1
|
Yang L, Yi L, Yang J, Zhang R, Xie Z, Wang H. Temporal landscape and translational regulation of A-to-I RNA editing in mouse retina development. BMC Biol 2024; 22:106. [PMID: 38715001 PMCID: PMC11077751 DOI: 10.1186/s12915-024-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.
Collapse
Affiliation(s)
- Ludong Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Liang Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Li C, Shi X, Yang J, Li K, Dai L, Zhang Y, Zhou M, Su J. Genome-wide characterization of RNA editing highlights roles of high editing events of glutamatergic synapse during mouse retinal development. Comput Struct Biotechnol J 2022; 20:2648-2656. [PMID: 35685368 PMCID: PMC9162912 DOI: 10.1016/j.csbj.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing leads to functional change of neurotransmitter receptor which is essential for neurotransmission and normal neuronal development. As a highly accessible part of central nervous system, retina has been extensively studied, however, it remains largely unknown how RNA editing regulates its development. Here, a genome-wide screening of high-confidence RNA editing events were performed to decipher the dynamic transcriptome regulation by RNA editing during mouse retinal development. 2000 high-confidence editing sites across eight developmental stages of retina were called. Three unique patterns (RNA-editinghigh pattern, RNA-editingmedium pattern and RNA-editinglow pattern) were identified by clustering these editing sites based on their editing level during retinal development. Editing events from RNA-editinghigh pattern were significantly associated with glutamate receptors and regulated synaptic transmission. Interestingly, most non-synonymous high-editing sites were mapped to ion channel genes of glutamatergic synapse which were associated with neurotransmission by controlling ion channel permeability and affecting exocytosis. Meanwhile, these non-synonymous editing sites were evolutionarily conserved and exhibited a consistently increasing editing levels between mouse and human retinal development. Single-cell RNA-seq data analysis revealed that RNA editing events prefer to occur in two main cell types including bipolar and amacrine cells. Genes with non-synonymous high-editing sites were enriched in both bipolar cells and retina ganglion cells, which may mediate retina ganglion cell differentiation by altering channel ion permeability. Together, our results provide novel insights into mechanism of post-transcriptional regulation during retinal development and help to develop novel RNA editing-guided therapeutic strategies for retinal disorders.
Collapse
Affiliation(s)
- Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Xinrui Shi
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiaying Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ke Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yan Zhang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Corresponding authorsat: School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (J. Su).
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Corresponding authorsat: School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (J. Su).
| |
Collapse
|
3
|
Pereira-Figueiredo D, Brito R, Araújo DSM, Nascimento AA, Lyra ESB, Cheibub AMSS, Pereira Netto AD, Ventura ALM, Paes-de-Carvalho R, Calaza KC. Caffeine exposure ameliorates acute ischemic cell death in avian developing retina. Purinergic Signal 2020; 16:41-59. [PMID: 32078115 PMCID: PMC7166236 DOI: 10.1007/s11302-020-09687-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
In infants, the main cause of blindness is retinopathy of prematurity that stems in a hypoxic-ischemic condition. Caffeine is a psychoactive compound that at low to moderate concentrations, selectively inhibits adenosine A1 and A2A receptors. Caffeine exerts beneficial effects in central nervous system of adult animal models and humans, whereas it seems to have malefic effect on the developing tissue. We observed that 48-h exposure (during synaptogenesis) to a moderate dose of caffeine (30 mg/kg of egg) activated pro-survival signaling pathways, including ERK, CREB, and Akt phosphorylation, alongside BDNF production, and reduced retinal cell death promoted by oxygen glucose deprivation in the chick retina. Blockade of TrkB receptors and inhibition of CREB prevented caffeine protection effect. Similar signaling pathways were described in previously reported data concerning chemical preconditioning mechanism triggered by NMDA receptors activation, with low concentrations of agonist. In agreement to these data, caffeine increased NMDA receptor activity. Caffeine decreased the levels of the chloride co-transporter KCC2 and delayed the developmental shift on GABAA receptor response from depolarizing to hyperpolarizing. These results suggest that the caffeine-induced delaying in depolarizing effect of GABA could be facilitating NMDA receptor activity. DPCPX, an A1 adenosine receptor antagonist, but not A2A receptor inhibitor, mimicked the effect of caffeine, suggesting that the effect of caffeine occurs through A1 receptor blockade. In summary, an in vivo caffeine exposure could increase the resistance of the retina to ischemia-induced cell death, by triggering survival pathways involving CREB phosphorylation and BDNF production/TrkB activation.
Collapse
Affiliation(s)
- D. Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
| | - R. Brito
- Cellular Signaling and Metabolic Modulation Laboratory, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ Brazil
| | - D. S. M. Araújo
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - A. A. Nascimento
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
| | - E. S. B. Lyra
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. M. S. S. Cheibub
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. D. Pereira Netto
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. L. M. Ventura
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| | - R. Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| | - K. C. Calaza
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| |
Collapse
|
4
|
Fry LE, Peddle CF, Barnard AR, McClements ME, MacLaren RE. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int J Mol Sci 2020; 21:ijms21030777. [PMID: 31991730 PMCID: PMC7037314 DOI: 10.3390/ijms21030777] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
RNA editing aims to treat genetic disease through altering gene expression at the transcript level. Pairing site-directed RNA-targeting mechanisms with engineered deaminase enzymes allows for the programmable correction of G>A and T>C mutations in RNA. This offers a promising therapeutic approach for a range of genetic diseases. For inherited retinal degenerations caused by point mutations in large genes not amenable to single-adeno-associated viral (AAV) gene therapy such as USH2A and ABCA4, correcting RNA offers an alternative to gene replacement. Genome editing of RNA rather than DNA may offer an improved safety profile, due to the transient and potentially reversible nature of edits made to RNA. This review considers the current site-directing RNA editing systems, and the potential to translate these to the clinic for the treatment of inherited retinal degeneration.
Collapse
Affiliation(s)
- Lewis E. Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| | - Caroline F. Peddle
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Berggaard N, Witter MP, van der Want JJL. GABA A Receptor Subunit α3 in Network Dynamics in the Medial Entorhinal Cortex. Front Syst Neurosci 2019; 13:10. [PMID: 30930755 PMCID: PMC6428777 DOI: 10.3389/fnsys.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Layer II of the medial entorhinal cortex (MEC LII) contains the largest number of spatially modulated grid cells and is one of the first regions in the brain to express Alzheimer's disease (AD)-related pathology. The most common principal cell type in MEC LII, reelin-expressing stellate cells, are grid cell candidates. Recently we found evidence that γ-aminobutyric acid (GABA)A receptor subunits show a specific distribution in MEC LII, in which GABAA α3 is selectively associated with reelin-positive neurons, with limited association with the other principal cell type, calbindin (CB)-positive pyramidal neurons. Furthermore, the expression of α3 subunit decreases in mice between P15 and P25, which coincides with the emergence of stable grid cell activity. It has been shown that the α3 subunit undergoes specific developmental changes and that it may exert pro-inflammatory actions if improperly regulated. In this review article, we evaluate the changing kinetics of α3-GABAA receptors (GABAARs). during development in relation to α3-subunit expression pattern in MEC LII and conclude that α3 could be closely related to the stabilization of grid cell activity and theta oscillations. We further conclude that dysregulated α3 may be a driving factor in early AD pathology.
Collapse
Affiliation(s)
- Nina Berggaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes J L van der Want
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Riddell N, Faou P, Crewther SG. Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance. BMC DEVELOPMENTAL BIOLOGY 2018; 18:18. [PMID: 30157773 PMCID: PMC6116556 DOI: 10.1186/s12861-018-0177-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myopia (short-sightedness) affects approximately 1.4 billion people worldwide, and prevalence is increasing. Animal models induced by defocusing lenses show striking similarity with human myopia in terms of morphology and the implicated genetic pathways. Less is known about proteome changes in animals. Thus, the present study aimed to improve understanding of protein pathway responses to lens defocus, with an emphasis on relating expression changes to no lens control development and identifying bidirectional and/or distinct pathways across myopia and hyperopia (long-sightedness) models. RESULTS Quantitative label-free proteomics and gene set enrichment analysis (GSEA) were used to examine protein pathway expression in the retina/RPE of chicks following 6 h and 48 h of myopia induction with - 10 dioptre (D) lenses, hyperopia induction with +10D lenses, or normal no lens rearing. Seventy-one pathways linked to cell development and neuronal maturation were differentially enriched between 6 and 48 h in no lens chicks. The majority of these normal developmental changes were disrupted by lens-wear (47 of 71 pathways), however, only 11 pathways displayed distinct expression profiles across the lens conditions. Most notably, negative lens-wear induced up-regulation of proteins involved in ATP-driven ion transport, calcium homeostasis, and GABA signalling between 6 and 48 h, while the same proteins were down-regulated over time in normally developing chicks. Glutamate and bicarbonate/chloride transporters were also down-regulated over time in normally developing chicks, and positive lens-wear inhibited this down-regulation. CONCLUSIONS The chick retina/RPE proteome undergoes extensive pathway expression shifts during normal development. Most of these pathways are further disrupted by lens-wear. The identified expression patterns suggest close interactions between neurotransmission (as exemplified by increased GABA receptor and synaptic protein expression), cellular ion homeostasis, and associated energy resources during myopia induction. We have also provided novel evidence for changes to SLC-mediated transmembrane transport during hyperopia induction, with potential implications for signalling at the photoreceptor-bipolar synapse. These findings reflect a key role for perturbed neurotransmission and ionic homeostasis in optically-induced refractive errors, and are predicted by our Retinal Ion Driven Efflux (RIDE) model.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia.
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia
| |
Collapse
|
8
|
Shallev L, Kopel E, Feiglin A, Leichner GS, Avni D, Sidi Y, Eisenberg E, Barzilai A, Levanon EY, Greenberger S. Decreased A-to-I RNA editing as a source of keratinocytes' dsRNA in psoriasis. RNA (NEW YORK, N.Y.) 2018; 24:828-840. [PMID: 29592874 PMCID: PMC5959251 DOI: 10.1261/rna.064659.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/26/2018] [Indexed: 05/30/2023]
Abstract
Recognition of dsRNA molecules activates the MDA5-MAVS pathway and plays a critical role in stimulating type-I interferon responses in psoriasis. However, the source of the dsRNA accumulation in psoriatic keratinocytes remains largely unknown. A-to-I RNA editing is a common co- or post-transcriptional modification that diversifies adenosine in dsRNA, and leads to unwinding of dsRNA structures. Thus, impaired RNA editing activity can result in an increased load of endogenous dsRNAs. Here we provide a transcriptome-wide analysis of RNA editing across dozens of psoriasis patients, and we demonstrate a global editing reduction in psoriatic lesions. In addition to the global alteration, we also detect editing changes in functional recoding sites located in the IGFBP7, COPA, and FLNA genes. Accretion of dsRNA activates autoimmune responses, and therefore the results presented here, linking for the first time an autoimmune disease to reduction in global editing level, are relevant to a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Lea Shallev
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ariel Feiglin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gil S Leichner
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Avni
- Department of Medicine C, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Yechezkel Sidi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine C, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Barzilai
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shoshana Greenberger
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer 52621, Israel
| |
Collapse
|
9
|
Abstract
Adenosine-to-inosine RNA editing is a conserved process, which is performed by ADAR enzymes. By changing nucleotides in coding regions of genes and altering codons, ADARs expand the cell's protein repertoire. This function of the ADAR enzymes is essential for human brain development. However, most of the known editing sites are in non-coding repetitive regions in the transcriptome and the purpose of editing in these regions is unclear. Recent studies, which have shown that editing levels of transcripts vary between tissues and developmental stages in many organisms, suggest that the targeted RNA and ADAR editing are both regulated. We discuss the implications of these findings, and the possible role of RNA editing in innate immunity.
Collapse
Affiliation(s)
- Nabeel S Ganem
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| | - Ayelet T Lamm
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| |
Collapse
|
10
|
Bajad P, Jantsch MF, Keegan L, O'Connell M. A to I editing in disease is not fake news. RNA Biol 2017; 14:1223-1231. [PMID: 28346055 PMCID: PMC5699539 DOI: 10.1080/15476286.2017.1306173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.
Collapse
Affiliation(s)
- Prajakta Bajad
- Medical University of Vienna, Center of Anatomy and Cell Biology, Department of Cell- and Developmental Biology, Schwarzspanierstrasse, Vienna, Austria
| | - Michael F. Jantsch
- Medical University of Vienna, Center of Anatomy and Cell Biology, Department of Cell- and Developmental Biology, Schwarzspanierstrasse, Vienna, Austria
| | - Liam Keegan
- CEITEC at Masaryk University, Kamenice, Czech Republic
| | | |
Collapse
|
11
|
Liscovitch N, Bazak L, Levanon EY, Chechik G. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain. RNA Biol 2015; 11:1447-56. [PMID: 25692240 DOI: 10.4161/15476286.2014.992286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.
Collapse
Affiliation(s)
- Noa Liscovitch
- a Gonda Multidisiplinary Brain Research Center ; Bar-Ilan University ; Ramat Gan , Israel
| | | | | | | |
Collapse
|
12
|
Wang M, Li Y, Lin Y. GABAA receptor α2 subtype activation suppresses retinal spreading depression. Neuroscience 2015; 298:137-44. [DOI: 10.1016/j.neuroscience.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 11/27/2022]
|
13
|
Frésard L, Leroux S, Roux PF, Klopp C, Fabre S, Esquerré D, Dehais P, Djari A, Gourichon D, Lagarrigue S, Pitel F. Genome-Wide Characterization of RNA Editing in Chicken Embryos Reveals Common Features among Vertebrates. PLoS One 2015; 10:e0126776. [PMID: 26024316 PMCID: PMC4449034 DOI: 10.1371/journal.pone.0126776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
RNA editing results in a post-transcriptional nucleotide change in the RNA sequence that creates an alternative nucleotide not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is described in more details in mammals, notably since the availability of next generation sequencing technologies allowing whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken is still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, and to extend the knowledge of its conservation among vertebrates. We performed sequencing of RNA and DNA from 8 embryos. Being aware of common pitfalls inherent to sequence analyses that lead to false positive discovery, we stringently filtered our datasets and found fewer than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual increase of editing level with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, attest to its tissue and stage specificity and provide support of the absence of non A-to-I events from the chicken transcriptome.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Sophie Leroux
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Pierre-François Roux
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Christophe Klopp
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Stéphane Fabre
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Diane Esquerré
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, GeT-PlaGe Genotoul, Castanet-Tolosan, France
| | - Patrice Dehais
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Anis Djari
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - David Gourichon
- INRA, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Sandrine Lagarrigue
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Frédérique Pitel
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
14
|
Kreutz M, Hochstein N, Kaiser J, Narz F, Peist R. Pyrosequencing: powerful and quantitative sequencing technology. ACTA ACUST UNITED AC 2013; 104:7.15.1-7.15.23. [PMID: 24510299 DOI: 10.1002/0471142727.mb0715s104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pyrosequencing is a sequencing-by-synthesis method for DNA analysis that has emerged as a platform not only for de novo sequencing applications, but also for quantitative analysis of genomic methylation, single-nucleotide polymorphisms, and allele quantification. In this unit, we describe a complete workflow from sample to result that is suitable for each of these applications. As cytosine conversion is a key element of successful methylation analysis using pyrosequencing, a support protocol for bisulfite treatment is also included.
Collapse
|
15
|
Shirazi Fard S, Jarrin M, Boije H, Fillon V, All-Eriksson C, Hallböök F. Heterogenic final cell cycle by chicken retinal Lim1 horizontal progenitor cells leads to heteroploid cells with a remaining replicated genome. PLoS One 2013; 8:e59133. [PMID: 23527113 PMCID: PMC3602602 DOI: 10.1371/journal.pone.0059133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 02/13/2013] [Indexed: 12/24/2022] Open
Abstract
Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs) exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal) mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.
Collapse
Affiliation(s)
| | - Miguel Jarrin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Valerie Fillon
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
16
|
Garncarz W, Tariq A, Handl C, Pusch O, Jantsch MF. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol 2013; 10:192-204. [PMID: 23353575 PMCID: PMC3594278 DOI: 10.4161/rna.23208] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenosine to inosine deamination of RNA is widespread in metazoa. Inosines are recognized as guanosines and, therefore, this RNA-editing can influence the coding potential, localization and stability of RNAs. Therefore, RNA editing contributes to the diversification of the transcriptome in a flexible manner. The editing reaction is performed by adenosine deaminases that act on RNA (ADARs), which are essential for normal life and development in many organisms. Changes in editing levels are observed during development but also in neurological pathologies like schizophrenia, depression or tumors. Frequently, changes in editing levels are not reflected by changes in ADAR levels suggesting a regulation of enzyme activity. Until now, only a few factors are known that influence the activity of ADARs. Here we present a two-stage in vivo editing screen aimed to isolate enhancers of editing. A primary, high-throughput yeast-screen is combined with a more accurate secondary screen in mammalian cells that uses a fluorescent read-out to detect minor differences in RNA-editing. The screen was successfully employed to identify DSS1/SHFM1, the RNA binding protein hnRNP A2/B1 and a 3′ UTR as enhancers of editing. By varying intracellular DSS1/SHFM1 levels, we can modulate A to I editing by up to 30%. Proteomic analysis indicates an interaction of DSS1/SHFM1 and hnRNP A2/B1 suggesting that both factors may act by altering the cellular RNP landscape. An extension of this screen to cDNAs from different tissues or developmental stages may prove useful for the identification of additional enhancers of RNA-editing.
Collapse
Affiliation(s)
- Wojciech Garncarz
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
17
|
Ring H, Mendu SK, Shirazi-Fard S, Birnir B, Hallböök F. GABA maintains the proliferation of progenitors in the developing chick ciliary marginal zone and non-pigmented ciliary epithelium. PLoS One 2012; 7:e36874. [PMID: 22590629 PMCID: PMC3348890 DOI: 10.1371/journal.pone.0036874] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABA(A) receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE) cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABA(A) receptor system. To quantify the effects on proliferation by GABA(A) receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABA(A) receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABA(A) receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl-transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABA(A) receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABA(A) receptors. This supported the depolarising role for the GABA(A) receptors. Inhibition of L-type voltage-gated Ca(2+) channels (VGCCs) reduced the proliferation in the same way as inhibition of the GABA(A) receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27(KIP1), along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27(KIP1) after inhibition of either the GABA(A) receptors or the L-type VGCCs suggests a link between the GABA(A) receptors, membrane potential, and intracellular Ca(2+) in regulating the cell cycle.
Collapse
Affiliation(s)
- Henrik Ring
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Balaban E, Desco M, Vaquero JJ. Waking-like Brain Function in Embryos. Curr Biol 2012; 22:852-61. [DOI: 10.1016/j.cub.2012.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|