1
|
Zhao X, Reifler AN, Schroeder MM, Jaeckel ER, Chervenak AP, Wong KY. Mechanisms creating transient and sustained photoresponses in mammalian retinal ganglion cells. J Gen Physiol 2017; 149:335-353. [PMID: 28153865 PMCID: PMC5339512 DOI: 10.1085/jgp.201611720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 11/20/2022] Open
Abstract
Visual stimuli of different frequencies are encoded in the retina using transient and sustained responses. Zhao et al. describe the different strategies that are used by four types of retinal ganglion cells to shape photoresponse kinetics. Retinal neurons use sustained and transient light responses to encode visual stimuli of different frequency ranges, but the underlying mechanisms remain poorly understood. In particular, although earlier studies in retinal ganglion cells (RGCs) proposed seven potential mechanisms, all seven have since been disputed, and it remains unknown whether different RGC types use different mechanisms or how many mechanisms are used by each type. Here, we conduct a comprehensive survey in mice and rats of 12 candidate mechanisms that could conceivably produce tonic rod/cone-driven ON responses in intrinsically photosensitive RGCs (ipRGCs) and transient ON responses in three types of direction-selective RGCs (TRHR+, Hoxd10+ ON, and Hoxd10+ ON-OFF cells). We find that the tonic kinetics of ipRGCs arises from their substantially above-threshold resting potentials, input from sustained ON bipolar cells, absence of amacrine cell inhibition of presynaptic ON bipolar cells, and mGluR7-mediated maintenance of light-evoked glutamatergic input. All three types of direction-selective RGCs receive input from transient ON bipolar cells, and each type uses additional strategies to promote photoresponse transience: presynaptic inhibition and dopaminergic modulation for TRHR+ cells, center/surround antagonism and relatively negative resting potentials for Hoxd10+ ON cells, and presynaptic inhibition for Hoxd10+ ON-OFF cells. We find that the sustained nature of ipRGCs’ rod/cone-driven responses depends neither on melanopsin nor on N-methyl-d-aspartate (NMDA) receptors, whereas the transience of the direction-selective cells’ responses is influenced neither by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor desensitization nor by glutamate uptake. For all cells, we further rule out spike frequency adaptation and intracellular Ca2+ as determinants of photoresponse kinetics. In conclusion, different RGC types use diverse mechanisms to produce sustained or transient light responses. Parenthetically, we find evidence in both mice and rats that the kinetics of light-induced mGluR6 deactivation determines whether an ON bipolar cell responds tonically or transiently to light.
Collapse
Affiliation(s)
- Xiwu Zhao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Aaron N Reifler
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Melanie M Schroeder
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Elizabeth R Jaeckel
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Andrew P Chervenak
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105 .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
2
|
Tkatchenko AV, Tkatchenko TV, Guggenheim JA, Verhoeven VJM, Hysi PG, Wojciechowski R, Singh PK, Kumar A, Thinakaran G, Williams C. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genet 2015; 11:e1005432. [PMID: 26313004 PMCID: PMC4551475 DOI: 10.1371/journal.pgen.1005432] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development. Gene variants identified by GWAS studies to date explain only a small fraction of myopia cases because myopia represents a complex disorder thought to be controlled by dozens or even hundreds of genes. The majority of genetic variants underlying myopia seems to be of small effect and/or low frequency, which makes them difficult to identify using classical genetic approaches, such as GWAS, alone. Here, we combined gene expression profiling in a monkey model of myopia, human GWAS, and a gene-targeted mouse model of myopia to identify one of the “missing” myopia genes, APLP2. We found that a low-frequency risk allele of APLP2 confers susceptibility to myopia only in children exposed to large amounts of daily reading, thus, providing an experimental example of the long-hypothesized gene-environment interaction between nearwork and genes underlying myopia. Functional analysis of APLP2 using an APLP2 knockout mouse model confirmed functional significance of APLP2 in refractive development and implicated a potential role of synaptic transmission at the level of glycinergic amacrine cells of the retina for the development of myopia. Furthermore, mouse studies revealed that lack of Aplp2 has a dose-dependent suppressive effect on susceptibility to form-deprivation myopia, providing a potential gene-specific target for therapeutic intervention to treat myopia.
Collapse
Affiliation(s)
- Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Tatiana V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London, United Kingdom
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Statistical Genetics Section, Inherited Disease Research Branch, National Human Genome Research Institute (NIH), Baltimore, Maryland, United States of America
| | - Pawan Kumar Singh
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
| | - Ashok Kumar
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
4
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
5
|
Transporter-mediated GABA responses in horizontal and bipolar cells of zebrafish retina. Vis Neurosci 2008; 25:155-65. [PMID: 18442438 DOI: 10.1017/s0952523808080310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GABA-mediated interactions between horizontal cells (HCs) and bipolar cells (BCs) transform signals within the image-processing circuitry of distal retina. To further understand this process, we have studied the GABA-driven membrane responses from isolated retinal neurons. Papain-dissociated retinal cells from adult zebrafish were exposed to GABAergic ligands while transmembrane potentials were monitored with a fluorescent voltage-sensitive dye (oxonol, DiBaC4(5)). In HCs hyperpolarizing, ionotropic GABA responses were almost never seen, nor were responses to baclofen or glycine. A GABA-induced depolarization followed by after hyperpolarization (dep/AHP) occurred in 38% of HCs. The median fluorescence increase (dep component) was 0.17 log units, about 22 mV. HC dep/AHP was not blocked by bicuculline or picrotoxin. Muscimol rarely evoked dep/AHP responses. In BCs picrotoxin sensitive, hyperpolarizing, ionotropic GABA and muscimol responses occurred in most cells. A picrotoxin insensitive dep/AHP response was seen in about 5% of BCs. The median fluorescence increase (dep component) was 0.18 log units, about 23 mV. Some BCs expressed both muscimol-induced hyperpolarizations and GABA-induced dep/AHP responses. For all cells, the pooled Hill fit to median dep amplitudes, in response to treatments with a GABA concentration series, gave an apparent k of 0.61 muM and an n of 1.1. The dep/AHP responses of all cells required both extracellular Na+ and Cl(-), as dep/AHP was blocked reversibly by Li+ substituted for Na+ and irreversibly by isethionate substituted for Cl(-). All cells with dep/AHP responses in zebrafish have the membrane physiology of neurons expressing GABA transporters. These cells likely accumulate GABA, a characteristic of GABAergic neurons. We suggest Na+ drives GABA into these cells, depolarizing the plasma membrane and triggering Na+, K+-dependent ATPase. The ATPase activity generates AHP. In addition to a GABA clearance function, these large-amplitude transporter responses may provide an outer plexiform layer GABA sensor mechanism.
Collapse
|
6
|
Liu J, Li GL, Yang XL. An ionotropic GABA receptor with novel pharmacology at bullfrog cone photoreceptor terminals. Neurosignals 2006; 15:13-25. [PMID: 16825800 DOI: 10.1159/000094384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/19/2022] Open
Abstract
Characteristics of ionotropic gamma-aminobutyric acid (GABA) receptors at bullfrog cone terminals were studied by patch clamp techniques in isolated cell and retinal slice preparations. GABA-induced inward currents from isolated cones reversed in polarity at a potential, very close to the chloride equilibrium potential, and they were completely suppressed by picrotoxin. Unexpectedly, the GABA current was dose-dependently potentiated by the well-known GABA(A) receptor antagonist bicuculline (BIC), but was suppressed by gabazine, another GABA(A) antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist. Similarly, currents induced by both GABA(A) agonist muscimol and GABA(C) agonist cis-4-aminocrotonic acid (CACA) were also potentiated by BIC. Furthermore, currents induced from cones by GABA and kainate-caused depolarization of horizontal cells in retinal slice preparations were both potentiated by BIC. All these results suggest that the ionotropic GABA receptor at the bullfrog cone terminal exhibits novel pharmacology, distinct from both traditional GABA(A) and GABA(C) receptors.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Neurobiology, Institute of Brain Science, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
7
|
Jaliffa CO, Howard S, Hoijman E, Salido E, Sarmiento MIK, Arias P, Rosenstein RE. Effect of neurosteroids on the retinal gabaergic system and electroretinographic activity in the golden hamster. J Neurochem 2005; 94:1666-75. [PMID: 16011740 DOI: 10.1111/j.1471-4159.2005.03321.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It has been established that neurosteroids can either inhibit or enhance GABA(A) receptor activity. Although GABA is the main inhibitory neurotransmitter in the mammalian retina, the effects of neurosteroids on retinal GABAergic activity have not been investigated. The aim of this work was to study the neurochemical and electroretinographic effects of neurosteroids in the golden hamster. On one hand, pregnenolone sulfate inhibited and allotetrahydrodeoxycorticosterone increased GABA-induced [36Cl]- uptake in neurosynaptosomes. On the other hand, in whole retinas, pregnenolone sulfate increased, whereas allotetrahydrodeoxycorticosterone decreased high potassium-induced [3H]GABA release. The effect of both neurosteroids on GABA release was Ca2+-dependent, as in its absence release was not altered. The intravitreal injection of pregnenolone sulfate or vigabatrin (an irreversible inhibitor of GABA degradation) significantly decreased scotopic b-wave amplitude, whereas the opposite effect was evident when bicuculline or allotetrahydrodeoxycorticosterone were injected. A protein with a molecular weight close to that of hamster adrenal cytochrome P450 side-chain cleavage (P450scc) was detected in the hamster retina. P450scc-like immunoreactivity was localized in the inner nuclear and the ganglion cell layers. These results indicate that neurosteroids significantly modulate retinal GABAergic neurotransmission and electroretinographic activity. In addition, the selective localization of P450scc suggests that neurosteroid biosynthesis might occur only in some layers of the hamster retina.
Collapse
Affiliation(s)
- Carolina O Jaliffa
- Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental, Departamento de Bioqu'mica Humana, Facultad de Medicina, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
8
|
Popova E, Mitova L, Vitanova L, Kupenova P. Effect of GABAergic blockade on light responses of frog retinal ganglion cells. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:175-87. [PMID: 12600677 DOI: 10.1016/s1532-0456(02)00246-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of GABAergic blockade by picrotoxin on ganglion cells (GC) activity was investigated in perfused dark adapted eyecups of frog (Rana ridibunda). PT had diverse effects on the light responses of GC in contrast to its uniform potentiating effect on the amplitude of the ERG b- and d-wave. In some (n=32) of PT-sensitive ON-OFF GC the ON and OFF responses were changed in a similar manner (both responses were potentiated or both were inhibited), but in the other (n=10) the both responses were changed in a different manner. PT influenced differentially the activity of OFF GC (n=17) as well. It not only potentiated or inhibited their light responses, but changed also the temporal characteristics of the responses. Some tonic cells became phasic ones and in some phasic cells a late component appeared under the influence of PT. In some cases (n=4) the GABAergic blockade changed the apparent cell's type, because of appearance of a new type of response (ON or OFF) non-existing before the blockade. Our results indicate that the GABAergic interneurons are involved in different networks in the inner plexiform layer of frog retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
9
|
Hanitzsch R, Küppers L. The effects of GABA and vigabatrin on horizontal cell responses to light and the effect of vigabatrin on the electroretinogram. Doc Ophthalmol 2002; 105:313-26. [PMID: 12539856 DOI: 10.1023/a:1021270201902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
When used as an antiepileptic drug in humans vigabatrin, which is a GABA analogue and an inhibitor of GABA-aminotransferase, often causes peripheral visual field loss. This could result from increases in endogenous GABA levels. Accordingly we have investigated the effects of GABA on horizontal cells (HCs) of the rabbit retina, and of vigabatrin, when applied for only a few minutes, on HCs and on the electroretinogram (ERG). The intracellular HC and ERG records were first obtained from isolated rabbit retinas during perfusion with a physiological solution. The perfusate was then changed to one containing GABA (2 mM) or vigabatrin (25, 40 or 150 microM) for at least 5 min, and then returned to the control solution. 2 mM GABA significantly but reversibly reduced the light responses of HCs elicited by diffuse light (at -4 log intensity) to 52 +/- 17% (SD, n = 7). Vigabatrin had no significant effect on the light responses of HCs (n = 7), and no effect on the b-wave (n = 4), but the PIII-component of the ERG was slightly but significantly reduced to 84 +/- 5% (SD, n = 5). The high dosage of GABA needed to affect the light responses of HCs could be due to strong GABA uptake systems in the intact rabbit retina. It is, however, possible that in humans receiving long-term treatment with vigabatrin, high levels of GABA occur because of the inhibition of GABA- aminotransferase. It seems, from these observations, that neurons like on-bipolar cells, which are contributors to the b-wave, and HCs are uninfluenced by vigabatrin in short-term experiments. The slightly reduced slow PIII-component, however, indicates an influence on the glial Müller cells which are the main contributors to the slow PIII-component.
Collapse
Affiliation(s)
- R Hanitzsch
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
10
|
Chappell RL, Schuette E, Anton R, Ripps H. GABA(C) receptors modulate the rod-driven ERG b-wave of the skate retina. Doc Ophthalmol 2002; 105:179-88. [PMID: 12462443 DOI: 10.1023/a:1020501003426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Studies characterizing the types of GABA receptors present on cells isolated from the skate retina have allowed us to develop a working model of possible GABA interactions at the level of the outer plexiform layer (OPL). Earlier studies have shown an electrogenic GABA transport mechanism in horizontal cells presents a source of GABA in the OPL which could modulate feedback onto photoreceptors. GABA(A) receptors on Müller cells, or GABA(A) and/or GABA(C) receptors on bipolar cells. This model has been used for the interpretation of results of experiments in this study designed to test the role these interactions may exert on the electroretinogram (ERG). Simultaneous intracellular recording of the horizontal cell response (the S-potential) was used to monitor effects on photoreceptor transmitter release which would be altered if GABAergic photoreceptor feedback mechanisms were involved. Picorotoxin (50 microM), a chloride channel blocker which suppresses the responses of both GABA(A)Rs and GABA(C)Rs, reduced the ON (b-wave) component of the ERG substantially. Simultaneous intracellular horizontal cell recordings, however, showed no effect on their light-evoked response, suggesting that photoreceptor feedback is not involved in the picrotoxin effect on the ERG. On the other hand, even 100 microM bicuculline, a GABA(A)R antagonist produced no change in either the ERG or the horizontal cell response. This observation leads to the conclusion that the GABAARs on Miller cells and bipolar cells are not involved. Thus, there remains a distinct possibility that the ERG changes produced by picrotoxin are due to its ability to block the GABA(C)Rs on retinal bipolar cells.
Collapse
Affiliation(s)
- Richard L Chappell
- Department of Biological Sciences, Hunter College, CUNY, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
11
|
Comaish IF, Gorman C, Brimlow GM, Barber C, Orr GM, Galloway NR. The effects of vigabatrin on electrophysiology and visual fields in epileptics: a controlled study with a discussion of possible mechanisms. Doc Ophthalmol 2002; 104:195-212. [PMID: 11999627 DOI: 10.1023/a:1014603229383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To compare the visual electrophysiology and visual fields of patients taking vigabatrin to those of a control group of epileptics on other anti-epileptic drugs (AEDs). METHODS Fourteen epileptics treated with vigabatrin and 10 control patients treated with other AEDs underwent ERG and EOG. Goldmann visual fields were performed and analysed using standard software to measure areas contained within I4e isopters. RESULTS The cone and rod b-waves of the ERG, the oscillatory potential amplitudes and Arden indices were reduced in vigabatrin-treated subjects and the oscillatory potentials delayed. The Arden indices were reduced due to an increased dark trough. The areas contained within the I4e isopter of vigabatrin treated subjects were reduced compared to the control group and these areas correlated well with oscillatory potential amplitudes and b-wave amplitudes in the vigabatrin group only. CONCLUSIONS The use of vigabatrin is associated with a reduction of the ERG cone b-wave amplitude and oscillatory potentials which correlates with visual field loss. The Arden ratio is reduced in subjects taking vigabatrin but may recover after cessation. However, visual loss may persist in the presence of a recovered EOG. These findings suggest further effects of the drug than those mediated by GABA receptors, and support the contention that the cause of the field loss may be at least in part due to retinal effects. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- I F Comaish
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The effort to isolate and maintain alive in vitro an intact mammalian eye is rewarded by the full control provided over the arterial input and exclusion of systemic regulatory or compensatory mechanisms. Electrical recording of typical light-evoked field potentials from retina and optic nerve can be complemented by single-cell recording. Thus, light-induced electrical activity reflects the function of the retinal pigment epithelium, of the layers of the retina and of the ganglion cells or their axons. Retinal function in vitro is documented by electrophysiological and morphological methods revealing subtle features of retinal information processing as well as optic nerve signals that approach-at threshold stimulus intensity-the human psychophysical threshold. Such sensitivity of third-order retinal neurons is described for the first time. This well controlled in vitro preparation has been used successfully for biophysical, metabolic and pharmacological studies. Examples are provided that demonstrate the marked sensibility of the rod system to changes in glucose supply. Moreover, histochemical identification of glycogen stores revealed labeling of the second- and third-order neurons subserving the rod system, in addition to labeling of Müller (glial) cells in the cat retina. The glycogen content of the cat retina is augmented by prolonged anesthesia, largely depleted by ischemia after enucleation and enhanced by insulin. Pharmacological experiments using agonists and antagonists of putative retinal neurotransmitters are summarized and outlined using the muscarinic cholinergic agonist QNB as an example. Actions and uptake of the neuromodulator adenosine are presented in detail, including inhibitory effects on physiologically characterized ganglion cells. Neuronal effects of adenosine are distinguished from those resulting from vasodilatation and from glycogenolysis induced by the neuromodulator. To open the blood-retina barrier, a hyperosmotic challenge can be applied transiently. This process is monitored histochemically using FITC-albumin and with electrophysiological parameters. Changes in vitreo-scleral resistance and in the amplitude of the EOG-light peak appear to reflect the open/closed status of the barrier. This overview of the uses of the isolated perfused mammalian eye in retinal research concludes with a discussion of potential implications for clinically relevant topics.
Collapse
Affiliation(s)
- G Niemeyer
- Department of Ophthalmology, Neurophysiology Laboratory, University Hospital, CH 8091, Zürich, Switzerland.
| |
Collapse
|
13
|
Kapousta-Bruneau NV. Opposite effects of GABA(A) and GABA(C) receptor antagonists on the b-wave of ERG recorded from the isolated rat retina. Vision Res 2000; 40:1653-65. [PMID: 10814754 DOI: 10.1016/s0042-6989(00)00028-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The largest component in the fully dark-adapted ERG is a corneal-positive response, known as the b-wave, and believed to originate from depolarizing (ON-type) bipolar cells. The two types of GABA receptors, GABA(A) and GABA(C) have been reported to exist on bipolar cells in rat retina. The goal of these experiments was to find whether these GABA receptors participate in the generation of the b-wave of electroretinogram (ERG). ERGs were recorded from the isolated rat retinas. The P(2)(t) component, obtained by subtracting the ERGs measured before the application of 50 micrograms APB from those measured after the application of 50 micrograms APB, was used as an indicator of depolarizing bipolar cell activity. Photovoltages, the fast P(3)(t) component of ERG, were registered between the two microelectrodes across the rod outer segments. Bicuculline and 3-aminopropylphosphonic acid (3-APA) were used as selective antagonists of GABA(A) and GABA(C) receptors, respectively. It was found that the GABA(A) and GABA(C) receptors antagonists have opposite effects on the b-wave: bicuculline increased the b-wave amplitude, while 3-APA reduced the amplitude of the b-wave. Neither bicuculline nor 3-APA affect photoreceptors.
Collapse
Affiliation(s)
- N V Kapousta-Bruneau
- Department of Ophthalmology, Neuroscience Building, University of Michigan, 1103 E. Huron Street, Ann Arbor, MI 48104-1687, USA.
| |
Collapse
|
14
|
Della Maggiore V, Ralph MR. Retinal GABA(A) receptors participate in the regulation of circadian responses to light. J Biol Rhythms 1999; 14:47-53. [PMID: 10036992 DOI: 10.1177/074873049901400107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A role for retinal gamma-aminobutyric acid Type A (GABA(A)) receptors in the regulation of circadian responses to light was examined. Intraocular injections of the GABA(A) antagonist, bicuculline, were performed during the early (Circadian Time [CT] 13.5) and late subjective night (CT 20), followed by a light pulse. Bicuculline significantly decreased the magnitude of phase delays induced by light to 65%, whereas it had no effect on phase advances. To explore the nature of the inhibition elicited by bicuculline, an intensity-response curve was performed. Intraocular injections of bicuculline inhibited phase delays only when induced by high-saturating light illuminances (20 and 100 lux). No effect was observed at light intensities < or = 5 lux. These results suggest that retinal GABA(A) receptors modulate the responsivity of the circadian system to light.
Collapse
Affiliation(s)
- V Della Maggiore
- Department of Psychology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
da Costa BL, Hokoç JN, Pinaud RR, Gattass R. GABAergic retinocollicular projection in the New World monkey Cebus apella. Neuroreport 1997; 8:1797-802. [PMID: 9223054 DOI: 10.1097/00001756-199705260-00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GABA immunoreactivity was examined in the retina of the New World monkey Cebus apella. Labeled cell bodies were identified as horizontal, bipolar, interplexiform, amacrine and a population of putative ganglion cells. To determine whether ganglion cells were immunoreactive to GABA, double-labeling experiments were performed using Fast Blue as retrograde neuronal tracer injected into the superior colliculus. Retinas containing FB-labeled ganglion cells were subsequently incubated with antiserum against GABA. Although retinocollicular ganglion cells were found in three different layers (ganglion cell layer, inner nuclear layer and inner plexiform layer), our experiments revealed GABA-positive ganglion cells only in the outer half of the ganglion cell layer.
Collapse
Affiliation(s)
- B L da Costa
- Programa de Neurobiologia, Instituto de Biofśica Carlos Chagas Filho, CCS-Bl.G, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Nirenberg S, Meister M. The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 1997; 18:637-50. [PMID: 9136772 DOI: 10.1016/s0896-6273(00)80304-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertebrate retina contains ganglion cells that appear to be specialized for detecting temporal changes. The characteristic response of these cells is a transient burst of action potentials when a stationary image is presented or removed, and often a strong discharge to moving images. These transient and motion-sensitive responses are thought to result from processing in the inner retina that involves amacrine cells, but the critical interactions have been difficult to reveal. Here, we used a cell-ablation technique to remove a subpopulation of amacrine cells from the mouse retina. Their ablation changed transient ganglion cell responses into prolonged discharges. This suggests that transient responses are generated, at least in part, by a truncation of sustained excitatory input to the ganglion cells and that the ablated amacrine cells are critical for this process.
Collapse
Affiliation(s)
- S Nirenberg
- Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
17
|
Abstract
Intracellular recording and horseradish peroxidase (HRP) staining of amacrine cells in the isolated arterially perfused cat retina have revealed examples of small-field cells that hyperpolarize to light. Two were examined in detailed electron microscopic reconstructions to determine patterns of synaptic relationships within the inner plexiform layer (IPL). The cells were morphologically similar to A8 and A13 types as described in Golgi-impregnated material (Kolb et al. [1981] Vision Res. 21:1081-1114). Both types received ribbon synaptic input from rod and cone bipolar cells. The latter input was numerically predominant, occurred in both a and b sublaminae of the IPL, and arose from at least three cone bipolar types. Reciprocal synapses were evident between A13 cells and cone bipolar cells. Amacrine input occurred throughout the dendritic tree of both A8 and A13 types, and numerically exceeded bipolar cell input for A13. Gap junctions between stained, and similar-appearing unstained dendritic profiles were observed for both amacrine types. In addition, A8 engaged in gap junctions with cone bipolar profiles in sublamina b which also provided ribbon input. Synaptic output for both amacrine types occurred primarily upon amacrine and ganglion cells in sublamina a. Both cells were presynaptic upon single OFF-center beta ganglion cells running through the middle of their dendritic trees. Mixtures of rod and cone signals were found in the centrally evoked hyperpolarizations of each type. Center mechanism space constants of such types ranged from 100 to 400 microns, with antagonistic surround in 1 of 5 cases. Dopamine (250 microM) reduced receptive field space constants by one-third in one case. The synaptic organization and potential circuitry implications of these cone system-dominated amacrine types are compared and contrasted to the better-known AII and A17 types previously described for the rod system.
Collapse
Affiliation(s)
- H Kolb
- John Moran Eye Center, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|