barrel cortex indicate that GABAergic, presumed inhibitory, neurons respond more vigorously to stimulation than glutamatergic, presumed excitatory, cells. However, these data represent very small neuronal samples in restrained, anesthetized, or narcotized animals or in cortical slices. Histochemical data from primate visual cortex, stained for the mitochondrial enzyme cytochrome oxidase (CO) and for GABA, show that GABAergic neurons are more highly reactive for CO than glutamatergic cells, indicating that inhibitory neurons are chronically more active than excitatory neurons but leaving doubt about the short-term stimulus dependence of this activation. Taken together, these results suggest that highly active inhibitory neurons powerfully influence relatively inactive excitatory cells but do not demonstrate directly the relative activities of excitatory and inhibitory neurons in the cortex during normal behavior. We used a novel double-labeling technique to approach the issue of excitatory and inhibitory neuronal activation during behavior. Our technique combines high-resolution 2-deoxyglucose (2DG), immunohistochemical staining for neurotransmitter-specific antibodies, and automated image analysis to collect the data. We find that putative inhibitory neurons in barrel cortex of behaving animals are, on average, much more heavily 2DG-labeled than presumed excitatory cells, a pattern not seen in animals anesthetized at the time of 2DG injection. This metabolic activation is dependent specifically on sensory inputs from the whiskers, because acute trimming of most whiskers greatly reduces 2DG labeling in both cell classes in columns corresponding to trimmed whiskers. Our results provide confirmation of the active GABAergic cell hypothesis suggested by CO and single-unit data. We conclude that strong activation of inhibitory cortical neurons must confer selective advantages that compensate for its inherent energy inefficiency.
Collapse
|
41
|
Nie F, Wong-Riley MT. Mitochondrial- and nuclear-encoded subunits of cytochrome oxidase in neurons: differences in compartmental distribution, correlation with enzyme activity, and regulation by neuronal activity. J Comp Neurol 1996; 373:139-55. [PMID: 8876469 DOI: 10.1002/(sici)1096-9861(19960909)373:1<139::aid-cne12>3.0.co;2-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytochrome oxidase (CO), a mitochondrial energy-generating enzyme, contains both mitochondrial- and nuclear-encoded subunits. In neurons, local levels of CO activity vary among different neuronal compartments, reflecting local demands for energy. The goals of the present study were to determine if compartmental distribution of CO subunit proteins from the two genomes was correlated with local CO activity, and if their expression was regulated proportionately in neurons. The subcellular distributions of mitochondrial-encoded CO III and nuclear-encoded CO Vb proteins were quantitatively analyzed in mouse cerebellar sections subjected to postembedding immunocytochemistry. Local levels of subunit proteins were also compared to local CO activity, as revealed by CO cytochemistry. In order to study the regulation of subunit protein expression, we assessed changes in immunoreactivity of the two CO subunits as well as changes in CO activity in mouse superior colliculus after 1 to 7 days of monocular enucleation. We found that immunoreaction product for both CO III and CO Vb existed almost exclusively in mitochondria, but their compartmental distributions were different. CO III was nonhomogeneously distributed among different neuronal compartments, where its local level was positively correlated with that of CO activity. In contrast, the subcellular distribution of CO Vb was relatively uniform and did not bear a direct relationship with that of CO activity. Moreover, the two subunit proteins were disproportionately regulated by neuronal activity. CO III and CO activity exhibited parallel decreases after the deprivation of afferent input, and their changes were earlier and to a greater degree than that of CO Vb proteins. Thus, the present findings indicate that the local expression and/or distribution of CO subunit proteins from the two genomes may involve different regulatory mechanisms in neurons. Our data also suggest that the activity-dependent regulation of mitochondrial-encoded CO subunits is likely to play a major role in controlling the local levels of CO content and its activity.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
42
|
Nie F, Wong-Riley MT. Metabolic and neurochemical plasticity of gamma-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: quantitative electron microscopic analysis. J Comp Neurol 1996; 370:350-66. [PMID: 8799861 DOI: 10.1002/(sici)1096-9861(19960701)370:3<350::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of the present study was to examine the effects of retinal impulse blockade on gamma-aminobutyric acid (GABA)-immunoreactive (GABA-IR) neurons in cytochrome oxidase (CO)-rich puffs of the adult monkey striate cortex. Specifically, we wished to know if changes occurred in their CO activity, GABA immunoreactivity, and synaptic organization. A double-labeling technique, which combined CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, was used to reveal simultaneously the distribution of the two markers. We quantitatively compared changes in GABA-IR neurons of deprived puffs (DPs) with respect to non-deprived puffs (NPs) 2 weeks after monocular tetrodotoxin treatment. We found that the proportion of darkly CO reactive mitochondria in GABA-IR neurons of DPs drastically decreased to about half of those in NPs. There was a greater reduction of CO levels in GABA-IR axon terminals than in their cell bodies and dendrites. In contrast, most non-GABA-IR neurons displayed no significant change in their CO levels. Morphologically, GABA-IR neurons and axon terminals in DPs showed a significant shrinkage in their mean size. GABA immunoreactivity, as indicated by the density of immunogold particles in GABA-IR neurons, declined in DPs, and a greater decrease was also found in axon terminals than in cell bodies or dendrites. Moreover, the numerical density of GABA-IR axon terminals and synapses in DPs was significantly reduced without changes in that of asymmetric and symmetric synapses. Thus, the present results support the following conclusions: 1) Oxidative metabolism and neurotransmitter expression in GABA-IR neurons are tightly regulated by neuronal activity in adult monkey striate cortex; 2) GABA-IR neurons are much more vulnerable to functional deprivation than non-GABA-IR ones, suggesting that these inhibitory neurons have stringent requirement for sustained excitatory input to maintain their heightened oxidative capacity; and 3) intracortical inhibition mediated by GABA transmission following afferent deprivation may be decreased in deprived puffs, because the oxidative capacity and transmitter level in GABAergic neurons, especially in their axon terminals, are dramatically reduced.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
43
|
Nie F, Wong-Riley MT. Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: quantitative EM analysis of neurons and neuropil. J Comp Neurol 1996; 369:571-90. [PMID: 8761929 DOI: 10.1002/(sici)1096-9861(19960610)369:4<571::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase (CO)-rich puffs and CO-poor interpuffs in its supragranular layers. However, the neurochemical basis for their differences in metabolic activity and physiological properties is not well understood. The goals of the present study were to determine whether CO levels in postsynaptic neuronal compartments were correlated with the proportion of excitatory glutamate-immunoreactive (Glu-IR) synapses they received and if Glu-IR terminals and synapses in puffs differed from those in interpuffs. By combining CO histochemistry and postembedding Glu immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. As a comparison, adjacent sections were identically processed for the double labeling of CO and GABA, an inhibitory neurotransmitter. In both puffs and interpuffs, most axon terminals forming asymmetric synapses (84%)--but not symmetric ones, which were GABA-IR--were intensely immunoreactive for Glu. GABA-IR neurons received mainly Glu-IR synapses on their cell bodies, and they had three times as many mitochondria darkly reactive for CO than Glu-rich neurons, which received only GABA-IR axosomatic synapses. In puffs, GABA-IR neurons received a significantly higher ratio of Glu-IR to GABA-IR axosomatic synapses and contained about twice as many darkly CO-reactive mitochondria than those in interpuffs. There were significantly more Glu-IR synapses and a higher ratio of Glu- to GABA-IR synapses in the neuropil of puffs than of interpuffs. Moreover, Glu-IR axon terminals in puffs contained approximately three times more darkly CO-reactive mitochondria than those in interpuffs, suggesting that the former may be synaptically more active. Thus, the present results are consistent with our hypothesis that the levels of oxidative metabolism in postsynaptic neurons and neuropil are positively correlated with the proportion of excitatory synapses they receive. Our findings also suggest that excitatory synaptic activity may be more prominent in puffs than in interpuffs, and that the neurochemical and synaptic differences may constitute one of the bases for physiological and functional diversities between the two regions.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|