1
|
Lapajne L, Lakk M, Rudzitis CN, Vemaraju S, Lang RA, Hawlina M, Križaj D. Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells. Ocul Surf 2024; 36:1-9. [PMID: 39681161 DOI: 10.1016/j.jtos.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling. METHODS Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5-/- and Trpv4-/- cells. RESULTS UVB stimuli and TRPV4 activity induced epithelial release of IL-1β, IL-17, matrix metalloproteinases MMP-3/MMP-9, and thymic stromal lymphopoietin (TSLP). UVB stimuli evoked [Ca2+]i elevations in dissociated mouse CECs that were partially reduced by inhibition of TRPV4 channels, Trpv4 knockdown and replacement of control saline with Ca2+-free saline. UVB-induced Ca2+ responses were significantly suppressed by OPN5 deletion and by inhibition of phospholipase C signaling, and responses were abrogated in cells with depleted intracellular Ca2+ stores. CONCLUSIONS Mammalian CECs are intrinsically and constitutively photosensitive. UVB photons are transduced by neuropsin, phospholipase C and CICR signaling, with mouse but not human CE transduction exhibiting a UVB-sensitive TRPV4 component. TRPV4 activity and UVB transduction are linked to cell-autonomous release of proinflammatory, matrix remodeling and nociceptive interleukins and MMPS. TRPV4-induced cytokine release may contribute to the pain induced by mechanical injury of the cornea and CEC photosensing may alert and protect the visual system from ultraviolet B (UVB) radiation -induced snow blindness, injury, vision loss and cancer.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Shruti Vemaraju
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Richard A Lang
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Marko Hawlina
- Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Platzl C, Kaser-Eichberger A, Trost A, Strohmaier C, Stone R, Nickla D, Schroedl F. Melanopsin in the human and chicken choroid. Exp Eye Res 2024; 247:110053. [PMID: 39151779 PMCID: PMC11542372 DOI: 10.1016/j.exer.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The choroid embedded in between retina and sclera is essential for retinal photoreceptor nourishment, but is also a source of growth factors in the process of emmetropization that converts retinal visual signals into scleral growth signals. Still, the exact control mechanisms behind those functions are enigmatic while circadian rhythms are involved. These rhythms are attributed to daylight influences that are melanopsin (OPN4) driven. Recently, OPN4-mRNA has been detected in the choroid, and while its origin is unknown we here seek to identify the underlying structures using morphological methods. Human and chicken choroids were prepared for single- and double-immunohistochemistry of OPN4, vasoactive intestinal peptide (VIP), substance P (SP), CD68, and α-smooth muscle actin (ASMA). For documentation, light-, fluorescence-, and confocal laser scanning microscopy was applied. Retinal controls proved the reliability of the OPN4 antibody in both species. In humans, OPN4 immunoreactivity (OPN4-IR) was detected in nerve fibers of the choroid and adjacent ciliary nerve fibers. OPN4+ choroidal nerve fibers lacked VIP, but were co-localized with SP. OPN4-immunoreactivity was further detected in VIP+/SP + intrinsic choroidal neurons, in a hitherto unclassified CD68-negative choroidal cell population thus not representing macrophages, as well as in a subset of choroidal melanocytes. In chicken, choroidal nerve fibers were OPN4+, and further OPN4-IR was detected in clustered suprachoroidal structures that were not co-localized with ASMA and therefore do not represent non-vascular smooth-muscle cells. In the choroidal stroma, numerous cells displayed OPN4-IR, the majority of which was VIP-, while a few of those co-localized with VIP and were therefore classified as avian intrinsic choroidal neurons. OPN4-immunoreactivity was absent in choroidal blood vessels of both species. In summary, OPN4-IR was detected in both species in nerve fibers and cells, some of which could be identified (ICN, melanocytes in human), while others could not be classified yet. Nevertheless, the OPN4+ structures described here might be involved in developmental, light-, thermally-driven or nociceptive mechanisms, as known from other systems, but with respect to choroidal control this needs to be proven in upcoming studies.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Dept. of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Clemens Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - Richard Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Debora Nickla
- Dept. of Biomedical Sciences and Disease, The New England College of Optometry, Boston, USA
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Joyce JD, Moore GA, Goswami P, Harrell TL, Taylor TM, Hawks SA, Green JC, Jia M, Irwin MD, Leslie E, Duggal NK, Thompson CK, Bertke AS. SARS-CoV-2 Rapidly Infects Peripheral Sensory and Autonomic Neurons, Contributing to Central Nervous System Neuroinvasion before Viremia. Int J Mol Sci 2024; 25:8245. [PMID: 39125815 PMCID: PMC11311394 DOI: 10.3390/ijms25158245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurological symptoms associated with COVID-19, acute and long term, suggest SARS-CoV-2 affects both the peripheral and central nervous systems (PNS/CNS). Although studies have shown olfactory and hematogenous invasion into the CNS, coinciding with neuroinflammation, little attention has been paid to susceptibility of the PNS to infection or to its contribution to CNS invasion. Here we show that sensory and autonomic neurons in the PNS are susceptible to productive infection with SARS-CoV-2 and outline physiological and molecular mechanisms mediating neuroinvasion. Our infection of K18-hACE2 mice, wild-type mice, and golden Syrian hamsters, as well as primary peripheral sensory and autonomic neuronal cultures, show viral RNA, proteins, and infectious virus in PNS neurons, satellite glial cells, and functionally connected CNS tissues. Additionally, we demonstrate, in vitro, that neuropilin-1 facilitates SARS-CoV-2 neuronal entry. SARS-CoV-2 rapidly invades the PNS prior to viremia, establishes a productive infection in peripheral neurons, and results in sensory symptoms often reported by COVID-19 patients.
Collapse
Affiliation(s)
- Jonathan D. Joyce
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Greyson A. Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Poorna Goswami
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Telvin L. Harrell
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Tina M. Taylor
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Seth A. Hawks
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Jillian C. Green
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Matthew D. Irwin
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Emma Leslie
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Nisha K. Duggal
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Christopher K. Thompson
- School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Andrea S. Bertke
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EVT, Hollinger R, Felix ER, Pattany PM, Galor A, Moulton EA. FL-41 Tint Reduces Activation of Neural Pathways of Photophobia in Patients with Chronic Ocular Pain. Am J Ophthalmol 2024; 259:172-184. [PMID: 38101593 PMCID: PMC10939838 DOI: 10.1016/j.ajo.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE To assess the therapeutic effect of tinted lenses (FL-41) on photophobia and light-evoked brain activity using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular surface pain. DESIGN Prospective case series. METHODS 25 subjects from the Miami veterans affairs (VA) eye clinic were recruited based on the presence of chronic ocular pain, dry eye symptoms, and photophobia. Using a 3T MRI scanner, subjects underwent 2 fMRI scans using an event-related design based on light stimuli: one scan while wearing FL-41 lenses and one without. Unpleasantness ratings evoked by the light stimuli were collected after each scan. RESULTS With FL-41 lenses, subjects reported decreased (n = 19), maintained (n = 2), or increased (n = 4) light-evoked unpleasantness ratings. Group analysis at baseline (no lens) revealed significant light evoked responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral insula, bilateral frontal pole, visual, precuneus, paracingulate, and anterior cingulate cortices (ACC) as well as cerebellar vermis, bilateral cerebellar hemispheric lobule VI, and bilateral cerebellar crus I and II. With FL-41 lenses, light-evoked responses were significantly decreased in bilateral S1, bilateral S2, bilateral insular, right temporal pole, precuneus, ACC, and paracingulate cortices as well as bilateral cerebellar hemispheric lobule VI. CONCLUSION FL-41 lenses modulated photophobia symptoms in some individuals with chronic ocular pain. In conjunction, FL-41 lenses decreased activation in cortical areas involved in processing affective and sensory-discriminative dimensions of pain. Further research into these relationships will advance the ability to provide precision therapy for individuals with ocular pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Jaxon J Huang
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia (N.P., E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA
| | - Elyana V T Locatelli
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Ruby Hollinger
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA
| | - Elizabeth R Felix
- Research Service, Miami Veterans Administration Medical Center (E.R.F.), Miami, Florida, USA; Physical Medicine and Rehabilitation (E.R.F.), University of Miami, Miami, Florida, USA
| | - Pradip M Pattany
- Department of Radiology (P.M.P.), University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia (N.P., E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA; Department of Ophthalmology (E.A.M.), Boston Children's Hospital, Harvard Medical School, Massachusetts, USA.
| |
Collapse
|
5
|
Rucker F, Taylor C, Kaser-Eichberger A, Schroedl F. Parasympathetic and sympathetic control of emmetropization in chick. Exp Eye Res 2023; 232:109508. [PMID: 37230289 PMCID: PMC10452042 DOI: 10.1016/j.exer.2023.109508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Emmetropization can be altered by temporal visual stimulation and the spectral properties of the visual environment. The goal of the current experiment is to test the hypothesis that there is an interaction between these properties and autonomic innervation. For that purpose, selective lesions of the autonomic nervous system were performed in chickens followed by temporal stimulation. Parasympathetic lesioning involved transection of both the ciliary ganglion and the pterygopalatine ganglion (PPG_CGX; n = 38), while sympathetic lesioning involved transection of the superior cervical ganglion (SCGX; n = 49). After one week of recovery, chicks were then exposed to temporally modulated light (3 days, 2 Hz, Mean: 680 lux) that was either achromatic (with blue [RGB], or without blue [RG]), or chromatic (with blue [B/Y] or without blue [R/G]). Control birds with lesions, or unlesioned, were exposed to white [RGB] or yellow [RG] light. Ocular biometry and refraction (Lenstar and a Hartinger refractometer) was measured before and after exposure to light stimulation. Measurements were statistically analyzed for the effects of a lack of autonomic input and the type of temporal stimulation. In PPG_CGX lesioned eyes, there was no effect of the lesions one-week post-surgery. However, after exposure to achromatic modulation, the lens thickened (with blue) and the choroid thickened (without blue) but there was no effect on axial growth. Chromatic modulation thinned the choroid with R/G. In the SGX lesioned eye, there was no effect of the lesion 1-week post-surgery. However, after exposure to achromatic modulation (without blue), the lens thickened and there was a reduction in vitreous chamber depth and axial length. Chromatic modulation caused a small increase in vitreous chamber depth with R/G. Both autonomic lesion and visual stimulation were necessary to affect the growth of ocular components. The bidirectional responses observed in axial growth and in choroidal changes suggest that autonomic innervation combined with spectral cues from longitudinal chromatic aberration may provide a mechanism for homeostatic control of emmetropization.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, 424 Beacon St., Boston, MA, 02115, USA.
| | - Chris Taylor
- New England College of Optometry, 424 Beacon St., Boston, MA, 02115, USA
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EV, Felix ER, Pattany PM, Galor A, Moulton EA. Botulinum toxin A decreases neural activity in pain-related brain regions in individuals with chronic ocular pain and photophobia. Front Neurosci 2023; 17:1202341. [PMID: 37404468 PMCID: PMC10315909 DOI: 10.3389/fnins.2023.1202341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction To examine the effect of botulinum toxin A (BoNT-A) on neural mechanisms underlying pain and photophobia using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular pain. Methods Twelve subjects with chronic ocular pain and light sensitivity were recruited from the Miami Veterans Affairs eye clinic. Inclusion criteria were: (1) chronic ocular pain; (2) presence of ocular pain over 1 week recall; and (3) presence of photophobia. All individuals underwent an ocular surface examination to capture tear parameters before and 4-6 weeks after BoNT-A injections. Using an event-related fMRI design, subjects were presented with light stimuli during two fMRI scans, once before and 4-6 weeks after BoNT-A injection. Light evoked unpleasantness ratings were reported by subjects after each scan. Whole brain blood oxygen level dependent (BOLD) responses to light stimuli were analyzed. Results At baseline, all subjects reported unpleasantness with light stimulation (average: 70.8 ± 32.0). Four to six weeks after BoNT-A injection, unpleasantness scores decreased (48.1 ± 33.6), but the change was not significant. On an individual level, 50% of subjects had decreased unpleasantness ratings in response to light stimulation compared to baseline ("responders," n = 6), while 50% had equivalent (n = 3) or increased (n = 3) unpleasantness ("non-responders"). At baseline, several differences were noted between responders and non-responders; responders had higher baseline unpleasantness ratings to light, higher symptoms of depression, and more frequent use of antidepressants and anxiolytics, compared to non-responders. Group analysis at baseline displayed light-evoked BOLD responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral anterior insula, paracingulate gyrus, midcingulate cortex (MCC), bilateral frontal pole, bilateral cerebellar hemispheric lobule VI, vermis, bilateral cerebellar crus I and II, and visual cortices. BoNT-A injections significantly decreased light evoked BOLD responses in bilateral S1, S2 cortices, cerebellar hemispheric lobule VI, cerebellar crus I, and left cerebellar crus II. BoNT-A responders displayed activation of the spinal trigeminal nucleus at baseline where non-responders did not. Discussion BoNT-A injections modulate light-evoked activation of pain-related brain systems and photophobia symptoms in some individuals with chronic ocular pain. These effects are associated with decreased activation in areas responsible for processing the sensory-discriminative, affective, dimensions, and motor responses to pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Jaxon J. Huang
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elyana V. Locatelli
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Administration Medical Center, Miami, FL, United States
- Physical Medicine and Rehabilitation, University of Miami, Miami, FL, United States
| | - Pradip M. Pattany
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Antemie RG, Samoilă OC, Clichici SV. Blue Light-Ocular and Systemic Damaging Effects: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065998. [PMID: 36983068 PMCID: PMC10052719 DOI: 10.3390/ijms24065998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Light is a fundamental aspect of our lives, being involved in the regulation of numerous processes in our body. While blue light has always existed in nature, with the ever-growing number of electronic devices that make use of short wavelength (blue) light, the human retina has seen increased exposure to it. Because it is at the high-energy end of the visible spectrum, many authors have investigated the theoretical harmful effects that it poses to the human retina and, more recently, the human body, given the discovery and characterization of the intrinsically photosensitive retinal ganglion cells. Many approaches have been explored, with the focus shifting throughout the years from examining classic ophthalmological parameters, such as visual acuity, and contrast sensitivity to more complex ones seen on electrophysiological assays and optical coherence tomographies. The current study aims to gather the most recent relevant data, reveal encountered pitfalls, and suggest future directions for studies regarding local and/or systemic effects of blue light retinal exposures.
Collapse
Affiliation(s)
- Răzvan-Geo Antemie
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ovidiu Ciprian Samoilă
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Liu AL, Liu YF, Wang G, Shao YQ, Yu CX, Yang Z, Zhou ZR, Han X, Gong X, Qian KW, Wang LQ, Ma YY, Zhong YM, Weng SJ, Yang XL. The role of ipRGCs in ocular growth and myopia development. SCIENCE ADVANCES 2022; 8:eabm9027. [PMID: 35675393 PMCID: PMC9176740 DOI: 10.1126/sciadv.abm9027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increasing global prevalence of myopia calls for elaboration of the pathogenesis of this disease. Here, we show that selective ablation and activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) in developing mice induced myopic and hyperopic refractive shifts by modulating the corneal radius of curvature (CRC) and axial length (AL) in an opposite way. Melanopsin- and rod/cone-driven signals of ipRGCs were found to influence refractive development by affecting the AL and CRC, respectively. The role of ipRGCs in myopia progression is evidenced by attenuated form-deprivation myopia magnitudes in ipRGC-ablated and melanopsin-deficient animals and by enhanced melanopsin expression/photoresponses in form-deprived eyes. Cell subtype-specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. Thus, ipRGCs contribute substantially to mouse eye growth and myopia development, which may inspire novel strategies for myopia intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Shi-Jun Weng
- Corresponding author. (X.-L.Y.); (S.-J.W.); (Y.-M.Z.)
| | - Xiong-Li Yang
- Corresponding author. (X.-L.Y.); (S.-J.W.); (Y.-M.Z.)
| |
Collapse
|
10
|
Caval-Holme FS, Aranda ML, Chen AQ, Tiriac A, Zhang Y, Smith B, Birnbaumer L, Schmidt TM, Feller MB. The Retinal Basis of Light Aversion in Neonatal Mice. J Neurosci 2022; 42:4101-4115. [PMID: 35396331 PMCID: PMC9121827 DOI: 10.1523/jneurosci.0151-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Aversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca2+ imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3b-negative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves.SIGNIFICANCE STATEMENT At an early stage of development, before the maturation of photoreceptor input to the retina, neonatal mice exhibit photoaversion. On exposure to bright light, they turn away and emit ultrasonic vocalizations, a cue to their parents to return them to the nest. Neonatal photoaversion is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs), a small percentage of the retinal ganglion cell population that express the photopigment melanopsin and depolarize directly in response to light. This study shows that photoaversion is mediated by a subset of ipRGCs, called M1-ipRGCs. Moreover, M1-ipRGCs have reduced responses to retinal waves, providing a mechanism by which the mouse distinguishes light stimulation from developmental patterns of spontaneous activity.
Collapse
Affiliation(s)
- Franklin S Caval-Holme
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Andy Q Chen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Yizhen Zhang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Benjamin Smith
- School of Optometry, University of California Berkeley, Berkeley, California 94720
| | - Lutz Birnbaumer
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
- Institute of Biomedical Research, School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina C1107AFF
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
11
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Chakraborty R, Landis EG, Mazade R, Yang V, Strickland R, Hattar S, Stone RA, Iuvone PM, Pardue MT. Melanopsin modulates refractive development and myopia. Exp Eye Res 2022; 214:108866. [PMID: 34838844 PMCID: PMC8792255 DOI: 10.1016/j.exer.2021.108866] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Myopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells. Here, we investigated how mRGCs influence normal and myopic refractive development using two mutant mouse models: Opn4-/- mice that lack functional melanopsin photopigments and intrinsic mRGC responses but still receive other photoreceptor-mediated input to these cells; and Opn4DTA/DTA mice that lack intrinsic and photoreceptor-mediated mRGC responses due to mRGC cell death. In mice with intact vision or form-deprivation, we measured refractive error, ocular properties including axial length and corneal curvature, and the levels of retinal dopamine and its primary metabolite, L-3,4-dihydroxyphenylalanine (DOPAC). Myopia was measured as a myopic shift, or the difference in refractive error between the form-deprived and contralateral eyes. We found that Opn4-/- mice had altered normal refractive development compared to Opn4+/+ wildtype mice, starting ∼4D more myopic but developing ∼2D greater hyperopia by 16 weeks of age. Consistent with hyperopia at older ages, 16 week-old Opn4-/- mice also had shorter eyes compared to Opn4+/+ mice (3.34 vs 3.42 mm). Opn4DTA/DTA mice, however, were more hyperopic than both Opn4+/+ and Opn4-/- mice across development ending with even shorter axial lengths. Despite these differences, both Opn4-/- and Opn4DTA/DTA mice had ∼2D greater myopic shifts in response to form-deprivation compared to Opn4+/+ mice. Furthermore, when vision was intact, dopamine and DOPAC levels were similar between Opn4-/- and Opn4+/+ mice, but higher in Opn4DTA/DTA mice, which differed with age. However, form-deprivation reduced retinal dopamine and DOAPC by ∼20% in Opn4-/- compared to Opn4+/+ mice but did not affect retinal dopamine and DOPAC in Opn4DTA/DTA mice. Lastly, systemically treating Opn4-/- mice with the dopamine precursor L-DOPA reduced their form-deprivation myopia by half compared to non-treated mice. Collectively our findings show that disruption of retinal melanopsin signaling alters the rate and magnitude of normal refractive development, yields greater susceptibility to form-deprivation myopia, and changes dopamine signaling. Our results suggest that mRGCs participate in the eye's response to myopigenic stimuli, acting partly through dopaminergic mechanisms, and provide a potential therapeutic target underling myopia progression. We conclude that proper mRGC function is necessary for correct refractive development and protection from myopia progression.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Bedford Park, SA, 5001, Adelaide, Australia; Caring Futures Institute, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
| | - Erica G Landis
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States
| | - Reece Mazade
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, United States
| | - Victoria Yang
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, United States
| | - Ryan Strickland
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms, NIMH, NIH, 9000 Rockville Pike, Bethesda, MD, USA, 20892
| | - Richard A Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Department of Pharmacology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, United States.
| |
Collapse
|
13
|
Kaiser EA, McAdams H, Igdalova A, Haggerty EB, Cucchiara BL, Brainard DH, Aguirre GK. Reflexive Eye Closure in Response to Cone and Melanopsin Stimulation: A Study of Implicit Measures of Light Sensitivity in Migraine. Neurology 2021; 97:e1672-e1680. [PMID: 34493620 DOI: 10.1212/wnl.0000000000012734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To quantify interictal photophobia in migraine with and without aura using reflexive eye closure as an implicit measure of light sensitivity and to assess the contribution of melanopsin and cone signals to these responses. METHODS Participants were screened to meet criteria for 1 of 3 groups: headache-free (HF) controls, migraine without aura (MO), and migraine with visual aura (MA). MO and MA participants were included if they endorsed ictal and interictal photophobia. Exclusion criteria included impaired vision, inability to collect usable pupillometry, and history of either head trauma or seizure. Participants viewed light pulses that selectively targeted melanopsin, the cones, or their combination during recording of orbicularis oculi EMG (OO-EMG) and blinking activity. RESULTS We studied 20 participants in each group. MA and MO groups reported increased visual discomfort to light stimuli (discomfort rating, 400% contrast, MA: 4.84 [95% confidence interval 0.33, 9.35]; MO: 5.23 [0.96, 9.50]) as compared to HF controls (2.71 [0, 6.47]). Time course analysis of OO-EMG and blinking activity demonstrated that reflexive eye closure was tightly coupled to the light pulses. The MA group had greater OO-EMG and blinking activity in response to these stimuli (EMG activity, 400% contrast: 42.9%Δ [28.4, 57.4]; blink activity, 400% contrast: 11.2% [8.8, 13.6]) as compared to the MO (EMG activity, 400% contrast: 9.9%Δ [5.8, 14.0]; blink activity, 400% contrast: 4.7% [3.5, 5.9]) and HF control (EMG activity, 400% contrast: 13.2%Δ [7.1, 19.3]; blink activity, 400% contrast: 4.5% [3.1, 5.9]) groups. DISCUSSION Our findings suggest that the intrinsically photosensitive retinal ganglion cells (ipRGCs), which integrate melanopsin and cone signals, provide the afferent input for light-induced reflexive eye closure in a photophobic state. Moreover, we find a dissociation between implicit and explicit measures of interictal photophobia depending on a history of visual aura in migraine. This implies distinct pathophysiology in forms of migraine, interacting with separate neural pathways by which the amplification of ipRGC signals elicits implicit and explicit signs of visual discomfort.
Collapse
Affiliation(s)
- Eric A Kaiser
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia.
| | - Harrison McAdams
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Aleksandra Igdalova
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Edda B Haggerty
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Brett L Cucchiara
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - David H Brainard
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Geoffrey K Aguirre
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| |
Collapse
|
14
|
Abusamak M, Alrawashdeh HM. Post-concussion Syndrome Light Sensitivity: A Case Report and Review of the Literature. Neuroophthalmology 2021; 46:85-90. [DOI: 10.1080/01658107.2021.1983612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Mohammad Abusamak
- Ophthalmology Department, Faculty of Medicine, Al-Balqa Applied University, AlSalt, Jordan
- Department of Ophthalmology, Amman Eye Clinic, Amman, Jordan
| | - Hamzeh Mohammad Alrawashdeh
- Department of Ophthalmology, Amman Eye Clinic, Amman, Jordan
- Department of Ophthalmology, Sharif Eye Centers, Irbid, Jordan
| |
Collapse
|
15
|
Distinct Opsin 3 ( Opn3) Expression in the Developing Nervous System during Mammalian Embryogenesis. eNeuro 2021; 8:ENEURO.0141-21.2021. [PMID: 34417283 PMCID: PMC8445036 DOI: 10.1523/eneuro.0141-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.
Collapse
|
16
|
Díaz NM, Lang RA, Van Gelder RN, Buhr ED. Wounding Induces Facultative Opn5-Dependent Circadian Photoreception in the Murine Cornea. Invest Ophthalmol Vis Sci 2021; 61:37. [PMID: 32543667 PMCID: PMC7415322 DOI: 10.1167/iovs.61.6.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Autonomous molecular circadian clocks are present in the majority of mammalian tissues. These clocks are synchronized to phases appropriate for their physiologic role by internal systemic cues, external environmental cues, or both. The circadian clocks of the in vivo mouse cornea synchronize to the phase of the brain's master clock primarily through systemic cues, but ex vivo corneal clocks entrain to environmental light cycles. We evaluated the underlying mechanisms of this difference. Methods Molecular circadian clocks of mouse corneas were evaluated in vivo and ex vivo for response to environmental light. The presence of opsins and effect of genetic deletion of opsins were evaluated for influence on circadian photoresponses. Opn5-expressing cells were identified using Opn5Cre;Ai14 mice and RT-PCR, and they were characterized using immunocytochemistry. Results Molecular circadian clocks of the cornea remain in phase with behavioral circadian locomotor rhythms in vivo but are photoentrainable in tissue culture. After full-thickness incision or epithelial debridement, expression of the opsin photopigment Opn5 is induced in the cornea in a subset of preexisting epithelial cells adjacent to the wound site. This induction coincides with conferral of direct, short-wavelength light sensitivity to the circadian clocks throughout the cornea. Conclusions Corneal circadian rhythms become photosensitive after wounding. Opn5 gene function (but not Opn3 or Opn4 function) is necessary for induced photosensitivity. These results demonstrate that opsin-dependent direct light sensitivity can be facultatively induced in the murine cornea.
Collapse
|
17
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
18
|
Investigation of light-induced lacrimation and pupillary responses in episodic migraine. PLoS One 2020; 15:e0241490. [PMID: 33125423 PMCID: PMC7598498 DOI: 10.1371/journal.pone.0241490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this pilot study was to investigate the light-induced pupillary and lacrimation responses mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) in migraine. Ten participants with episodic migraine and normal tear production, as well as eleven visually normal controls participated in this study. Following an initial baseline trial (no light flash), participants received seven incremental and alternating red and blue light flashes. Pupillometry recording of the left eye and a 1-min anesthetized Schirmer’s test of the right eye (using 0.5% proparacaine) were performed simultaneously. Intrinsic and extrinsic ipRGC photoactivities did not differ between migraine participants and controls across all intensities and wavelengths. Migraine participants, however, had significantly lower lacrimation than controls following the highest blue intensity. A positive correlation was found between melanopsin-driven post-illumination pupillary responses and lacrimation following blue stimulation in both groups. Our results show that participants with self-reported photophobia have normal ipRGC-driven responses, suggesting that photophobia and pupillary function may be mediated by distinct ipRGC circuits. The positive correlation between melanopsin-driven pupillary responses and light-induced lacrimation suggests the afferent arm of the light-induced lacrimation reflex is melanopsin-mediated and functions normally in migraine. Lastly, the reduced melanopsin-mediated lacrimation at the highest stimulus suggests the efferent arm of the lacrimation reflex is attenuated under certain conditions, which may be a harbinger of dry eye in migraine.
Collapse
|
19
|
Stone RA, Wei W, Sarfare S, McGeehan B, Engelhart KC, Khurana TS, Maguire MG, Iuvone PM, Nickla DL. Visual Image Quality Impacts Circadian Rhythm-Related Gene Expression in Retina and in Choroid: A Potential Mechanism for Ametropias. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32396635 PMCID: PMC7405616 DOI: 10.1167/iovs.61.5.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm-related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks. Methods Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e., in both eyes) or received an image-blurring diffuser or a minus 10-diopter (D) or a plus 10-D defocusing lens over one eye. Starting 1 day later and at 4-hour intervals for 24 hours, the retina/RPE and choroid were separately dissected. Without pooling, total RNA was extracted, converted to cDNA, and assayed by quantitative PCR for the expression of the following genes: Opn4m, Clock, Npas2, Per3, Cry1, Arntl, and Mtnr1a. Results The expression of each gene in retina/RPE and in choroid of eyes with nonrestricted vision OU varied over 24 hours, with equal levels OU for most genes and times. Altered visual input influenced gene expression in complex patterns that varied by gene, visual input, time, and eye, affecting experimental eyes with altered vision and also contralateral eyes with nonrestricted vision. Discussion Altering visual input in ways known to induce ametropias alters the retinal/RPE and choroidal expression of circadian rhythm-related genes, further linking circadian biology with eye growth regulation. While further investigations are needed, studying circadian processes may help understand refractive mechanisms and the increasing myopia prevalence in contemporary societies where lighting patterns can desynchronize endogenous rhythms from the natural environmental light/dark cycle.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Wenjie Wei
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Shanta Sarfare
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Brendan McGeehan
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - K. Cameron Engelhart
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| | - Tejvir S. Khurana
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Maureen G. Maguire
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Debora L. Nickla
- Department of Bioscience, New England College of Optometry, Boston, Massachusetts, United States
| |
Collapse
|
20
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Alkozi HA, Navarro G, Franco R, Pintor J. Melatonin and the control of intraocular pressure. Prog Retin Eye Res 2019; 75:100798. [PMID: 31560946 DOI: 10.1016/j.preteyeres.2019.100798] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Melatonin is not only synthesized by the pineal gland but by several ocular structures. This natural indoleamine is of great importance for regulating several eye processes, among which pressure homeostasis is included. Glaucoma, the most prevalent eye disease, also known as the silent thief of vision, is a multifactorial pathology that is associated to age and, often, to intraocular hypertension (IOP). Indeed IOP is the only modifiable risk factor and as such medications are available to control it; however, novel medications are sought to minimize undesirable side effects. Melatonin and analogues decrease IOP in both normotensive and hypertensive eyes. Melatonin activates its cognate membrane receptors, MT1 and MT2, which are present in numerous ocular tissues, including the aqueous-humor-producing ciliary processes. Melatonin receptors belong to the superfamily of G-protein-coupled receptors and their activation would lead to different signalling pathways depending on the tissue. This review describes the molecular mechanisms underlying differential functionalities that are attributed to melatonin receptors. Accordingly, the current work highlights the important role of melatonin and its analogues in the healthy and in the glaucomatous eyes, with special attention to the control of intraocular pressure.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Juan XXIII, 27, 08027, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Barcelona, Spain.
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain; Real Academia Nacional de Farmacia, Calle Farmacia 11, 28004, Madrid, Spain.
| |
Collapse
|
22
|
Marek V, Reboussin E, Dégardin-Chicaud J, Charbonnier A, Domínguez-López A, Villette T, Denoyer A, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. Implication of Melanopsin and Trigeminal Neural Pathways in Blue Light Photosensitivity in vivo. Front Neurosci 2019; 13:497. [PMID: 31178682 PMCID: PMC6543920 DOI: 10.3389/fnins.2019.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/30/2019] [Indexed: 01/30/2023] Open
Abstract
Photophobia may arise from various causes and frequently accompanies numerous ocular diseases. In modern highly illuminated world, complaints about greater photosensitivity to blue light increasingly appear. However, the pathophysiology of photophobia is still debated. In the present work, we investigated in vivo the role of various neural pathways potentially implicated in blue-light aversion. Moreover, we studied the light-induced neuroinflammatory processes on the ocular surface and in the trigeminal pathways. Adult male C57BL/6J mice were exposed either to blue (400-500 nm) or to yellow (530-710 nm) LED light (3 h, 6 mW/cm2). Photosensitivity was measured as the time spent in dark or illuminated parts of the cage. Pharmacological treatments were applied: topical instillation of atropine, pilocarpine or oxybuprocaine, intravitreal injection of lidocaine, norepinephrine or "blocker" of the visual photoreceptor transmission, and intraperitoneal injection of a melanopsin antagonist. Clinical evaluations (ocular surface state, corneal mechanical sensitivity and tear quantity) were performed directly after exposure to light and after 3 days of recovery in standard light conditions. Trigeminal ganglia (TGs), brainstems and retinas were dissected out and conditioned for analyses. Mice demonstrated strong aversion to blue but not to yellow light. The only drug that significantly decreased the blue-light aversion was the intraperitoneally injected melanopsin antagonist. After blue-light exposure, dry-eye-related inflammatory signs were observed, notably after 3 days of recovery. In the retina, we observed the increased immunoreactivity for GFAP, ATF3, and Iba1; these data were corroborated by RT-qPCR. Moreover, retinal visual and non-visual photopigments distribution was altered. In the trigeminal pathway, we detected the increased mRNA expression of cFOS and ATF3 as well as alterations in cytokines' levels. Thus, the wavelength-dependent light aversion was mainly mediated by melanopsin-containing cells, most likely in the retina. Other potential pathways of light reception were also discussed. The phototoxic message was transmitted to the trigeminal system, inducing both inflammation at the ocular surface and stress in the retina. Further investigations of retina-TG connections are needed.
Collapse
Affiliation(s)
- Veronika Marek
- R&D, Essilor International, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Elodie Reboussin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Julie Dégardin-Chicaud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Angéline Charbonnier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Alfredo Domínguez-López
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | | | - Alexandre Denoyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- CHU Robert Debré, Université Reims Champagne-Ardenne, Reims, France
| | - Christophe Baudouin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- Versailles Saint-Quentin-en-Yvelines Université, Versailles, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
23
|
Rucker F. Monochromatic and white light and the regulation of eye growth. Exp Eye Res 2019; 184:172-182. [PMID: 31018118 DOI: 10.1016/j.exer.2019.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Experiments employing monochromatic light have been used to investigate the role of longitudinal chromatic aberration (LCA) as possible signals for emmetropization for many years. LCA arising from the dispersion of light, causes differences in the focal length at different wavelengths and can impose defocus (wavelength defocus). Short-wavelength light focuses with a shorter focal length than long-wavelength light and, as such, would be expected to produce a smaller, more hyperopic eye. Emmetropization can respond to wavelength defocus since animals reared in monochromatic light adjust their refractive state relative to that measured in white light. In many species, animals reared in monochromatic light respond as predicted by wavelength defocus, becoming more hyperopic in blue light and more myopic in red light. However, tree shrews and rhesus monkey become more hyperopic in red light, and while tree shrews initially become more hyperopic in blue light, they later become more myopic. This review examines the experiments performed in monochromatic light and highlights the potential differences in protocols affecting the results, including experiment duration, circadian rhythm stimulation, light intensity, bandwidth, humoral factors and temporal sensitivity.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, 424 Beacon St, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Association between Retinal Nerve Fiber Layer Thickness and Eye Fatigue. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3014567. [PMID: 30809534 PMCID: PMC6364103 DOI: 10.1155/2019/3014567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
Eye fatigue is a common health problem across all age groups. Herein, we explored the correlation between eye fatigue and thickness of the retinal nerve fiber layer (NFL). Included in the NFL are intrinsically photosensitive retinal ganglion cells (ipRGCs), which are associated with trigeminal pain. This retrospective cross-sectional study included outpatients with best-corrected visual acuity above 20/30 in both eyes and without dry eye, glaucoma, or retinal disease. A total of 1981 patients were initially enrolled and 377 patients were declared as eligible for the study analysis. We tested subjects for the presence of major ocular symptoms and measured thickness of ganglion cell complex (GCC) using optical coherence tomography. A total of 377 outpatients (46.4% men, mean age of 57.1 years) were enrolled for analysis, based on the interview-reported prevalence of six eye symptom, as follows: 31.5% for eye fatigue, 19.2% for blurring, 18.6% for dryness, 15.7% for photophobia, 13.5% for irritation, and 4.6% for pain. The macular GCC was significantly thicker in subjects with eye fatigue compared to the group not reporting eye fatigue (103.8 μm versus 100.3 μm, P = 0.014). Regression analysis identified eye fatigue (P = 0.026, β=0.122, adjusted for age and sex) and dryness (P =0.024, β=0.130) as significantly correlated with the macular GCC thickness, while the full macular thickness showed no significant correlation. In conclusions, eye fatigue and dryness were positively associated with thickness of the macular GCC. Nonvisual symptoms might therefore play a role in the development of eye fatigue.
Collapse
|
25
|
Lei S, Zivcevska M, Goltz HC, Chen X, Wong AMF. Ocular Topical Anesthesia Does Not Attenuate Light-Induced Discomfort Using Blue and Red Light Stimuli. Invest Ophthalmol Vis Sci 2018; 59:4714-4719. [PMID: 30267093 DOI: 10.1167/iovs.18-24797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate whether melanopsin-containing ophthalmic trigeminal ganglion cells provide significant input to mediate light-induced discomfort. This is done by studying the effect of ocular topical anesthesia on light-induced discomfort threshold to blue light and red light stimuli using a psychophysical approach. Method Ten visually normal participants completed the experiment consisting of two trials: an anesthesia trial in which light stimuli were presented to both eyes following 0.5% proparacaine eye drops administration, and a placebo trial in which normal saline drops were used. In each trial, a randomized series of 280 blue and red light flashes were presented over seven intensity steps with 20 repetitions for each color and light intensity. Participants were instructed to report whether they perceived each stimulus as either "uncomfortably bright" or "not uncomfortably bright" by pressing a button. The proportion of "uncomfortable" responses was pooled to generate individual psychometric functions, from which 50% discomfort thresholds (defined as the light intensity at which the individuals perceived the stimulus to be uncomfortably bright/unpleasant 50% of the time) were calculated. Results When blue light was presented, there was no significant difference in the light-induced discomfort thresholds between anesthesia and placebo trials (P = 0.44). Similarly, when red light was used, no significant difference in threshold values was found between the anesthesia and placebo trials (P = 0.28). Conclusions Ocular topical anesthesia does not alter the light-induced discomfort thresholds to either blue or red light, suggesting that the melanopsin-containing ophthalmic trigeminal ganglion cells provide little or no significant input in mediating light-induced discomfort under normal physiologic conditions.
Collapse
Affiliation(s)
- Shaobo Lei
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marija Zivcevska
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Herbert C Goltz
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,The Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Xingqiao Chen
- The Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Agnes M F Wong
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,The Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|