1
|
Pang JJ. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int J Mol Sci 2024; 25:4877. [PMID: 38732096 PMCID: PMC11084373 DOI: 10.3390/ijms25094877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
DeRamus ML, Jasien JV, Eppstein JM, Koala P, Kraft TW. Retinal Responses to Visual Stimuli in Interphotoreceptor Retinoid Binding-Protein Knock-Out Mice. Int J Mol Sci 2023; 24:10655. [PMID: 37445836 PMCID: PMC10341985 DOI: 10.3390/ijms241310655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.
Collapse
Affiliation(s)
| | | | | | | | - Timothy W. Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.V.J.); (J.M.E.); (P.K.)
| |
Collapse
|
3
|
Dreffs A, Henderson D, Dmitriev AV, Antonetti DA, Linsenmeier RA. Retinal pH and Acid Regulation During Metabolic Acidosis. Curr Eye Res 2018; 43:902-912. [PMID: 29641914 PMCID: PMC6095710 DOI: 10.1080/02713683.2018.1458882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Changes in retinal pH may contribute to a variety of eye diseases. To study the effect of acidosis alone, we induced systemic metabolic acidosis and hypothesized that the retina would respond with altered expression of genes involved in acid/base regulation. METHODS Systemic metabolic acidosis was induced in Long-Evans rats for up to 2 weeks by adding NH4Cl to the drinking water. After 2 weeks, venous pH was 7.25 ± 0.08 (SD) and [HCO3-] was 21.4 ± 4.6 mM in acidotic animals; pH was 7.41 ± 0.03 and [HCO3-] was 30.5 ± 1.0 mM in controls. Retinal mRNAs were quantified by quantitative reverse transcription polymerase chain reaction. Protein was quantified with Western blots and localized by confocal microscopy. Retinal [H+]o was measured in vivo with pH microelectrodes in animals subjected to metabolic acidosis and in controls. RESULTS NH4Cl in drinking water or given intravenous was effective in acidifying the retina. Cariporide, a blocker of Na+/H+ exchange, further acidified the retina. Metabolic acidosis for 2 weeks led to increases of 40-100% in mRNA for carbonic anhydrase isoforms II (CA-II) and XIV (CA-XIV) and acid-sensing ion channels 1 and 4 (ASIC1 and ASIC4) (all p < 0.005). Expression of anion exchange protein 3 (AEP-3) and Na+/H+ exchanger (NHE)-1 also increased by ≥50% (both p < 0.0001). Changes were similar after 1 week of acidosis. Protein for AEP-3 doubled. NHE-1 co-localized with vascular markers, particularly in the outer plexiform layer. CA-II was located in the neural parenchyma of the ganglion cell layer and diffusely in the rest of the inner retina. CONCLUSIONS The retina responds to systemic acidosis with increased expression of proton and bicarbonate exchangers, carbonic anhydrase, and ASICs. While responses to acidosis are usually associated with renal regulation, these studies suggest that the retina responds to changes in local pH presumably to control its acid/base environment in response to systemic acidosis.
Collapse
Affiliation(s)
- Alyssa Dreffs
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Desmond Henderson
- Department of Biomedical Engineering, Northwestern University, Evanston and Chicago, IL
| | - Andrey V. Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston and Chicago, IL
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston and Chicago, IL
- Department of Neurobiology, Northwestern University, Evanston and Chicago, IL
- Department of Ophthalmology, Northwestern University, Evanston and Chicago, IL
| |
Collapse
|
4
|
Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A. Comparative electrophysiology of retinal Müller glial cells-A survey on vertebrate species. Glia 2016; 65:533-568. [PMID: 27767232 DOI: 10.1002/glia.23082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
Müller cells are the dominant macroglial cells in the retina of all vertebrates. They fulfill a variety of functions important for retinal physiology, among them spatial buffering of K+ ions and uptake of glutamate and other neurotransmitters. To this end, Müller cells express inwardly rectifying K+ channels and electrogenic glutamate transporters. Moreover, a lot of voltage- and ligand-gated ion channels, aquaporin water channels, and electrogenic transporters are expressed in Müller cells, some of them in a species-specific manner. For example, voltage-dependent Na+ channels are found exclusively in some but not all mammalian species. Whereas a lot of data exist from amphibians and mammals, the results from other vertebrates are sparse. It is the aim of this review to present a survey on Müller cell electrophysiology covering all classes of vertebrates. The focus is on functional studies, mainly performed using the whole-cell patch-clamp technique. However, data about the expression of membrane channels and transporters from immunohistochemistry are also included. Possible functional roles of membrane channels and transporters are discussed. Obviously, electrophysiological properties involved in the main functions of Müller cells developed early in vertebrate evolution. GLIA 2017;65:533-568.
Collapse
Affiliation(s)
- Thomas Pannicke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
| | - T Ivo Chao
- Institute of Anatomy and Cell Biology, Medical School Göttingen, Germany
| | - Miriam Reisenhofer
- Department of Chemistry, University of Zürich, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mike Francke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
- Sächsischer Inkubator für klinische Translation (SIKT), Universität Leipzig, Germany
| | - Andreas Reichenbach
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
| |
Collapse
|
5
|
Deliyanti D, Armani R, Casely D, Figgett WA, Agrotis A, Wilkinson-Berka JL. Retinal vasculopathy is reduced by dietary salt restriction: involvement of Glia, ENaCα, and the renin-angiotensin-aldosterone system. Arterioscler Thromb Vasc Biol 2014; 34:2033-41. [PMID: 25012132 DOI: 10.1161/atvbaha.114.303792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Neovascularization and vaso-obliteration are vision-threatening events that develop by interactions between retinal vascular and glial cells. A high-salt diet is causal in cardiovascular and renal disease, which is linked to modulation of the renin-angiotensin-aldosterone system. However, it is not known whether dietary salt influences retinal vasculopathy and if the renin-angiotensin-aldosterone system is involved. We examined whether a low-salt (LS) diet influenced vascular and glial cell injury and the renin-angiotensin-aldosterone system in ischemic retinopathy. APPROACH AND RESULTS Pregnant Sprague Dawley rats were fed LS (0.03% NaCl) or normal salt (0.3% NaCl) diets, and ischemic retinopathy was induced in the offspring. An LS diet reduced retinal neovascularization and vaso-obliteration, the mRNA and protein levels of the angiogenic factors, vascular endothelial growth factor, and erythropoietin. Microglia, which influence vascular remodeling in ischemic retinopathy, were reduced by LS as was tumor necrosis factor-α. Macroglial Müller cells maintain the integrity of the blood-retinal barrier, and in ischemic retinopathy, LS reduced their gliosis and also vascular leakage. In retina, LS reduced mineralocorticoid receptor, angiotensin type 1 receptor, and renin mRNA levels, whereas, as expected, plasma levels of aldosterone and renin were increased. The aldosterone/mineralocorticoid receptor-sensitive epithelial sodium channel alpha (ENaCα), which is expressed in Müller cells, was increased in ischemic retinopathy and reduced by LS. In cultured Müller cells, high salt increased ENaCα, which was prevented by mineralocorticoid receptor and angiotensin type 1 receptor blockade. Conversely, LS reduced ENaCα, angiotensin type 1 receptor, and mineralocorticoid receptor expression. CONCLUSIONS An LS diet reduced retinal vasculopathy, by modulating glial cell function and the retinal renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Devy Deliyanti
- From the Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia (D.D., R.A., W.A.F., A.A., J.L.W.-B.); and Prosearch International, Malvern, Victoria, Australia (D.C.)
| | - Roksana Armani
- From the Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia (D.D., R.A., W.A.F., A.A., J.L.W.-B.); and Prosearch International, Malvern, Victoria, Australia (D.C.)
| | - David Casely
- From the Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia (D.D., R.A., W.A.F., A.A., J.L.W.-B.); and Prosearch International, Malvern, Victoria, Australia (D.C.)
| | - William A Figgett
- From the Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia (D.D., R.A., W.A.F., A.A., J.L.W.-B.); and Prosearch International, Malvern, Victoria, Australia (D.C.)
| | - Alex Agrotis
- From the Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia (D.D., R.A., W.A.F., A.A., J.L.W.-B.); and Prosearch International, Malvern, Victoria, Australia (D.C.)
| | - Jennifer L Wilkinson-Berka
- From the Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia (D.D., R.A., W.A.F., A.A., J.L.W.-B.); and Prosearch International, Malvern, Victoria, Australia (D.C.).
| |
Collapse
|
6
|
Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Res 2014; 101:108-17. [PMID: 24959652 DOI: 10.1016/j.visres.2014.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 11/21/2022]
Abstract
The Function of the retina and effects of drugs on it can be assessed by recording transretinal voltage across isolated retina that is perfused with physiological medium. However, building ex vivo ERG apparatus requires substantial amount of time, resources and expertise. Here we adapted a commercial in vivo ERG system for transretinal ERG recordings from rod and cone photoreceptors and compared rod and cone signaling between ex vivo and in vivo environments. We found that the rod and cone a- and b-waves recorded with the transretinal ERG adapter and a standard in vivo ERG system are comparable to those obtained from live anesthetized animals. However, ex vivo responses are somewhat slower and their oscillatory potentials are suppressed as compared to those recorded in vivo. We found that rod amplification constant (A) was comparable between ex vivo and in vivo conditions, ∼10-30s(-2) depending on the choice of response normalization. We estimate that the A in cones is between 3 and 6s(-2) in ex vivo conditions and by assuming equal A in vivo we arrive to light funnelling factor of 3 for cones in the mouse retina. The ex vivo ERG adapter provides a simple and affordable alternative to designing a custom-built transretinal recordings setup for the study of photoreceptors. Our results provide a roadmap to the rigorous quantitative analysis of rod and cone responses made possible with such a system.
Collapse
|
7
|
Li X, Fei J, Lei Z, Liu K, Wu J, Meng T, Yu J, Li J. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett 2014; 228:200-6. [PMID: 24821433 DOI: 10.1016/j.toxlet.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/29/2022]
Abstract
Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Kejing Liu
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingxin Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China.
| |
Collapse
|
8
|
Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Jpn J Ophthalmol 2012; 57:120-5. [PMID: 23152156 DOI: 10.1007/s10384-012-0213-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Retinal ischemia in eyes with diabetic retinopathy and retinal vein occlusion leads to local tissue acidosis. Acid-sensing ion channels (ASICs) are expressed in photoreceptors and other neurons in the retina, and may play a role in acid-induced cell injury. The purpose of this study was to investigate the neuroprotective effects of amiloride, an ASIC blocker, on induced retinal ischemia in rats. METHODS Transient retinal ischemia was induced in male Long-Evans rats by the temporary ligation of the optic nerve. Just before the induction of ischemia, the experimental eyes underwent intravitreal injection of amiloride. On day 7, the retinal damage in eyes that underwent amiloride treatment (and in those that did not undergo the treatment) was evaluated by histology and electroretinogram (ERG). RESULTS Transient retinal ischemia caused retinal degeneration with thinning of the inner layer of the retina. The blockage of ASICs with amiloride significantly prevented retinal degeneration. ERG demonstrated that the reduction in a- and b-wave amplitudes induced by the transient retinal ischemia was significantly prevented by the application of amiloride. CONCLUSIONS The present study suggests that ASICs might, at least in part, play a pathophysiological role in ischemia-induced neurodegeneration. Blockage of ASICs may have a potential neuroprotective effect in ocular ischemic diseases.
Collapse
|
9
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
10
|
Wang Y, D'Urso G, Bianchi L. Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. J Neurophysiol 2011; 107:148-58. [PMID: 21994266 DOI: 10.1152/jn.00299.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.
Collapse
Affiliation(s)
- Ying Wang
- Rm. 5133, Rosenstiel Bldg., Dept. of Physiology and Biophysics, Miller School of Medicine, Univ. of Miami, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | |
Collapse
|
11
|
Ohbuchi T, Sato K, Suzuki H, Okada Y, Dayanithi G, Murphy D, Ueta Y. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus. J Physiol 2010; 588:2147-62. [PMID: 20442265 DOI: 10.1113/jphysiol.2010.187625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Body fluid balance requires the release of arginine vasopressin (AVP) from the neurohypophysis. The hypothalamic supraoptic nucleus (SON) is a major site of AVP synthesis, and AVP release is controlled somatodendritically or at the level of nerve terminals by electrical activities of magnocellular neurosecretory cells (MNCs). Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive cationic channels that are activated by extracellular acidification. Although ASICs are widely expressed in the central nervous system, functional ASICs have not been assessed in AVP neurons. ASICs are modulated by lactate (La(-)), which reduces the extracellular calcium ion concentration. We hypothesize that ASICs modify neuronal function through La(-) that is generated during local hypoxia resulting from osmotic stimulation in the SON. In the present study, we used the whole-cell patch-clamp technique to show that acid-induced ASIC current is enhanced by La(-) in isolated rat SON MNCs that express an AVP-enhanced green fluorescent protein (eGFP) transgene. Immunohistochemistry and multi-cell reverse transcriptase-polymerase chain reaction experiments revealed that these neurons express the ASIC1a and ASIC2a subunits. In addition, increased La(-) production was specifically observed in the SON after osmotic stress. These results suggest that interaction between ASICs and La(-) in the SON plays an important role in the regulatory mechanism of body fluid homeostasis.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Amin MS, Reza E, Wang H, Leenen FH. Sodium Transport in the Choroid Plexus and Salt-Sensitive Hypertension. Hypertension 2009; 54:860-7. [DOI: 10.1161/hypertensionaha.108.125807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To elucidate the role of epithelial sodium channels (ENaCs) and Na
+
-K
+
-ATPase in Na
+
transport by the choroid plexus, we studied ENaC expression and Na
+
transport in the choroid plexus. Lateral ventricle choroid plexuses were obtained from young male Wistar, Dahl salt–resistant (SS.BN13), and Dahl salt–sensitive (SS/MCW) rats on a regular (0.3%) or high- (8.0%) salt diet. The effects of ENaC blocker benzamil and Na
+
-K
+
-ATPase blocker ouabain on sodium transport were evaluated by measuring the amounts of retained
22
Na
+
and by evaluating intracellular [Na
+
] with Sodium Green fluorescence. In Wistar rats, ENaC distribution was as follows: microvilli, 10% to 30%; cytoplasm, 60% to 80%; and basolateral membrane, 5% to 10%. Benzamil (10
−8
m
) decreased
22
Na
+
retention by 20% and ouabain (10
−3
m
) increased retention by 40%, whereas ouabain and benzamil combined caused no change. Similar changes were noted in intracellular [Na
+
]. In Dahl rats on a regular salt diet, intracellular [Na
+
] was similar, but the amount of retained
22
Na
+
was less in sensitive versus resistant rats. High salt did not affect ENaC mRNA or protein, nor the benzamil induced decreases in retained
22
Na
+
or intracellular [Na
+
] in either strain. However, high salt increased intracellular [Na
+
] and attenuated the increase in uptake of
22
Na
+
by ouabain in resistant but not sensitive rats, suggesting a decrease in Na
+
-K
+
-ATPase activity only in resistant rats. These findings suggest that both ENaC and Na
+
-K
+
-ATPase regulate Na
+
transport in the choroid plexus. Aberrant regulation of Na
+
transport and of Na
+
-K
+
-ATPase activity, but not of ENaCs, might contribute to the increase in cerebrospinal fluid [Na
+
] in Dahl salt-sensitive rats on a high-salt diet.
Collapse
Affiliation(s)
- Md Shahrier Amin
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| | - Erona Reza
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| | - Hongwei Wang
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| | - Frans H.H. Leenen
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Wang Y, Apicella A, Lee SK, Ezcurra M, Slone RD, Goldmit M, Schafer WR, Shaham S, Driscoll M, Bianchi L. A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. EMBO J 2008; 27:2388-99. [PMID: 18701922 PMCID: PMC2543049 DOI: 10.1038/emboj.2008.161] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 07/24/2008] [Indexed: 12/29/2022] Open
Abstract
Mammalian neuronal DEG/ENaC channels known as ASICs (acid-sensing ion channels) mediate sensory perception and memory formation. ASICS are closed at rest and are gated by protons. Members of the DEG/ENaC family expressed in epithelial tissues are called ENaCs and mediate Na(+) transport across epithelia. ENaCs exhibit constitutive activity and strict Na(+) selectivity. We report here the analysis of the first DEG/ENaC in Caenorhabditis elegans with functional features of ENaCs that is involved in sensory perception. ACD-1 (acid-sensitive channel, degenerin-like) is constitutively open and impermeable to Ca(2+), yet it is required with neuronal DEG/ENaC channel DEG-1 for acid avoidance and chemotaxis to the amino acid lysine. Surprisingly, we document that ACD-1 is required in glia rather than neurons to orchestrate sensory perception. We also report that ACD-1 is inhibited by extracellular and intracellular acidification and, based on the analysis of an acid-hypersensitive ACD-1 mutant, we propose a mechanism of action of ACD-1 in sensory responses based on its sensitivity to protons. Our findings suggest that channels with ACD-1 features may be expressed in mammalian glia and have important functions in controlling neuronal function.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alfonso Apicella
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sun-Kyung Lee
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Marina Ezcurra
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Robert D Slone
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Maya Goldmit
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - William R Schafer
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Laura Bianchi
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|