1
|
Bourne JA, Cichy RM, Kiorpes L, Morrone MC, Arcaro MJ, Nielsen KJ. Development of Higher-Level Vision: A Network Perspective. J Neurosci 2024; 44:e1291242024. [PMID: 39358020 PMCID: PMC11450542 DOI: 10.1523/jneurosci.1291-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Most studies on the development of the visual system have focused on the mechanisms shaping early visual stages up to the level of primary visual cortex (V1). Much less is known about the development of the stages after V1 that handle the higher visual functions fundamental to everyday life. The standard model for the maturation of these areas is that it occurs sequentially, according to the positions of areas in the adult hierarchy. Yet, the existing literature reviewed here paints a different picture, one in which the adult configuration emerges through a sequence of unique network configurations that are not mere partial versions of the adult hierarchy. In addition to studying higher visual development per se to fill major gaps in knowledge, it will be crucial to adopt a network-level perspective in future investigations to unravel normal developmental mechanisms, identify vulnerabilities to developmental disorders, and eventually devise treatments for these disorders.
Collapse
Affiliation(s)
- James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, Maryland 20814
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Einstein Center for Neurosciences Berlin, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York 10003
| | - Maria Concetta Morrone
- IRCCS Fondazione Stella Maris, Pisa 56128, Italy
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
2
|
Van Grootel TJ, Raghavan RT, Kelly JG, Movshon JA, Kiorpes L. Responses to visual motion of neurons in the extrastriate visual cortex of macaque monkeys with experimental amblyopia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601564. [PMID: 39005459 PMCID: PMC11244960 DOI: 10.1101/2024.07.01.601564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amblyopia is a developmental disorder that results from abnormal visual experience in early life. Amblyopia typically reduces visual performance in one eye. We studied the representation of visual motion information in area MT and nearby extrastriate visual areas in two monkeys made amblyopic by creating an artificial strabismus in early life, and in a single age-matched control monkey. Tested monocularly, cortical responses to moving dot patterns, gratings, and plaids were qualitatively normal in awake, fixating amblyopic monkeys, with primarily subtle differences between the eyes. However, the number of binocularly driven neurons was substantially lower than normal; of the neurons driven predominantly by one eye, the great majority responded only to stimuli presented to the fellow eye. The small population driven by the amblyopic eye showed reduced coherence sensitivity and a preference for faster speeds in much the same way as behavioral deficits. We conclude that, while we do find important differences between neurons driven by the two eyes, amblyopia does not lead to a large scale reorganization of visual receptive fields in the dorsal stream when tested through the amblyopic eye, but rather creates a substantial shift in eye preference toward the fellow eye.
Collapse
Affiliation(s)
- Tom J Van Grootel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - R T Raghavan
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jenna G Kelly
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Rodríguez Deliz CL, Lee GM, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Development of radial frequency pattern perception in macaque monkeys. J Vis 2024; 24:6. [PMID: 38843389 PMCID: PMC11160949 DOI: 10.1167/jov.24.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Infant primates see poorly, and most perceptual functions mature steadily beyond early infancy. Behavioral studies on human and macaque infants show that global form perception, as measured by the ability to integrate contour information into a coherent percept, improves dramatically throughout the first several years after birth. However, it is unknown when sensitivity to curvature and shape emerges in early life or how it develops. We studied the development of shape sensitivity in 18 macaques, aged 2 months to 10 years. Using radial frequency stimuli, circular targets whose radii are modulated sinusoidally, we tested monkeys' ability to radial frequency stimuli from circles as a function of the depth and frequency of sinusoidal modulation. We implemented a new four-choice oddity task and compared the resulting data with that from a traditional two-alternative forced choice task. We found that radial frequency pattern perception was measurable at the youngest age tested (2 months). Behavioral performance at all radial frequencies improved with age. Performance was better for higher radial frequencies, suggesting the developing visual system prioritizes processing of fine visual details that are ecologically relevant. By using two complementary methods, we were able to capture a comprehensive developmental trajectory for shape perception.
Collapse
Affiliation(s)
| | - Gerick M Lee
- Center for Neural Science, New York University, NY, NY, USA
| | | | - Najib J Majaj
- Center for Neural Science, New York University, NY, NY, USA
| | | | - Lynne Kiorpes
- Center for Neural Science, New York University, NY, NY, USA
| |
Collapse
|
4
|
Duffy KR, Bear MF, Patel NB, Das VE, Tychsen L. Human deprivation amblyopia: treatment insights from animal models. Front Neurosci 2023; 17:1249466. [PMID: 37795183 PMCID: PMC10545969 DOI: 10.3389/fnins.2023.1249466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Amblyopia is a common visual impairment that develops during the early years of postnatal life. It emerges as a sequela to eye misalignment, an imbalanced refractive state, or obstruction to form vision. All of these conditions prevent normal vision and derail the typical development of neural connections within the visual system. Among the subtypes of amblyopia, the most debilitating and recalcitrant to treatment is deprivation amblyopia. Nevertheless, human studies focused on advancing the standard of care for amblyopia have largely avoided recruitment of patients with this rare but severe impairment subtype. In this review, we delineate characteristics of deprivation amblyopia and underscore the critical need for new and more effective therapy. Animal models offer a unique opportunity to address this unmet need by enabling the development of unconventional and potent amblyopia therapies that cannot be pioneered in humans. Insights derived from studies using animal models are discussed as potential therapeutic innovations for the remediation of deprivation amblyopia. Retinal inactivation is highlighted as an emerging therapy that exhibits efficacy against the effects of monocular deprivation at ages when conventional therapy is ineffective, and recovery occurs without apparent detriment to the treated eye.
Collapse
Affiliation(s)
- Kevin R. Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Mark F. Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nimesh B. Patel
- College of Optometry, University of Houston, Houston, TX, United States
| | - Vallabh E. Das
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Jiang SQ, Chen YR, Liu XY, Zhang JY. Contour integration deficits at high spatial frequencies in children treated for anisometropic amblyopia. Front Neurosci 2023; 17:1160853. [PMID: 37564367 PMCID: PMC10411894 DOI: 10.3389/fnins.2023.1160853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose This study was conducted to reexamine the question of whether children treated for anisometropic amblyopia have contour integration deficits. To do so, we used psychophysical methods that require global contour processing while minimizing the influence of low-level deficits: visibility, shape perception, and positional uncertainty. Methods Thirteen children with anisometropic amblyopia (age: 10.1 ± 1.8 years) and thirteen visually normal children (age: 10.8 ± 2.0 years) participated in this study. The stimuli were closed figures made up of Gabor patches either in noise or on a blank field. The contrast thresholds to detect a circular contour on a blank field, as well as the thresholds of aspect ratio and contour element number to discriminate a circular or elliptical contour in noise, were measured at Gabor spatial frequencies of 1.5, 3, and 6 cpd for amblyopic eyes (AEs), fellow eyes (FEs), and normal control eyes. Visual acuities and contrast sensitivity functions for AEs and FEs and the Randot stereoacuity were measured before testing. Results The AEs showed contrast deficits and degraded shape perception compared to the FEs at higher spatial frequencies (6 cpd). When the influence of abnormal contrast sensitivity and shape perception were minimized, the AEs showed contour integration deficits at spatial frequencies 3 and 6 cpd. These deficits were not related to basic losses in contrast sensitivity and acuity, stereoacuity, and visual crowding. Besides, no significant difference was found between the fellow eyes of the amblyopic children and the normal control eyes in the performance of contour integration. Conclusion After eliminating or compensating for the low-level deficits, children treated for anisometropic amblyopia still show contour integration deficits, primarily at higher spatial frequencies, which might reflect the deficits in global processing caused by amblyopia. Contour integration deficits are likely independent of spatial vision deficits. Refractive correction and/or occlusion therapies may not be sufficient to fully restore contour integration deficits, which indicates the need for the development of clinical treatments to recover these deficits.
Collapse
Affiliation(s)
- Shu-Qi Jiang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yan-Ru Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xiang-Yun Liu
- The Affiliated Tengzhou Hospital of Xuzhou Medical University, Tengzhou, Shandong, China
| | - Jun-Yun Zhang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
6
|
Wang G, Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 2022; 261:1229-1246. [PMID: 36282454 DOI: 10.1007/s00417-022-05826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia's neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Zhu J, Ruan X, Li C, Yuan J, Yang Y, Zhang W, Zhang H, Zhuo Z, Yan FF, Huang CB, Hou F. Psychophysical Reverse Correlation Revealed Broader Orientation Tuning and Prolonged Reaction Time in Amblyopia. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35503229 PMCID: PMC9078079 DOI: 10.1167/iovs.63.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Neural selectivity of orientation is a fundamental property of visual system. We aim to investigate whether and how the orientation selectivity changes in amblyopia. Methods Seventeen patients with amblyopia (27.1 ± 7.1 years) and 18 healthy participants (25.1 ± 2.7 years) took part in this study. They were asked to continuously detect vertical gratings embedded in a stream of randomly oriented gratings. Using a technique of subspace reverse correlation, the orientation-time perceptive field (PF) for the atypical grating detection task was derived for each participant. Detailed comparisons were made between the PFs measured with the amblyopic and healthy eyes. Results The PF of the amblyopic eyes showed significant differences in orientation and time domain compared with that of the normal eyes (cluster-based permutation test, ps < 0.05), with broader bandwidth of orientation tuning (31.41 ± 10.59 degrees [mean ± SD] vs. 24.76 ± 6.85 degrees, P = 0.039) and delayed temporal dynamics (483 ± 68 ms vs. 425 ± 58 ms, P = 0.015). None of the altered PF properties correlated with the contrast sensitivity at 1 cycle per degree (c/deg) in amblyopia. No difference in PFs between the dominant and non-dominant eyes in the healthy group was found. Conclusions The altered orientation-time PF to the low spatial frequency and high contrast stimuli suggests amblyopes had coarser orientation selectivity and prolonged reaction time. The broader orientation tuning probably reflects the abnormal lateral interaction in the primary visual cortex, whereas the temporal delay might indicate a high level deficit.
Collapse
Affiliation(s)
- Jinli Zhu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaowei Ruan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Li
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junli Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Yang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhua Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanyi Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuopao Zhuo
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Fang Hou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Chandna A, Nichiporuk N, Nicholas S, Kumar R, Norcia AM. Motion Processing Deficits in Children With Cerebral Visual Impairment and Good Visual Acuity. Invest Ophthalmol Vis Sci 2021; 62:12. [PMID: 34779820 PMCID: PMC8606874 DOI: 10.1167/iovs.62.14.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose We sought to characterize neural motion processing deficits in children with cerebral visual impairment (CVI) who have good visual acuity using an objective, quantifiable method (steady-state visual evoked potentials [SSVEPs]). Methods We recorded SSVEPs in response to three types of visual motion – absolute motion and more complex relative and rotary motion, comparing them to form-related vernier and contour responses. We studied a group of 31 children with CVI diagnosed via detailed clinical examinations and 28 age-matched healthy controls. Results Using measurements made at the appropriate response harmonics of the stimulation frequency, we found significant deficits in cerebral processing of relative and rotary motion but not of absolute motion in children with CVI compared with healthy controls. Vernier acuity, in keeping with good recognition acuity in both groups, was not different, nor were contour-related form responses. Conclusions Deficits for complex motion but relative sparing of elementary motion and form-related signals suggests preferential damage to extra-striate visual motion areas in children with CVI. The fact that these preferential losses occur in the absence of significant acuity loss indicates that they are not secondary to reduced visual acuity, but rather are an independent vulnerability in CVI. These results corroborate parental and caregivers’ reports of difficulties with tasks that involve motion perception in children with CVI.
Collapse
Affiliation(s)
- Arvind Chandna
- Smith-Kettlewell Eye Research Institute, San Francisco, California, United States.,Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Nikolay Nichiporuk
- Smith-Kettlewell Eye Research Institute, San Francisco, California, United States
| | - Spero Nicholas
- Smith-Kettlewell Eye Research Institute, San Francisco, California, United States
| | - Ram Kumar
- Alder Hey Children's Hospital, Liverpool, United Kingdom
| | | |
Collapse
|
9
|
Hou C, Acevedo Munares G. Feature Counting Is Impaired When Shifting Attention Between the Eyes in Adults With Amblyopia. Front Neurosci 2021; 15:674146. [PMID: 34093118 PMCID: PMC8174661 DOI: 10.3389/fnins.2021.674146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Feature counting requires rapid shifts of attention in the visual field and reflects higher-level cortical functions. This process is drastically impaired in the amblyopic eye of strabismic amblyopes. In this study, we hypothesized that feature counting performance in anisometropic and strabismic amblyopes is further impaired when shifts in attention is required between the eyes. MATERIALS AND METHODS Through a mirror stereoscope, highly visible Gabor patches were presented to the same eye within a block or randomly presented to the left eye or to the right eye with an equal probability within a block. The task was to report the number of Gabors (3 to 9) as accurately as possible. Counting performance was compared between the amblyopes and the normal-vision observers and between the viewing conditions (shifting attention between the eyes versus maintaining attention in the same eye). RESULTS When attention was maintained in the same eye, the amblyopic eye of both anisometropic and strabismic groups undercounted the number of Gabors, but achieved near-perfect performance with their fellow eye, compared to normal-vision observers. In contrast, when shifting attention randomly to the left or to the right eye, the amblyopic eye further undercounted the number of Gabors. Undercounting was also found in the fellow eye of strabismic amblyopes, but was not in the fellow eye of anisometropic amblyopes. Performance in normal-vision observers did not differ between shifting attention between the eyes and maintaining attention in the same eye. CONCLUSION Our data showed that the amblyopic eye of both anisometropic and strabismic amblyopes further undercounted features when shifting attention between the eyes, compared to when maintaining attention in the same eye. This suggests that the ability to quickly redirect attention, particularly under interocular suppression, is impaired in amblyopia. The fellow eye of strabismic amblyopes also undercounted features when shifting attention between the eyes. However, such fellow eye abnormality was not found in anisometropic amblyopes, suggesting that different patterns of visual deficits are associated with amblyopia of different etiologies. The inability to count multiple features accurately reflects dysfunctions of high-level cortices in the amblyopic brain.
Collapse
Affiliation(s)
- Chuan Hou
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, United States
| | | |
Collapse
|
10
|
Salinas KJ, Huh CYL, Zeitoun JH, Gandhi SP. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience. J Neurosci 2021; 41:1470-1488. [PMID: 33376158 PMCID: PMC7896022 DOI: 10.1523/jneurosci.0548-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual cortex contains multiple retinotopically defined areas that process distinct features of the visual scene. Little is known about what guides the functional differentiation of visual cortical areas during development. Recent studies in mice have revealed that visual input from the two eyes provides spatiotemporally distinct signals to primary visual cortex (V1), such that contralateral eye-dominated V1 neurons respond to higher spatial frequencies than ipsilateral eye-dominated neurons. To test whether binocular visual input drives the differentiation of visual cortical areas, we used two-photon calcium imaging to characterize the effects of juvenile monocular deprivation (MD) on the responses of neurons in V1 and two higher visual areas, LM (lateromedial) and PM (posteromedial). In adult mice of either sex, we find that MD prevents the emergence of distinct spatiotemporal tuning in V1, LM, and PM. We also find that, within each of these areas, MD reorganizes the distinct spatiotemporal tuning properties driven by the two eyes. Moreover, we find a relationship between speed tuning and ocular dominance in all three areas that MD preferentially disrupts in V1, but not in LM or PM. Together, these results reveal that balanced binocular vision during development is essential for driving the functional differentiation of visual cortical areas. The higher visual areas of mouse visual cortex may provide a useful platform for investigating the experience-dependent mechanisms that set up the specialized processing within neocortical areas during postnatal development.SIGNIFICANCE STATEMENT Little is known about the factors guiding the emergence of functionally distinct areas in the brain. Using in vivo Ca2+ imaging, we recorded visually evoked activity from cells in V1 and higher visual areas LM (lateromedial) and PM (posteromedial) of mice. Neurons in these areas normally display distinct spatiotemporal tuning properties. We found that depriving one eye of normal input during development prevents the functional differentiation of visual areas. Deprivation did not disrupt the degree of speed tuning, a property thought to emerge in higher visual areas. Thus, some properties of visual cortical neurons are shaped by binocular experience, while others are resistant. Our study uncovers the fundamental role of binocular experience in the formation of distinct areas in visual cortex.
Collapse
Affiliation(s)
- Kirstie J Salinas
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Carey Y L Huh
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Jack H Zeitoun
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
11
|
Abstract
Amblyopia is a cortical visual disorder caused by unequal visual input to the brain from the two eyes during development. Amblyopes show reduced visual acuity and contrast sensitivity and abnormal binocularity, as well as more “global” perceptual losses, such as figure-ground segregation and global form integration. Currently, there is no consensus on the neural basis for these higher-order perceptual losses. One contributing factor could be that amblyopes have deficiencies in attention, such that the attentional processes that control the selection of information favor the better eye. Previous studies in amblyopic adults are conflicting as to whether attentional deficits exist. However, studies where intact attentional ability has been shown to exist were conducted in adults; it is possible that it was acquired through experience. To test this hypothesis, we studied attentional processing in amblyopic children. We examined covert endogenous attention using a classical spatial cueing paradigm in amblyopic and visually typical 5- to 10-year old children. We found that all children, like adults, independently of visual condition, benefited from attentional cueing: They performed significantly better on trials with an informative (valid) cue than with the uninformative (neutral) cue. Response latencies were also significantly shorter for the valid cue condition. No statistically significant difference was found between the performance of the amblyopic and the visually typical children or between dominant and nondominant eyes of all children. The results showed that covert spatial attention is intact in amblyopic and visually typical children and is therefore not likely to account for higher-order perceptual losses in amblyopic children.
Collapse
|
12
|
Understanding the development of amblyopia using macaque monkey models. Proc Natl Acad Sci U S A 2019; 116:26217-26223. [PMID: 31871163 DOI: 10.1073/pnas.1902285116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amblyopia is a sensory developmental disorder affecting as many as 4% of children around the world. While clinically identified as a reduction in visual acuity and disrupted binocular function, amblyopia affects many low- and high-level perceptual abilities. Research with nonhuman primate models has provided much needed insight into the natural history of amblyopia, its origins and sensitive periods, and the brain mechanisms that underly this disorder. Amblyopia results from abnormal binocular visual experience and impacts the structure and function of the visual pathways beginning at the level of the primary visual cortex (V1). However, there are multiple instances of abnormalities in areas beyond V1 that are not simply inherited from earlier stages of processing. The full constellation of deficits must be taken into consideration in order to understand the broad impact of amblyopia on visual and visual-motor function. The data generated from studies of animal models of the most common forms of amblyopia have provided indispensable insight into the disorder, which has significantly impacted clinical practice. It is expected that this translational impact will continue as ongoing research into the neural correlates of amblyopia provides guidance for novel therapeutic approaches.
Collapse
|
13
|
Acar K, Kiorpes L, Movshon JA, Smith MA. Altered functional interactions between neurons in primary visual cortex of macaque monkeys with experimental amblyopia. J Neurophysiol 2019; 122:2243-2258. [PMID: 31553685 PMCID: PMC6966320 DOI: 10.1152/jn.00232.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022] Open
Abstract
Amblyopia, a disorder in which vision through one of the eyes is degraded, arises because of defective processing of information by the visual system. Amblyopia often develops in humans after early misalignment of the eyes (strabismus) and can be simulated in macaque monkeys by artificially inducing strabismus. In such amblyopic animals, single-unit responses in primary visual cortex (V1) are appreciably reduced when evoked by the amblyopic eye compared with the other (fellow) eye. However, this degradation in single V1 neuron responsivity is not commensurate with the marked losses in visual sensitivity and resolution measured behaviorally. Here we explored the idea that changes in patterns of coordinated activity across populations of V1 neurons may contribute to degraded visual representations in amblyopia, potentially making it more difficult to read out evoked activity to support perceptual decisions. We studied the visually evoked activity of V1 neuronal populations in three macaques (Macaca nemestrina) with strabismic amblyopia and in one control animal. Activity driven through the amblyopic eye was diminished, and these responses also showed more interneuronal correlation at all stimulus contrasts than responses driven through the fellow eye or responses in the control animal. A decoding analysis showed that responses driven through the amblyopic eye carried less visual information than other responses. Our results suggest that part of the reduced visual capacity of amblyopes may be due to changes in the patterns of functional interaction among neurons in V1.NEW & NOTEWORTHY Previous work on the neurophysiological basis of amblyopia has largely focused on relating behavioral deficits to changes in visual processing by single neurons in visual cortex. In this study, we recorded simultaneously from populations of primary visual cortical (V1) neurons in macaques with amblyopia. We found changes in the strength and pattern of shared response variability between neurons. These changes in neuronal interactions could impair the visual representations of V1 populations driven by the amblyopic eye.
Collapse
Affiliation(s)
- Katerina Acar
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York
| | | | - Matthew A Smith
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Carnegie Mellon Neuroscience Institute, Pittsburgh, Pennsylvania
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Amblyopia Affects the ON Visual Pathway More than the OFF. J Neurosci 2019; 39:6276-6290. [PMID: 31189574 PMCID: PMC6687897 DOI: 10.1523/jneurosci.3215-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/03/2023] Open
Abstract
Visual information reaches the cerebral cortex through parallel ON and OFF pathways that signal the presence of light and dark stimuli in visual scenes. We have previously demonstrated that optical blur reduces visual salience more for light than dark stimuli because it removes the high spatial frequencies from the stimulus, and low spatial frequencies drive weaker ON than OFF cortical responses. Therefore, we hypothesized that sustained optical blur during brain development should weaken ON cortical pathways more than OFF, increasing the dominance of darks in visual perception. Here we provide support for this hypothesis in humans with anisometropic amblyopia who suffered sustained optical blur early after birth in one of the eyes. In addition, we show that the dark dominance in visual perception also increases in strabismic amblyopes that have their vision to high spatial frequencies reduced by mechanisms not associated with optical blur. Together, we show that amblyopia increases visual dark dominance by 3-10 times and that the increase in dark dominance is strongly correlated with amblyopia severity. These results can be replicated with a computational model that uses greater luminance/response saturation in ON than OFF pathways and, as a consequence, reduces more ON than OFF cortical responses to stimuli with low spatial frequencies. We conclude that amblyopia affects the ON cortical pathway more than the OFF, a finding that could have implications for future amblyopia treatments.SIGNIFICANCE STATEMENT Amblyopia is a loss of vision that affects 2-5% of children across the world and originates from a deficit in visual cortical circuitry. Current models assume that amblyopia affects similarly ON and OFF visual pathways, which signal light and dark features in visual scenes. Against this current belief, here we demonstrate that amblyopia affects the ON visual pathway more than the OFF, a finding that could have implications for new amblyopia treatments targeted at strengthening a weak ON visual pathway.
Collapse
|
15
|
Abstract
There are many levels of disorder in amblyopic vision, from basic acuity and contrast sensitivity loss to abnormal binocular vision and global perception of motion and form. Amblyopia treatment via patching to restore acuity often leaves other aspects of vision deficient. The source for these additional deficits is unclear. Neural correlates of poor binocular function and acuity loss are found in V1 and V2. However, they are generally not sufficient to account for behaviorally measured vision loss. This review summarizes the known cortical correlates of visual deficits found in association with amblyopia, particularly those relevant to binocular vision and higher-order visual processing, in striate and extrastriate cortex. Recommendations for future research address open questions on the role of suppression and oculomotor abnormalities in amblyopic vision, and underexplored mechanisms such as top-down influences on information transmission in the amblyopic brain.
Collapse
|
16
|
Abstract
Amblyopia, a developmental disorder of vision, affects many aspects of spatial vision as well as motion perception and some cognitive skills. Current models of amblyopic vision based on known neurophysiological deficiencies have yet to provide an understanding of the wide range of amblyopic perceptual losses. Visual spatial attention is known to enhance performance in a variety of detection and discrimination tasks in visually typical humans and nonhuman primates. We investigated whether and how voluntary spatial attention affected psychophysical performance in amblyopic macaques. Full-contrast response functions for motion direction discrimination were measured for each eye of six monkeys: five amblyopic and one control. We assessed whether the effect of a valid spatial cue on performance corresponded to a change in contrast gain, a leftward shift of the function, or response gain, an upward scaling of the function. Our results showed that macaque amblyopes benefit from a valid spatial cue. Performance with amblyopic eyes viewing showed enhancement of both contrast and response gain whereas fellow and control eyes' performance showed only contrast gain. Reaction time analysis showed no speed accuracy trade-off in any case. The valid spatial cue improved contrast sensitivity for the amblyopic eye, effectively eliminating the amblyopic contrast sensitivity deficit. These results suggest that engaging endogenous spatial attention may confer substantial benefit to amblyopic vision.
Collapse
Affiliation(s)
- Amelie Pham
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Lynne Kiorpes
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
17
|
Noisy Spiking in Visual Area V2 of Amblyopic Monkeys. J Neurosci 2017; 37:922-935. [PMID: 28123026 DOI: 10.1523/jneurosci.3178-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/10/2016] [Indexed: 01/17/2023] Open
Abstract
Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV2) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV2, and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. SIGNIFICANCE STATEMENT Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development.
Collapse
|
18
|
The Puzzle of Visual Development: Behavior and Neural Limits. J Neurosci 2017; 36:11384-11393. [PMID: 27911740 DOI: 10.1523/jneurosci.2937-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output.
Collapse
|
19
|
Smith EL, Hung LF, Arumugam B, Wensveen JM, Chino YM, Harwerth RS. Observations on the relationship between anisometropia, amblyopia and strabismus. Vision Res 2017; 134:26-42. [PMID: 28404522 DOI: 10.1016/j.visres.2017.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 11/26/2022]
Abstract
We investigated the potential causal relationships between anisometropia, amblyopia and strabismus, specifically to determine whether either amblyopia or strabismus interfered with emmetropization. We analyzed data from non-human primates that were relevant to the co-existence of anisometropia, amblyopia and strabismus in children. We relied on interocular comparisons of spatial vision and refractive development in animals reared with 1) monocular form deprivation; 2) anisometropia optically imposed by either contact lenses or spectacle lenses; 3) organic amblyopia produced by laser ablation of the fovea; and 4) strabismus that was either optically imposed with prisms or produced by either surgical or pharmacological manipulation of the extraocular muscles. Hyperopic anisometropia imposed early in life produced amblyopia in a dose-dependent manner. However, when potential methodological confounds were taken into account, there was no support for the hypothesis that the presence of amblyopia interferes with emmetropization or promotes hyperopia or that the degree of image degradation determines the direction of eye growth. To the contrary, there was strong evidence that amblyopic eyes were able to detect the presence of a refractive error and alter ocular growth to eliminate the ametropia. On the other hand, early onset strabismus, both optically and surgically imposed, disrupted the emmetropization process producing anisometropia. In surgical strabismus, the deviating eyes were typically more hyperopic than their fellow fixating eyes. The results show that early hyperopic anisometropia is a significant risk factor for amblyopia. Early esotropia can trigger the onset of both anisometropia and amblyopia. However, amblyopia, in isolation, does not pose a significant risk for the development of hyperopia or anisometropia.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, TX 77204, USA; Brien Holden Vision Institute, Sydney, Australia.
| | - Li-Fang Hung
- College of Optometry, University of Houston, TX 77204, USA; Brien Holden Vision Institute, Sydney, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, TX 77204, USA; Brien Holden Vision Institute, Sydney, Australia
| | | | - Yuzo M Chino
- College of Optometry, University of Houston, TX 77204, USA
| | | |
Collapse
|
20
|
Kiorpes L, Mangal P. "Global" visual training and extent of transfer in amblyopic macaque monkeys. J Vis 2015; 15:14. [PMID: 26505868 DOI: 10.1167/15.10.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a "global" visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention.
Collapse
|
21
|
Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys. J Neurosci 2015; 34:13840-54. [PMID: 25297110 DOI: 10.1523/jneurosci.1992-14.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion.
Collapse
|
22
|
A new model of strabismic amblyopia: Loss of spatial acuity due to increased temporal dispersion of geniculate X-cell afferents on to cortical neurons. Vision Res 2015; 114:79-86. [PMID: 25906683 DOI: 10.1016/j.visres.2015.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/05/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022]
Abstract
Although the neural locus of strabismic amblyopia has been shown to lie at the first site of binocular integration, first in cat and then in primate, an adequate mechanism is still lacking. Here we hypothesise that increased temporal dispersion of LGN X-cell afferents driven by the deviating eye onto single cortical neurons may provide a neural mechanism for strabismic amblyopia. This idea was investigated via single cell extracellular recordings of 93 X and 50 Y type LGN neurons from strabismic and normal cats. Both X and Y neurons driven by the non-deviating eye showed shorter latencies than those driven by either the strabismic or normal eyes. Also the mean latency difference between X and Y neurons was much greater for the strabismic cells compared with the other two groups. The incidence of lagged X-cells driven by the deviating eye of the strabismic cats was higher than that of LGN X-cells from normal animals. Remarkably, none of the cells recorded from the laminae driven by the non-deviating eye were of the lagged class. A simple computational model was constructed in which a mixture of lagged and non-lagged afferents converge on to single cortical neurons. Model cut-off spatial frequencies to a moving grating stimulus were sensitive to the temporal dispersion of the geniculate afferents. Thus strabismic amblyopia could be viewed as a lack of developmental tuning of geniculate lags for neurons driven by the amblyopic eye. Monocular control of fixation by the non-deviating eye is associated with reduced incidence of lagged neurons, suggesting that in normal vision, lagged neurons might play a role in maintaining binocular connections for cortical neurons.
Collapse
|
23
|
Kiorpes L. Visual development in primates: Neural mechanisms and critical periods. Dev Neurobiol 2015; 75:1080-90. [PMID: 25649764 DOI: 10.1002/dneu.22276] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/26/2014] [Accepted: 01/09/2015] [Indexed: 01/27/2023]
Abstract
Despite many decades of research into the development of visual cortex, it remains unclear what neural processes set limitations on the development of visual function and define its vulnerability to abnormal visual experience. This selected review examines the development of visual function and its neural correlates, and highlights the fact that in most cases receptive field properties of infant neurons are substantially more mature than infant visual function. One exception is temporal resolution, which can be accounted for by resolution of neurons at the level of the lateral geniculate nucleus (LGN). In terms of spatial vision, properties of single neurons alone are not sufficient to account for visual development. Different visual functions develop over different time courses. Their onset may be limited by the existence of neural response properties that support a given perceptual ability, but the subsequent time course of maturation to adult levels remains unexplained. Several examples are offered suggesting that taking account of weak signaling by infant neurons, correlated firing, and pooled responses of populations of neurons brings us closer to an understanding of the relationship between neural and behavioral development.
Collapse
Affiliation(s)
- Lynne Kiorpes
- Center for Neural Science, New York University, 4 Washington Place, New York, New York, 10003
| |
Collapse
|
24
|
Tang Y, Liu C, Liu Z, Hu X, Yu YQ, Zhou Y. Processing deficits of motion of contrast-modulated gratings in anisometropic amblyopia. PLoS One 2014; 9:e113400. [PMID: 25409477 PMCID: PMC4237427 DOI: 10.1371/journal.pone.0113400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/23/2014] [Indexed: 12/02/2022] Open
Abstract
Several studies have indicated substantial processing deficits for static second-order stimuli in amblyopia. However, less is known about the perception of second-order moving gratings. To investigate this issue, we measured the contrast sensitivity for second-order (contrast-modulated) moving gratings in seven anisometropic amblyopes and ten normal controls. The measurements were performed with non-equated carriers and a series of equated carriers. For comparison, the sensitivity for first-order motion and static second-order stimuli was also measured. Most of the amblyopic eyes (AEs) showed reduced sensitivity for second-order moving gratings relative to their non-amblyopic eyes (NAEs) and the dominant eyes (CEs) of normal control subjects, even when the detectability of the noise carriers was carefully controlled, suggesting substantial processing deficits of motion of contrast-modulated gratings in anisometropic amblyopia. In contrast, the non-amblyopic eyes of the anisometropic amblyopes were relatively spared. As a group, NAEs showed statistically comparable performance to CEs. We also found that contrast sensitivity for static second-order stimuli was strongly impaired in AEs and part of the NAEs of anisometropic amblyopes, consistent with previous studies. In addition, some amblyopes showed impaired performance in perception of static second-order stimuli but not in that of second-order moving gratings. These results may suggest a dissociation between the processing of static and moving second-order gratings in anisometropic amblyopia.
Collapse
Affiliation(s)
- Yong Tang
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Caiyuan Liu
- Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zhongjian Liu
- Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaopeng Hu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yong-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, People's Republic of China
| |
Collapse
|
25
|
Acuity-independent effects of visual deprivation on human visual cortex. Proc Natl Acad Sci U S A 2014; 111:E3120-8. [PMID: 25024230 DOI: 10.1073/pnas.1404361111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion.
Collapse
|
26
|
Abstract
Over the last 35 years or so, there has been substantial progress in revealing and characterizing the many interesting and sometimes mysterious sensory abnormalities that accompany amblyopia. A goal of many of the studies has been to try to make the link between the sensory losses and the underlying neural losses, resulting in several hypotheses about the site, nature, and cause of amblyopia. This article reviews some of these hypotheses, and the assumptions that link the sensory losses to specific physiological alterations in the brain. Despite intensive study, it turns out to be quite difficult to make a simple linking hypothesis, at least at the level of single neurons, and the locus of the sensory loss remains elusive. It is now clear that the simplest notion-that reduced contrast sensitivity of neurons in cortical area V1 explains the reduction in contrast sensitivity-is too simplistic. Considerations of noise, noise correlations, pooling, and the weighting of information also play a critically important role in making perceptual decisions, and our current models of amblyopia do not adequately take these into account. Indeed, although the reduction of contrast sensitivity is generally considered to reflect "early" neural changes, it seems plausible that it reflects changes at many stages of visual processing.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, California
| |
Collapse
|
27
|
Linking structure and function: development of lateral spatial interactions in macaque monkeys. Vis Neurosci 2013; 30:263-70. [PMID: 24107405 DOI: 10.1017/s0952523813000394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lateral spatial interactions among elements of a scene, which either enhance or degrade visual performance, are ubiquitous in vision. The neural mechanisms underlying lateral spatial interactions are a matter of debate, and various hypotheses have been proposed. Suppressive effects may be due to local inhibitory interactions, whereas facilitatory effects are typically ascribed either to the function of long-range horizontal projections in V1 or to uncertainty reduction. We investigated the development of lateral spatial interactions, facilitation and suppression, and compared their developmental profiles to those of potential underlying mechanisms in the visual system of infant macaques. Animals ranging in age from 10 weeks to 3 years were tested with a lateral masking paradigm. We found that suppressive interactions are present from very early in postnatal life, showing no change over the age range tested. However, facilitation develops slowly over the first year after birth. Our data suggest that the early maturation of suppressive interactions is related to the relatively mature receptive field properties of neurons in early visual cortical areas near birth in infant macaques, whereas the later maturation of facilitation is unlikely to be explained by development of local or long-range connectivity in primary visual cortex. Instead our data favor a late developing feedback or top-down cognitive process to explain the origin of facilitation.
Collapse
|
28
|
Chung STL, Li RW, Levi DM. Learning to identify near-acuity letters, either with or without flankers, results in improved letter size and spacing limits in adults with amblyopia. PLoS One 2012; 7:e35829. [PMID: 22558234 PMCID: PMC3340394 DOI: 10.1371/journal.pone.0035829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
Amblyopia is a developmental abnormality that results in deficits for a wide range of visual tasks, most notably, the reduced ability to see fine details, the loss in contrast sensitivity especially for small objects and the difficulty in seeing objects in clutter (crowding). The primary goal of this study was to evaluate whether crowding can be ameliorated in adults with amblyopia through perceptual learning using a flanked letter identification task that was designed to reduce crowding, and if so, whether the improvements transfer to untrained visual functions: visual acuity, contrast sensitivity and the size of visual span (the amount of information obtained in one fixation). To evaluate whether the improvements following this training task were specific to training with flankers, we also trained another group of adult observers with amblyopia using a single letter identification task that was designed to improve letter contrast sensitivity, not crowding. Following 10,000 trials of training, both groups of observers showed improvements in the respective training task. The improvements generalized to improved visual acuity, letter contrast sensitivity, size of the visual span, and reduced crowding. The magnitude of the improvement for each of these measurements was similar in the two training groups. Perceptual learning regimens aimed at reducing crowding or improving letter contrast sensitivity are both effective in improving visual acuity, contrast sensitivity for near-acuity objects and reducing the crowding effect, and could be useful as a clinical treatment for amblyopia.
Collapse
Affiliation(s)
- Susana T L Chung
- School of Optometry, University of California, Berkeley, California, United States of America.
| | | | | |
Collapse
|
29
|
Bankó ÉM, Körtvélyes J, Németh J, Weiss B, Vidnyánszky Z. Amblyopic deficits in the timing and strength of visual cortical responses to faces. Cortex 2012; 49:1013-24. [PMID: 22578711 DOI: 10.1016/j.cortex.2012.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/18/2012] [Accepted: 03/24/2012] [Indexed: 11/25/2022]
Abstract
Behavioral research revealed that object vision is impaired in amblyopia. Nevertheless, neurophysiological research in humans has focused on the amblyopic effects at the earliest stage of visual cortical processing, leaving the question of later, object-specific neural processing deficits unexplored. By measuring event-related potentials (ERPs) to foveal face stimuli we characterized the amblyopic effects on the N170 component, reflecting higher-level structural face processing. Single trial analysis revealed that latencies of the ERP components increased and were more variable in the amblyopic eye compared to the fellow eye both in strabismic and anisometropic patent groups. Moreover, there was an additional delay of N170 relative to the early P1 component over the right hemisphere, which was absent in the fellow eye, suggesting a slower evolution of face specific cortical responses in amblyopia. On the other hand, distribution of single trial N170 peak amplitudes differed between the amblyopic and fellow eye only in the strabismic but not in the anisometropic patients. Furthermore, the amblyopic N170 latency increment but not the amplitude reduction correlated with the interocular differences in visual acuity and fixation stability. We found no difference in the anticipatory neural oscillations between stimulation of the amblyopic and the fellow eye implying that impairment of the neural processes underlying generation of stimulus-driven visual cortical responses might be the primary reason behind the observed amblyopic effects. These findings provide evidence that amblyopic disruption of early visual experience leads to deficits in the strength and timing of higher-level, face specific visual cortical responses, reflected in the N170 component.
Collapse
Affiliation(s)
- Éva M Bankó
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
30
|
Thompson B, Richard A, Churan J, Hess RF, Aaen-Stockdale C, Pack CC. Impaired spatial and binocular summation for motion direction discrimination in strabismic amblyopia. Vision Res 2011; 51:577-84. [PMID: 21300079 DOI: 10.1016/j.visres.2011.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Amblyopia is characterised by visual deficits in both spatial vision and motion perception. While the spatial deficits are thought to result from deficient processing at both low and higher level stages of visual processing, the deficits in motion perception appear to result primarily from deficits involving higher level processing. Specifically, it has been argued that the motion deficit in amblyopia occurs when local motion information is pooled spatially and that this process is abnormally susceptible to the presence of noise elements in the stimulus. Here we investigated motion direction discrimination for abruptly presented two-frame Gabor stimuli in a group of five strabismic amblyopes and five control observers. Motion direction discrimination for this stimulus is inherently noisy and relies on the signal/noise processing of motion detectors. We varied viewing condition (monocular vs. binocular), stimulus size (5.3-18.5°) and stimulus contrast (high vs. low) in order to assess the effects of binocular summation, spatial summation and contrast on task performance. No differences were found for the high contrast stimuli; however the low contrast stimuli revealed differences between the control and amblyopic groups and between fellow fixing and amblyopic eyes. Control participants exhibited pronounced binocular summation for this task (on average a factor of 3.7), whereas amblyopes showed no such effect. In addition, the spatial summation that occurred for control eyes and the fellow eye of amblyopes was significantly attenuated for the amblyopic eyes relative to fellow eyes. Our results support the hypothesis that pooling of local motion information from amblyopic eyes is abnormal and highly sensitive to noise.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
31
|
Bi H, Zhang B, Tao X, Harwerth RS, Smith EL, Chino YM. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb Cortex 2011; 21:2033-45. [PMID: 21263036 DOI: 10.1093/cercor/bhq272] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.
Collapse
Affiliation(s)
- H Bi
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
| | | | | | | | | | | |
Collapse
|
32
|
Rislove EM, Hall EC, Stavros KA, Kiorpes L. Scale-dependent loss of global form perception in strabismic amblyopia. J Vis 2010; 10:25. [PMID: 21047757 DOI: 10.1167/10.12.25] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amblyopic humans are known to have a range of spatial vision abnormalities. Prior studies have documented amblyopic deficits in global form perception but have typically used only one set of stimulus parameters. Our aim in this study was to examine the extent and nature of global form perception deficits in strabismic amblyopia using a range of spatial scales and pattern types. Glass patterns are random dot stimuli in which the local orientations of paired dots must be integrated over space to yield a global form percept. We measured coherence thresholds for discrimination of pattern structure in translational (linear) and concentric Glass patterns at three spatial scales in two control and six amblyopic observers. We found that sensitivity to Glass patterns depended on both spatial scale and pattern type in all observers. Participants with a history of abnormal early visual experience showed greater interocular threshold difference when the discrimination was based on translational patterns than when it was based on concentric patterns, and the degree of amblyopic loss was greatest at fine spatial scale. Our results show that the nature and extent of global form vision deficits vary substantially with stimulus parameters and are greatest at fine spatial scales.
Collapse
|
33
|
Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. J Neurosci 2010; 30:12198-209. [PMID: 20826682 DOI: 10.1523/jneurosci.3055-10.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early experience affects the development of the visual system. Ocular misalignment or unilateral blur often causes amblyopia, a disorder that has become a standard for understanding developmental plasticity. Neurophysiological studies of amblyopia have focused almost entirely on the first stage of cortical processing in striate cortex. Here we provide the first extensive study of how amblyopia affects extrastriate cortex in nonhuman primates. We studied macaque monkeys (Macaca nemestrina) for which we have detailed psychophysical data, directly comparing physiological findings to perceptual capabilities. Because these subjects showed deficits in motion discrimination, we focused on area MT/V5, which plays a central role in motion processing. Most neurons in normal MT respond equally to visual stimuli presented through either eye; most recorded in amblyopes strongly preferred stimulation of the nonamblyopic (fellow) eye. The pooled responses of neurons driven by the amblyopic eye showed reduced sensitivity to coherent motion and preferred higher speeds, in agreement with behavioral measurements. MT neurons were more limited in their capacity to integrate motion information over time than expected from behavioral performance; neurons driven by the amblyopic eye had even shorter integration times than those driven by the fellow eye. We conclude that some, but not all, of the motion sensitivity deficits associated with amblyopia can be explained by abnormal development of MT.
Collapse
|
34
|
Hou F, Huang CB, Lesmes L, Feng LX, Tao L, Zhou YF, Lu ZL. qCSF in clinical application: efficient characterization and classification of contrast sensitivity functions in amblyopia. Invest Ophthalmol Vis Sci 2010; 51:5365-77. [PMID: 20484592 DOI: 10.1167/iovs.10-5468] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The qCSF method is a novel procedure for rapid measurement of spatial contrast sensitivity functions (CSFs). It combines Bayesian adaptive inference with a trial-to-trial information gain strategy, to directly estimate four parameters defining the observer's CSF. In the present study, the suitability of the qCSF method for clinical application was examined. METHODS The qCSF method was applied to rapidly assess spatial CSFs in 10 normal and 8 amblyopic participants. The qCSF was evaluated for accuracy, precision, test-retest reliability, suitability of CSF model assumptions, and accuracy of amblyopia screening. RESULTS qCSF estimates obtained with as few as 50 trials matched those obtained with 300 Ψ trials. The precision of qCSF estimates obtained with 120 and 130 trials, in normal subjects and amblyopes, matched the precision of 300 Ψ trials. For both groups and both methods, test-retest sensitivity estimates were well matched (all R > 0.94). The qCSF model assumptions were valid for 8 of 10 normal participants and all amblyopic participants. Measures of the area under log CSF (AULCSF) and the cutoff spatial frequency (cutSF) were lower in the amblyopia group; these differences were captured within 50 qCSF trials. Amblyopia was detected at an approximately 80% correct rate in 50 trials, when a logistic regression model was used with AULCSF and cutSF as predictors. CONCLUSIONS The qCSF method is sufficiently rapid, accurate, and precise in measuring CSFs in normal and amblyopic persons. It has great potential for clinical practice.
Collapse
Affiliation(s)
- Fang Hou
- Vision Research Laboratory, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Within the last five years, there have been a number of exciting new advances in our knowledge and understanding of amblyopia. This article reviews recent psychophysical studies of naturally occurring amblyopia in humans. These studies suggest that: 1) There are significant differences in the patterns of visual loss among the clinically defined categories of amblyopes. A key factor in determining the nature of the loss is the presence or absence of binocularity. 2) Dysfunction within the amblyopic visual system first occurs in area V1, and the effects of amblyopia may be amplified downstream. 3) There appears to be substantial neural plasticity in the amblyopic brain beyond the "critical period."
Collapse
Affiliation(s)
- Dennis M Levi
- University of California at Berkeley, School of Optometry, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Mitchell DE, Sengpiel F. Neural mechanisms of recovery following early visual deprivation. Philos Trans R Soc Lond B Biol Sci 2009; 364:383-98. [PMID: 18977734 PMCID: PMC2674472 DOI: 10.1098/rstb.2008.0192] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural patterned early visual input is essential for the normal development of the central visual pathways and the visual capacities they sustain. Without visual input, the functional development of the visual system stalls not far from the state at birth, and if input is distorted or biased the visual system develops in an abnormal fashion resulting in specific visual deficits. Monocular deprivation, an extreme form of biased exposure, results in large anatomical and physiological changes in terms of territory innervated by the two eyes in primary visual cortex (V1) and to a loss of vision in the deprived eye reminiscent of that in human deprivation amblyopia. We review work that points to a special role for binocular visual input in the development of V1 and vision. Our unique approach has been to provide animals with mixed visual input each day, which consists of episodes of normal and biased (monocular) exposures. Short periods of concordant binocular input, if continuous, can offset much longer episodes of monocular deprivation to allow normal development of V1 and prevent amblyopia. Studies of animal models of patching therapy for amblyopia reveal that the benefits are both heightened and prolonged by daily episodes of binocular exposure.
Collapse
Affiliation(s)
- Donald E Mitchell
- Psychology Department, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
37
|
Alekseenko SV, Toporova SN, Shkorbatova PY. Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation. ACTA ACUST UNITED AC 2008; 38:669-75. [PMID: 18709465 DOI: 10.1007/s11055-008-9031-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Indexed: 10/21/2022]
Abstract
Plastic changes in intrahemisphere neuronal connections of the eye-dominance columns of cortical fields 17 and 18 were studied in monocularly deprived cats. The methodology consisted of microintophoretic administration of horseradish peroxidase into cortical columns and three-dimensional reconstruction of the areas of retrograde labeled cells. The eye dominance of columns was established, as were their coordinates in the projection of the visual field. In field 17, the horizontal connections of columns receiving inputs from the non-deprived eye via the crossed-over visual tracts were longer than the connections of the "non-crossed" columns of this eye and were longer than in normal conditions; the connections of the columns of the deprived eye were significantly reduced. Changes in the spatial organization of horizontal connections in field 17 were seen for the columns of the non-deprived eye (areas of labeled cells were rounder and the density of labeled cells in these areas were non-uniform). The longest horizontal connections in deprived cats were no longer than the lengths of these connections in cats with strabismus. It is suggested that the axon length of cells giving rise to the horizontal connections of cortical columns has a limit which is independent of visual stimulation during the critical period of development of the visual system.
Collapse
Affiliation(s)
- S V Alekseenko
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia
| | | | | |
Collapse
|
38
|
Stavros KA, Kiorpes L. Behavioral measurement of temporal contrast sensitivity development in macaque monkeys (Macaca nemestrina). Vision Res 2008; 48:1335-44. [PMID: 18406441 DOI: 10.1016/j.visres.2008.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/22/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
We measured the developmental time course for temporal contrast sensitivity in macaque monkeys. The animals, aged 5 weeks to 4 years, detected an unpatterned field of light sinusoidally modulated over time at frequencies ranging from 1 to 40 Hz. Young infants showed reduced sensitivity for all frequencies, and a reduced range of detectable frequencies. Sensitivity to high and low frequencies developed at different rates, but the shape of the temporal contrast sensitivity function did not change significantly with age. Temporal contrast sensitivity matures earlier than spatial contrast sensitivity. The development of high, but not low, frequency sensitivity may be limited by maturation of the magnocellular pathway.
Collapse
Affiliation(s)
- Kara A Stavros
- Center for Neural Science, New York University, Room 809, 4 Washington Place, NY 10003, USA
| | | |
Collapse
|
39
|
Hou C, Pettet MW, Norcia AM. Abnormalities of coherent motion processing in strabismic amblyopia: Visual-evoked potential measurements. J Vis 2008; 8:2.1-12. [PMID: 18484841 DOI: 10.1167/8.4.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/23/2008] [Indexed: 11/24/2022] Open
Abstract
Coherent motion responses of patients with mild to moderate strabismic amblyopia were compared to those of normals using visual-evoked potentials (VEPs). Responses were elicited by dynamic random-dot kinematograms that alternated at 0.83 Hz between globally coherent (left-right) and incoherent (random) motion states. Tuning curves were measured at the first harmonic of the global motion update rate (0.83 Hz) and at the first harmonic of the dot update rate (20 Hz) for spatial displacements 3.1 to 27.9 arcmin (1.6 to 9.3 deg/s). Responses locked to the changes in the global organization of the local direction vectors were an inverted U-shaped function of displacement/speed in the normal-vision observers and in the fellow eyes of the strabismus patients while the tuning function of the amblyopic eyes was shifted to larger displacements/higher speeds. Responses at the dot update rate were reduced in amplitude and altered in timing in both eyes of the patients. The results are consistent with both local and global deficits in motion processing in strabismic amblyopia.
Collapse
Affiliation(s)
- Chuan Hou
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA.
| | | | | |
Collapse
|
40
|
Wang J, Ho CS, Giaschi DE. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children. J Pediatr Ophthalmol Strabismus 2007; 44:363-71. [PMID: 18062495 DOI: 10.3928/01913913-20071101-04] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. METHODS Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. RESULTS Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. CONCLUSION Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.
Collapse
Affiliation(s)
- Jane Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Childrens and Women' Health Centre of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
41
|
Levi DM. Image segregation in strabismic amblyopia. Vision Res 2007; 47:1833-8. [PMID: 17442366 PMCID: PMC1950151 DOI: 10.1016/j.visres.2007.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Humans with naturally occurring amblyopia show deficits thought to involve mechanisms downstream of V1. These include excessive crowding, abnormal global image processing, spatial sampling and symmetry detection and undercounting. Several recent studies suggest that humans with naturally occurring amblyopia show deficits in global image segregation. The current experiments were designed to study figure-ground segregation in amblyopic observers with documented deficits in crowding, symmetry detection, spatial sampling and counting, using similar stimuli. Observers had to discriminate the orientation of a figure (an "E"-like pattern made up of 17 horizontal Gabor patches), embedded in a 7x7 array of Gabor patches. When the 32 "background" patches are vertical, the "E" pops-out, due to segregation by orientation and performance is perfect; however, if the background patches are all, or mostly horizontal, the "E" is camouflaged, and performance is random. Using a method of constant stimuli, we varied the number of "background" patches that were vertical and measured the probability of correct discrimination of the global orientation of the E (up/down/left/right). Surprisingly, amblyopes who showed strong crowding and deficits in symmetry detection and counting, perform normally or very nearly so in this segregation task. I therefore conclude that these deficits are not a consequence of abnormal segregation of figure from background.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
42
|
Levi DM, Yu C, Kuai SG, Rislove E. Global contour processing in amblyopia. Vision Res 2007; 47:512-24. [PMID: 17223155 PMCID: PMC1851910 DOI: 10.1016/j.visres.2006.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/19/2006] [Accepted: 10/23/2006] [Indexed: 11/19/2022]
Abstract
The purpose of the experiments described here was to investigate global image processing using methods that require global processing while eliminating or compensating for low level abnormalities: visibility, shape perception and positional uncertainty. In order to accomplish this we used a closed figure made up of Gabor patches either in noise or on a blank field. The stimuli were circular or elliptical contours, formed by N equally spaced Gabor patches. We performed two separate experiments: In one experiment we fixed N and varied the aspect ratio using a staircase to determine the threshold aspect ratio; in the second experiment we held the aspect ratio constant (at twice the threshold aspect ratio) and varied N in order to measure the threshold number of elements required to judge the shape. Our results confirm and extend previous studies showing that humans with naturally occurring amblyopia show deficits in contour processing. Our results show that the deficits depend strongly on spatial scale (target size and spatial frequency). The deficit in global contour processing is substantially greater in noise (where contour-linking is required) than on a blank field. The magnitude of the deficits is modest when low-level deficits (reduced visibility, increased positional uncertainty, and abnormal shape perception) are minimized, and does not seem to depend much on acuity, crowding or stereoacuity. The residual deficits reported here cannot be simply ascribed to reduced visibility or increased positional uncertainty, and we therefore conclude that these are genuine deficits in global contour segregation and integration.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA.
| | | | | | | |
Collapse
|
43
|
Kiorpes L, Tang C, Movshon JA. Sensitivity to visual motion in amblyopic macaque monkeys. Vis Neurosci 2006; 23:247-56. [PMID: 16638176 DOI: 10.1017/s0952523806232097] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/02/2006] [Indexed: 11/07/2022]
Abstract
Amblyopia is usually considered to be a deficit in spatial vision. But there is evidence that amblyopes may also suffer specific deficits in motion sensitivity as opposed to losses that can be explained by the known deficits in spatial vision. We measured sensitivity to visual motion in random dot displays for strabismic and anisometropic amblyopic monkeys. We used a wide range of spatial and temporal offsets and compared the performance of the fellow and amblyopic eye for each monkey. The amblyopes were severely impaired at detecting motion at fine spatial and long temporal offsets, corresponding to fine spatial scale and slow speeds. This impairment was also evident for the untreated fellow eyes of strabismic but not anisometropic amblyopes. Motion sensitivity functions for amblyopic eyes were shifted toward large spatial scales for amblyopic compared to fellow eyes, to a degree that was correlated with the shift in scale of the spatial contrast sensitivity function. Amblyopic losses in motion sensitivity, however, were not correlated with losses in spatial contrast sensitivity. This, combined with the specific impairment for detecting long temporal offsets, reveals a deficit in spatiotemporal integration in amblyopia which cannot be explained by the lower spatial resolution of amblyopic vision.
Collapse
Affiliation(s)
- Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
44
|
Sakai E, Bi H, Maruko I, Zhang B, Zheng J, Wensveen J, Harwerth RS, Smith EL, Chino YM. Cortical Effects of Brief Daily Periods of Unrestricted Vision During Early Monocular Form Deprivation. J Neurophysiol 2006; 95:2856-65. [PMID: 16452254 DOI: 10.1152/jn.01265.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiencing daily brief periods of unrestricted vision during early monocular form deprivation prevents or reduces the degree of resulting amblyopia. To gain insight into the neural basis for these “protective” effects, we analyzed the monocular and binocular response properties of individual neurons in the primary visual cortex (V1) of macaque monkeys that received intermittent unrestricted vision. Microelectrode-recording experiments revealed significant decreases in the proportion of units that were dominated by the treated eyes, and the magnitude of this ocular dominance imbalance was correlated with the degree of amblyopia. The sensitivity of V1 neurons to interocular spatial phase disparity was significantly reduced in all treated monkeys compared with normal adults. With unrestricted vision, however, there was a small but significant increase in overall disparity sensitivity. Binocular suppression was prevalent in monkeys with constant form deprivation but significantly reduced by the daily periods of unrestricted vision. If neurons exhibited consistent responses to stimulation of the treated eye, monocular response properties obtained by stimulation of the two eyes were similar. These results suggest that the observed protective effects of brief periods of unrestricted vision are closely associated with the ability of V1 neurons to maintain their functional connections from the deprived eye and that interocular suppression in V1 may play an important role in regulating synaptic plasticity of these monkeys.
Collapse
Affiliation(s)
- E Sakai
- College of Optometry, University of Houston, 505 J. Davis Armistead Bldg., Houston, TX 77204-2020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
In the past five years, substantial progress has been made in our knowledge of the neural basis of amblyopia. Recent advances based on animal models are described, along with new psychophysical data showing perceptual deficits in amblyopic animals that are not explained by simple losses in contrast sensitivity. Studies of contour integration and integration of motion and form signals in the presence of noise show that 1) there are fundamental losses in temporal as well as spatial vision, 2) the losses extend to the fellow eye in many cases, 3) amblyopic animals are especially impaired in the presence of background noise, and 4) these losses must depend on a process downstream from area V1 in the extrastriate cortex.
Collapse
Affiliation(s)
- Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
46
|
Mandon S, Kreiter AK. Rapid contour integration in macaque monkeys. Vision Res 2005; 45:291-300. [PMID: 15607346 DOI: 10.1016/j.visres.2004.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Integration of oriented elements into a contour has been investigated extensively in human psychophysics whereas electrophysiological experiments exploring the neuronal mechanism of contour integration were most often done with macaque monkeys. To bridge the gap between human psychophysics and physiology we estimated spatial and temporal constraints of contour integration in two macaque monkeys. Our results show that contour integration in monkeys depends in a similar way on element distance and alignment between contour path and contour elements as in human subjects. The grouping process was surprisingly fast: In a backward masking experiment we show that a stimulus duration of 30-60 ms is sufficient to perceive a contour and to identify its shape.
Collapse
Affiliation(s)
- Sunita Mandon
- Institute for Brain Research, Center for Advanced Imaging, University of Bremen, FB2, Hochschulring 16A, P.O. Box 330440, D-28334 Bremen, Germany.
| | | |
Collapse
|
47
|
Simmers AJ, Ledgeway T, Hess RF. The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Res 2005; 45:449-60. [PMID: 15610749 DOI: 10.1016/j.visres.2004.08.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 05/29/2004] [Indexed: 10/26/2022]
Abstract
Do amblyopes demonstrate general irregularities in processes of global image integration? Or are these anomalies stimulus specific? To address these questions we employed directly analogous global-orientation and global-motion stimuli using a method that allows us to factor out any influence of the low-level visibility loss [Simmers, A. J., Ledgeway, T., Hess, R. F., & McGraw, P. V. (2003). Deficits to global motion processing in human amblyopia. Vision Research 43, pp. 729-738]. The combination of orientation and motion coherence thresholds reported here provides comparable psychophysical measures of global processing by spatial-sensitive and motion-sensitive mechanisms in the amblyopic visual system. The results show deficits in both global-orientation and global-motion processing in amblyopia, which appear independent of any low-level visibility loss, but with the most severe deficit affecting the extraction of global motion. This provides evidence for the existence of a dominant temporal processing deficit in amblyopia.
Collapse
Affiliation(s)
- Anita J Simmers
- Department of Optometry and Visual Science, Applied Vision Research Centre, The Henry Wellcome Laboratories for Vision Sciences, City University, London EC1V OHB 22, UK.
| | | | | |
Collapse
|
48
|
Kiorpes L, Movshon JA. Development of sensitivity to visual motion in macaque monkeys. Vis Neurosci 2005; 21:851-9. [PMID: 15733340 DOI: 10.1017/s0952523804216054] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Indexed: 11/07/2022]
Abstract
The development of spatial vision is relatively well documented in human and nonhuman primates. However, little is known about the development of sensitivity to motion. We measured the development of sensitivity to direction of motion, and the relationship between motion and contrast sensitivity in macaque monkeys as a function of age. Monkeys (Macaca nemestrina, aged between 10 days and 3 years) discriminated direction of motion in random-dot kinematograms. The youngest monkeys showed directionally selective orienting and the ability to integrate motion signals at large dot displacements and fast speeds. With age, coherence sensitivity improved for all spatial and temporal dot displacements tested. The temporal interval between the dots was far less important than the spatial offset in determining the animals' performance at all but the youngest ages. Motion sensitivity improved well beyond the end of the first postnatal year, when mid-spatial-frequency contrast sensitivity reached asymptote, and continued for at least 3 years. Sensitivity to contrast at high spatial frequencies also continued to develop beyond the end of the first year. We conclude that the development of motion sensitivity depends on mechanisms beyond the low-level filters presumed to limit acuity and contrast sensitivity, and most likely reflects the function of extrastriate visual areas.
Collapse
Affiliation(s)
- Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
49
|
Abstract
Studies of visual development show that basic metrics of visual development such as spatial resolution develop over the first 6-9 months in monkeys and over the first 6 or so years in humans. However, more complex visual functions may develop over different, or more protracted, time courses. To address the question of whether global perceptual processing is linked to or otherwise dependent on the development of basic spatial vision, we studied the development of contour integration, a global perceptual task, in comparison to that of grating acuity in macaque monkeys. We find that contour integration develops substantially later than acuity. Contour integration begins to develop at 5-6 months, near the time that acuity development is complete and continues to mature well into the second postnatal year. We discuss this later development in terms poor central efficiency and consider the relevant anatomy and physiology of the developing visual system. We conclude that contour integration is not likely to be limited by the same mechanisms that are permissive to acuity development, and may instead reflect the emergence of function central to V1.
Collapse
Affiliation(s)
- Lynne Kiorpes
- Center for Neural Science, New York University, New York 10003, USA.
| | | |
Collapse
|