1
|
Che M, Su H, Zhao X, Fu D, Huang R, Guo X, Su R. Tannic acid promotes the activation of persulfate with Fe(ii) for highly efficient trichloroethylene removal. RSC Adv 2023; 13:34371-34377. [PMID: 38024972 PMCID: PMC10665609 DOI: 10.1039/d3ra06004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Trichloroethylene (TCE) is an Environmental Protection Agency (EPA) priority pollutant that is difficult to be removed by some remediation methods. For instance, TCE removal using persulfate (PS) activated by ferrous iron (Fe(ii)) has been tested but is limited by the unstable Fe(ii) concentration and the initial pH of contaminated water samples. Here we reported a new TCE removal system, in which tannic acid (TA) promoted the activation of PS with Fe(ii) (TA-Fe(ii)-PS system). The effect of initial pH, temperature, and concentrations of PS, Fe(ii), TA, inorganic anions and humic acid on TCE removal was investigated. We found that the TA-Fe(ii)-PS system with 80 mg L-1 of TA, 1.5 mM of Fe(ii) and 15 mM of PS yielded about 96.2-99.1% TCE removal in the pH range of 1.5-11.0. Radical quenching experiments were performed to identify active species. Results showed that SO4˙- and ˙OH were primarily responsible for TCE removal in the TA-Fe(ii)-PS system. In the presence of TA, the Fe-TA chelation and the reduction of TA could regulate Fe(ii) concentration and activate persulfate for continuously releasing reactive species under alkaline conditions. Based on the excellent removal performance for TCE, the TA-Fe(ii)-PS system becomes a promising candidate for controlling TCE in groundwater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Xudong Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Daqing Fu
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Xuehui Guo
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
2
|
Lombardi A, Campo M, Vignolini P, Papalini M, Pizzetti M, Bernini R. Phenolic-Rich Extracts from Circular Economy: Chemical Profile and Activity against Filamentous Fungi and Dermatophytes. Molecules 2023; 28:molecules28114374. [PMID: 37298850 DOI: 10.3390/molecules28114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fungal infections represent a relevant issue in agri-food and biomedical fields because they could compromise quality of food and humans' health. Natural extracts represent a safe alternative to synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes and by-products offer an eco-friendly source of bioactive natural compounds. In this paper, phenolic-rich extracts from Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis. Finally, these extracts were tested as antimicrobial agents against pathogenic filamentous fungi and dermatophytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton interdigitale. The experimental results evidenced that all extracts exhibited a significant growth inhibition for Trichophyton interdigitale. Punica granatum L., Castanea sativa Mill., and Vitis vinifera L. extracts showed a high activity against Alternaria sp. and Rhizopus stolonifer. These data are promising for the potential applications of some of these extracts as antifungal agents in the food and biomedical fields.
Collapse
Affiliation(s)
- Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Margherita Campo
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Pamela Vignolini
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marco Papalini
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Mirco Pizzetti
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Fatma T, Ahmed Khan H, Ahmed A, Adnan F, Zeshan, Virk N, Faraz Bhatti M. Functional annotation and comparative analysis of four Botrytis cinerea mitogenomes reported from Punjab, Pakistan. Saudi J Biol Sci 2023; 30:103605. [PMID: 36950365 PMCID: PMC10025148 DOI: 10.1016/j.sjbs.2023.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Botrytis cinerea is one of the top phytopathogenic fungus which ubiquitously cause grey mold on a variety of horticultural plants. The mechanism of respiration in the fungus occurs within the mitochondria. Mitogenomes serve as a key molecular marker for the investigation of fungal evolutionary patterns. This study aimed at the complete assembly, characterization, and comparative relationship of four mitogenomes of Botrytis cinerea strains including Kst5C, Kst14A, Kst32B, Kst33A, respectively. High throughput sequencing of four mitogenomes allowed the full assembly and annotation of these sequences. The total genome length of these 4 isolates Kst5C Kst14A, Kst32B, Kst33A was 69,986 bp, 77,303 bp, 76,204 bp and 55, 226 bp respectively. The distribution of features represented 2 ribosomal RNA genes,14 respiration encoding proteins, 1 mitochondrial ribosomal protein-encoding gene, along with varying numbers of transfer RNA genes, protein-coding genes, mobile intronic regions and homing endonuclease genes including LAGLIDADG and GIY-YIG domains were found in all four mitogenomes. The comparative analyses performed also decipher significant results for four mitogenomes among fungal isolates included in the study. This is the first report on the detailed annotation of mitogenomes as a proof for investigation of variation patterns present with in the B. cinerea causing grey mold on strawberries in Pakistan. This study will also contribute to the rapid evolutionary analysis and population patterns present among Botrytis cinerea.
Collapse
Affiliation(s)
- Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Aqeel Ahmed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Zeshan
- Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
- Corresponding author.
| |
Collapse
|
4
|
Arentshorst M, Reijngoud J, van Tol DJC, Reid ID, Arendsen Y, Pel HJ, van Peij NNME, Visser J, Punt PJ, Tsang A, Ram AFJ. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II) 2Cys 6 domain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:978845. [PMID: 37746181 PMCID: PMC10512302 DOI: 10.3389/ffunb.2022.978845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023]
Abstract
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
Collapse
Affiliation(s)
- Mark Arentshorst
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jos Reijngoud
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Daan J. C. van Tol
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Yvonne Arendsen
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | - Herman J. Pel
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | | | - Jaap Visser
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Fungal Genetics and Technology Consultancy, Wageningen, AJ, Netherlands
| | - Peter J. Punt
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
5
|
Dynamic evolution and correlation between microorganisms and metabolites during manufacturing process and storage of Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Wenndt AJ, Evans SE, van Diepeningen AD, Logan JR, Jacobson PJ, Seely MK, Jacobson KM. Why Plants Harbor Complex Endophytic Fungal Communities: Insights From Perennial Bunchgrass Stipagrostis sabulicola in the Namib Sand Sea. Front Microbiol 2021; 12:691584. [PMID: 34168636 PMCID: PMC8217645 DOI: 10.3389/fmicb.2021.691584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
All perennial plants harbor diverse endophytic fungal communities, but why they tolerate these complex asymptomatic symbioses is unknown. Using a multi-pronged approach, we conclusively found that a dryland grass supports endophyte communities comprised predominantly of latent saprophytes that can enhance localized nutrient recycling after senescence. A perennial bunchgrass, Stipagrostis sabulicola, which persists along a gradient of extreme abiotic stress in the hyper-arid Namib Sand Sea, was the focal point of our study. Living tillers yielded 20 fungal endophyte taxa, 80% of which decomposed host litter during a 28-day laboratory decomposition assay. During a 6-month field experiment, tillers with endophytes decomposed twice as fast as sterilized tillers, consistent with the laboratory assay. Furthermore, profiling the community active during decomposition using next-generation sequencing revealed that 59-70% of the S. sabulicola endophyte community is comprised of latent saprophytes, and these dual-niche fungi still constitute a large proportion (58-62%) of the litter community more than a year after senescence. This study provides multiple lines of evidence that the fungal communities that initiate decomposition of standing litter develop in living plants, thus providing a plausible explanation for why plants harbor complex endophyte communities. Using frequent overnight non-rainfall moisture events (fog, dew, high humidity), these latent saprophytes can initiate decomposition of standing litter immediately after tiller senescence, thus maximizing the likelihood that plant-bound nutrients are recycled in situ and contribute to the nutrient island effect that is prevalent in drylands.
Collapse
Affiliation(s)
- Anthony J Wenndt
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| | - Sarah E Evans
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States.,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
| | - Anne D van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - J Robert Logan
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States.,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
| | - Peter J Jacobson
- Department of Biology, Grinnell College, Grinnell, IA, United States
| | - Mary K Seely
- Desert Research Foundation of Namibia, Windhoek, Namibia
| | | |
Collapse
|
7
|
Arentshorst M, Falco MD, Moisan MC, Reid ID, Spaapen TOM, van Dam J, Demirci E, Powlowski J, Punt PJ, Tsang A, Ram AFJ. Identification of a Conserved Transcriptional Activator-Repressor Module Controlling the Expression of Genes Involved in Tannic Acid Degradation and Gallic Acid Utilization in Aspergillus niger. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:681631. [PMID: 37744122 PMCID: PMC10512348 DOI: 10.3389/ffunb.2021.681631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 09/26/2023]
Abstract
Tannic acid, a hydrolysable gallotannin present in plant tissues, consists of a central glucose molecule esterified with gallic acid molecules. Some microorganisms, including several Aspergillus species, can metabolize tannic acid by releasing gallic acid residues from tannic acid by secreting tannic acid specific esterases into the medium. The expression of these so-called tannases is induced by tannic acid or gallic acid. In this study, we identified a conserved transcriptional activator-repressor module involved in the regulation of predicted tannases and other genes involved in gallic acid metabolism. The transcriptional activator-repressor module regulating tannic acid utilization resembles the transcriptional activator-repressor modules regulating galacturonic acid and quinic acid utilization. Like these modules, the Zn(II)2Cys6 transcriptional activator (TanR) and the putative repressor (TanX) are located adjacent to each other. Deletion of the transcriptional activator (ΔtanR) results in inability to grow on gallic acid and severely reduces growth on tannic acid. Deletion of the putative repressor gene (ΔtanX) results in the constitutive expression of tannases as well as other genes with mostly unknown function. Known microbial catabolic pathways for gallic acid utilization involve so-called ring cleavage enzymes, and two of these ring cleavage enzymes show increased expression in the ΔtanX mutant. However, deletion of these two genes, and even deletion of all 17 genes encoding potential ring cleavage enzymes, did not result in a gallic acid non-utilizing phenotype. Therefore, in A. niger gallic acid utilization involves a hitherto unknown pathway. Transcriptome analysis of the ΔtanX mutant identified several genes and gene clusters that were significantly induced compared to the parental strain. The involvement of a selection of these genes and gene clusters in gallic acid utilization was examined by constructing gene deletion mutants and testing their ability to grow on gallic acid. Only the deletion of a gene encoding an FAD-dependent monooxygenase (NRRL3_04659) resulted in a strain that was unable to grow on gallic acid. Metabolomic studies showed accumulation of gallic acid in the ΔNRRL3_04659 mutant suggesting that this predicted monooxygenase is involved in the first step of gallic acid metabolism and is likely responsible for oxidation of the aromatic ring.
Collapse
Affiliation(s)
- Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Marie-Claude Moisan
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Tessa O. M. Spaapen
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jisca van Dam
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ebru Demirci
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Justin Powlowski
- Department of Chemistry & Biochemistry, Concordia University, Montreal, QC, Canada
| | - Peter J. Punt
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Utrecht, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
8
|
Spennati F, Ricotti A, Mori G, Siracusa G, Becarelli S, Gregorio SD, Tigini V, Varese GC, Munz G. The role of cosubstrate and mixing on fungal biofilm efficiency in the removal of tannins. ENVIRONMENTAL TECHNOLOGY 2020; 41:3515-3523. [PMID: 31072243 DOI: 10.1080/09593330.2019.1615128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Tannins are polyphenolic compounds produced by plants and they are used in industrial vegetable tanning of leather. Tannins represent one of the low biodegradability substances in tannery wastewaters with high recalcitrant soluble chemical oxygen demand, furthermore high concentration of tannins can inhibit biological treatment. In the present study, four novel rotating submerged packed bed reactors were inoculated with a selected fungal strain to reach a biological degradation of tannins in non-sterile conditions. The selected fungal strain, Aspergillus tubingensis MUT 990, was immobilised in polyurethane foam cubes carriers and inserted inside a submerged rotating cage reactors. The reactors were feed with a solution composed of four tannins: Quebracho (Schinopsis spp.), Wattle (Mimosa spp.), Chestnut (Castanea spp.) and Tara (Caesalpinia spp.). Four reactors with a volume of 4 L each were used, the co-substrate was pure malt extract, the hydraulic retention time was 24 h and the pH setpoint was 5.5. The reactors configuration was chosen to allow the study of the effect of rotation and the co-substrate addition on tannins removal. The experiment lasted two months and it was achieved 80% of chemical oxygen demand and up to 90% dissolved organic carbon removal, furthermore it was detected an important tannase activity.
Collapse
Affiliation(s)
- Francesco Spennati
- Department of Civil and Environmental Engineering, University of Florence, Firenze, Italy
| | | | | | - Giovanna Siracusa
- MUT, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Simone Becarelli
- MUT, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Simona Di Gregorio
- MUT, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | | | | | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Firenze, Italy
| |
Collapse
|
9
|
Wang B. Study on the Correlation between Microorganism and Quality Formation of Pu’ er Tea during Fermentation. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2019; 332:032055. [DOI: 10.1088/1755-1315/332/3/032055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Pu’ er tea is a solid-state fermented tea by microorganisms, and its fermentation can not be separated from the role of microorganisms. The dynamic changes of microorganisms in the fermentation process of Pu’ er tea have an important effect on the quality of Pu’ er tea. In this paper, the correlation between microorganism activity and its metabolites and the flavor quality of Pu’ er tea during the fermentation process of its fermentation is studied by analyzing the changes of microorganisms in the process of Pu’ er tea fermentation at various stages, which has provided a scientific theoretical guidance for the fermentation process of Pu’ er tea.
Collapse
|
10
|
Spennati F, Mora M, Tigini V, La China S, Di Gregorio S, Gabriel D, Munz G. Removal of Quebracho and Tara tannins in fungal bioreactors: Performance and biofilm stability analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:137-145. [PMID: 30340133 DOI: 10.1016/j.jenvman.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Tannins are polyphenolic compounds produced by plants that are used in the vegetable tanning of leather at industrial scale. Quebracho tannin and Tara tannin are intensively used by the tanning industry and are two of the most recalcitrant compounds that can be found in tannery wastewaters. In this study two reactors fed with Quebracho tannin and Tara tannin, respectively, were inoculated with polyurethane foam cubes colonized with a fungal strain biofilm of Aspergillus tubingensis MUT 990. A stable biofilm was maintained in the reactor fed with Quebracho tannin during 180 days of operation. Instead, biofilm got detached from the foam cubes during the start-up of the reactor fed with Tara tannin and a bacterial-based suspended culture was developed and preserved along the operational period (226 days). Soluble chemical oxygen demand removals up to 53% and 90% and maximum elimination capacities of 9.1 g sCOD m-3 h-1 and 37.9 g sCOD m-3 h-1 of Quebracho and Tara tannins, respectively, were achieved in the reactors without the addition of co-substrates. Next generation sequencing analysis for bacteria and fungi showed that a fungal consortium was developed in the reactor fed with Quebracho tannin while fungi were outcompeted by bacteria in the reactor fed with Tara tannin. Furthermore, Quebracho and Tara tannins were successfully co-treated in a single reactor where both fungi and bacteria were preserved.
Collapse
Affiliation(s)
- F Spennati
- Department of Environmental and Civil and Environmental, University of Florence, Via Santa Marta 3, 50139, Firenze, Italy.
| | - M Mora
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - V Tigini
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - S La China
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - S Di Gregorio
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - D Gabriel
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - G Munz
- Department of Environmental and Civil and Environmental, University of Florence, Via Santa Marta 3, 50139, Firenze, Italy
| |
Collapse
|
11
|
Molino S, Fernández-Miyakawa M, Giovando S, Rufián-Henares JÁ. Study of antioxidant capacity and metabolization of quebracho and chestnut tannins through in vitro gastrointestinal digestion-fermentation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Prigione V, Trocini B, Spina F, Poli A, Romanisio D, Giovando S, Varese GC. Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters. Appl Microbiol Biotechnol 2018; 102:4203-4216. [DOI: 10.1007/s00253-018-8876-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
|
13
|
Optimization Technology of the LHS-1 Strain for Degrading Gallnut Water Extract and Appraisal of Benzene Ring Derivatives from Fermented Gallnut Water Extract Pyrolysis by Py-GC/MS. Molecules 2017; 22:molecules22122253. [PMID: 29261112 PMCID: PMC6149713 DOI: 10.3390/molecules22122253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022] Open
Abstract
Gallnut water extract (GWE) enriches 80~90% of gallnut tannic acid (TA). In order to study the biodegradation of GWE into gallic acid (GA), the LHS-1 strain, a variant of Aspergillus niger, was chosen to determine the optimal degradation parameters for maximum production of GA by the response surface method. Pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS) was first applied to appraise benzene ring derivatives of fermented GWE (FGWE) pyrolysis by comparison with the pyrolytic products of a tannic acid standard sample (TAS) and GWE. The results showed that optimum conditions were at 31 °C and pH of 5, with a 50-h incubation period and 0.1 g·L−1 of TA as substrate. The maximum yields of GA and tannase were 63~65 mg·mL−1 and 1.17 U·mL−1, respectively. Over 20 kinds of compounds were identified as linear hydrocarbons and benzene ring derivatives based on GA and glucose. The key benzene ring derivatives were 3,4,5-trimethoxybenzoic acid methyl ester, 3-methoxy-1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzoic acid hydrazide.
Collapse
|
14
|
Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 2015; 100:17-29. [DOI: 10.1007/s00253-015-7032-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
|
15
|
Jacobson K, van Diepeningen A, Evans S, Fritts R, Gemmel P, Marsho C, Seely M, Wenndt A, Yang X, Jacobson P. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS One 2015; 10:e0126977. [PMID: 25978429 PMCID: PMC4433119 DOI: 10.1371/journal.pone.0126977] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/09/2015] [Indexed: 11/24/2022] Open
Abstract
The hyper-arid western Namib Sand Sea (mean annual rainfall 0-17 mm) is a detritus-based ecosystem in which primary production is driven by large, but infrequent rainfall events. A diverse Namib detritivore community is sustained by minimal moisture inputs from rain and fog. The decomposition of plant material in the Namib Sand Sea (NSS) has long been assumed to be the province of these detritivores, with beetles and termites alone accounting for the majority of litter losses. We have found that a mesophilic Ascomycete community, which responds within minutes to moisture availability, is present on litter of the perennial Namib dune grass Stipagrostis sabulicola. Important fungal traits that allow survival and decomposition in this hyper-arid environment with intense desiccation, temperature and UV radiation stress are darkly-pigmented hyphae, a thermal range that includes the relatively low temperature experienced during fog and dew, and an ability to survive daily thermal and desiccation stress at temperatures as high as 50°C for five hours. While rainfall is very limited in this area, fog and high humidity provide regular periods (≥ 1 hour) of sufficient moisture that can wet substrates and hence allow fungal growth on average every 3 days. Furthermore, these fungi reduce the C/N ratio of the litter by a factor of two and thus detritivores, like the termite Psammotermes allocerus, favor fungal-infected litter parts. Our studies show that despite the hyper-aridity of the NSS, fungi are a key component of energy flow and biogeochemical cycling that should be accounted for in models addressing how the NSS ecosystem will respond to projected climate changes which may alter precipitation, dew and fog regimes.
Collapse
Affiliation(s)
- Kathryn Jacobson
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | | | - Sarah Evans
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
| | - Rachel Fritts
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Philipp Gemmel
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Chris Marsho
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Mary Seely
- Gobabeb Research and Training Centre, Gobabeb, Namibia
| | - Anthony Wenndt
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Xiaoxuan Yang
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Peter Jacobson
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| |
Collapse
|
16
|
Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:63-137. [PMID: 25911233 DOI: 10.1016/bs.aambs.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mila Marinović
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - April J M Liwanag
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jussi Sipilä
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Kristiina S Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Zhang L, Zhang ZZ, Zhou YB, Ling TJ, Wan XC. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
|
19
|
Negm NA, El Farargy AF, Mohammad IA, Zaki MF, Khowdiary MM. Synthesis and Inhibitory Activity of Schiff Base Surfactants Derived from Tannic Acid and Their Cobalt (II), Manganese (II) and Iron (III) Complexes Against Bacteria and Fungi. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1437-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Incidence of dsRNA mycoviruses in a collection of Aspergillus fumigatus isolates. Mycopathologia 2012; 174:323-6. [PMID: 22610906 DOI: 10.1007/s11046-012-9556-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
A collection of clinical and environmental isolates of the opportunistic human pathogen, Aspergillus fumigatus, were screened for the presence of mycoviruses and 6.6 % of 366 isolates contained dsRNA segments ranging in size from ~1.0 to 4.0 kbp. The dsRNAs were categorised into three different groups comprising bipartite dsRNAs, quadripartite dsRNAs, representative isolates of which have both been sequenced, and an uncharacterised mycovirus, whose genome apparently consists of four dsRNAs 1-2.5 kbp in size. Here, we describe dsRNA incidence in the A. fumigatus isolates examined, their provenance and also note that on occasion individual isolates were infected with two groups of different dsRNAs.
Collapse
|
21
|
Lv HP, Zhong QS, Lin Z, Wang L, Tan JF, Guo L. Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC–olfactometry. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.135] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Meijer M, Houbraken J, Dalhuijsen S, Samson R, de Vries R. Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilli. Stud Mycol 2011; 69:19-30. [PMID: 21892240 PMCID: PMC3161755 DOI: 10.3114/sim.2011.69.02] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Wild type Aspergillus niger isolates from different biotopes from all over the world were compared to each other and to the type strains of other black Aspergillus species with respect to growth and extracellular enzyme profiles. The origin of the A. niger isolate did not result in differences in growth profile with respect to monomeric or polymeric carbon sources. Differences were observed in the growth rate of the A. niger isolates, but these were observed on all carbon sources and not specific for a particular carbon source. In contrast, carbon source specific differences were observed between the different species. Aspergillus brasiliensis is the only species able to grow on D-galactose, and A. aculeatus had significantly better growth on Locus Bean gum than the other species. Only small differences were found in the extracellular enzyme profile of the A. niger isolates during growth on wheat bran, while large differences were observed in the profiles of the different black aspergilli. In addition, differences were observed in temperature profiles between the black Aspergillus species, but not between the A. niger isolates, demonstrating no isolate-specific adaptations to the environment. These data indicate that the local environment does not result in stable adaptations of A. niger with respect to growth profile or enzyme production, but that the potential is maintained irrespective of the environmental parameters. It also demonstrates that growth, extracellular protein and temperature profiles can be used for species identification within the group of black aspergilli.
Collapse
Affiliation(s)
- M. Meijer
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - J.A.M.P. Houbraken
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - S. Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R.A. Samson
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - R.P. de Vries
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Correspondence: Ronald P. de Vries,
| |
Collapse
|
23
|
Lim JM, Jamal A, Phoon X, Korhonen K, Coutts RHA. Incidence of Phlebiopsis gigantea large virus-1 in a collection of Phlebiopsis gigantea isolates. Arch Virol 2011; 156:2091-4. [DOI: 10.1007/s00705-011-1086-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/26/2011] [Indexed: 10/18/2022]
|
24
|
Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Stud Mycol 2011; 59:129-45. [PMID: 18490945 PMCID: PMC2275192 DOI: 10.3114/sim.2007.59.13] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present taxonomy of the black aspergilli reveals that there are 19
accepted taxa. However the identification of species of Aspergillus
section Nigri is often problematic in spite of the existence of
numerous methods proposed. An overview is provided of phenotypic and molecular
methods to identify the accepted species of the black aspergilli. Colony
morphology, conidial size and ornamentation of the ex type cultures is
presented in a pictorial overview. The temperature range of all species is
given and their growth characteristics on creatine agar and boscalid agar, a
medium which was developed as a selective medium for the isolation of A.
carbonarius are also shown. The extrolites produced by each species are
listed while the response of the Ehrlich reaction is described. The literature
on the various molecular methods to be used for species identification is
reviewed and a critical evaluation of the usefulness of various techniques and
genomic loci for species identification of black aspergilli is presented.
Collapse
Affiliation(s)
- R A Samson
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Govindaraj M, Muthukumar M, Raju GB. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes. ENVIRONMENTAL TECHNOLOGY 2010; 31:1613-1622. [PMID: 21275257 DOI: 10.1080/09593330.2010.482147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes has been investigated. The effect of the process variables, such as initial pH, current density, processing time, concentration of the electrolyte and anode materials, on the degradation of tannic acid was studied. During the various stages of electrolysis, parameters such as COD, chloride ion concentration and UV-Vis spectra were examined and discussed. The maximum chemical oxygen demand (COD) removal efficiency of 94% was achieved at pH 5, operated at the current density of 8.10 mA/cm2, electrolyte (NaCl) concentration of 0.1 M and at 60 min of electrolysis using graphite anodes. The experimental results showed that the electrochemical oxidation process could effectively reduce the COD from the tannic acid contaminated wastewater. An acidic pH showed the maximum reduction of COD compared with neutral and alkaline pH. Increase in current density, process time and electrolyte (NaCl) concentration with the increase in COD removal. Graphite anodes showed maximum removal of COD and better tannic acid degradation when compared with RuO2/IrO2/TaO2-coated titanium anodes.
Collapse
Affiliation(s)
- M Govindaraj
- Environmental Engineering and Technology Laboratory, Department of Environmental Sciences, Bharathiar University, Coimbatore - 641 046, India
| | | | | |
Collapse
|
26
|
Jamal A, Bignell EM, Coutts RHA. Complete nucleotide sequences of four dsRNAs associated with a new chrysovirus infecting Aspergillus fumigatus. Virus Res 2010; 153:64-70. [PMID: 20621139 DOI: 10.1016/j.virusres.2010.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 12/26/2022]
Abstract
A new double-stranded RNA (dsRNA) virus designated A. fumigatus chrysovirus (AfuCV), belonging to the family Chrysoviridae, has been identified in the filamentous fungus Aspergillus fumigatus. The virus was detected in five of 390 A. fumigatus isolates screened. Analysis of purified dsRNA revealed four distinct species 3560, 3159, 3006 and 2863 base pairs in length (dsRNAs 1-4) which were cloned and sequenced. Each dsRNA contains a single open reading frame (ORF) with short 5' and 3' untranslated regions containing strictly conserved termini. The deduced 1114 amino acid (aa) protein (molecular mass=128 kDa) encoded by the dsRNA1 ORF showed homology to the RNA-dependent RNA polymerase (RdRP) of viruses belonging to the Chrysoviridae. Eight motifs characteristic of RdRPs were identified. The dsRNA2 ORF encodes the putative coat protein subunit (953aa; molecular mass=107 kDa). The dsRNA3 and dsRNA4 ORFs respectively encode putative proteins (891aa, molecular mass=99 kDa) and (847aa, molecular mass=95 kDa), both of which have significant similarity to proteins encoded by comparable chrysovirus dsRNAs. The dsRNA profile, amino acid sequence alignments, and phylogenetic analyses all indicate that AfuCV is a new species within the family Chrysoviridae.
Collapse
Affiliation(s)
- Atif Jamal
- Division of Biology, Faculty of Natural Sciences Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
27
|
Li W, Li X, Zeng K. Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
van Diepeningen AD, Pál K, van der Lee TAJ, Hoekstra RF, Debets AJM. The het-c heterokaryon incompatibility gene in Aspergillus niger. ACTA ACUST UNITED AC 2008; 113:222-9. [PMID: 19015029 DOI: 10.1016/j.mycres.2008.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/22/2008] [Accepted: 10/13/2008] [Indexed: 11/15/2022]
Abstract
Heterokaryon incompatibility among Aspergillus niger strains is a widespread phenomenon that is observed as the inability to form stable heterokaryons. The genetic basis of heterokaryon incompatibility reactions is well established in some sexual filamentous fungi but largely unknown in presumed asexual species, such as A. niger. To test whether the genes that determine heterokaryon incompatibility in Neurospora crassa, such as het-c, vib-1 and pin-c, have a similar function in A. niger, we performed a short in silico search for homologues of these genes in the A. niger and several related genomes. For het-c, pin-c and vib-1 we did indeed identify putative orthologues. We then screened a genetically diverse worldwide collection of incompatible black Aspergilli for polymorphisms in the het-c orthologue. No size variation was observed in the variable het-c indel region that determines the specificity in N. crassa. Sequence comparison showed only minor variation in the number of glutamine coding triplets. However, introduction of one of the three N. crassa alleles (het-c2) in A. niger by transformation resulted in an abortive phenotype, reminiscent of the heterokaryon incompatibility in N. crassa. We conclude that although the genes required are present and the het-c homologue could potentially function as a heterokaryon incompatibility gene, het-c has no direct function in heterokaryon incompatibility in A. niger because the necessary allelic variation is absent.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramírez-Coronel A, Contreras-Esquivel JC. Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 2007; 76:47-59. [PMID: 17530245 DOI: 10.1007/s00253-007-1000-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 04/14/2007] [Accepted: 04/15/2007] [Indexed: 10/23/2022]
Abstract
In the last years, tannase has been the subject of a lot of studies due to its commercial importance and complexity as catalytic molecule. Tannases are capable of hydrolyzing complex tannins, which represent the main chemical group of natural anti-microbials occurring in the plants. The general outline of this work includes information of the substrates, the enzyme, and the applications. This review considers in its introduction the concepts and history of tannase and explores scientific and technological aspects. The "advances" trace the route from the general, molecular, catalytic, and functional information obtained under close to optimal conditions for microbial production through purification, description of the enzyme properties, and the commercial applications to the "perspectives" including expression studies, regulation, and potential uses; aspects related to the progress in our understanding of tannin biodegradation are also included.
Collapse
Affiliation(s)
- Cristóbal N Aguilar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and J. Cardenas s/n, Col. Republica Oriente, 25280, Saltillo, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
van Diepeningen AD, Debets AJM, Hoekstra RF. Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genet Biol 2006; 43:446-52. [PMID: 16546419 DOI: 10.1016/j.fgb.2006.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/23/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Approximately 10% of all examined 668 representatives of black Aspergillus species, independent of worldwide location, were infected with double-stranded RNA (dsRNA) mycoviruses. These isometric viruses (25-40 nm diameter) contained a variety of often multiple segments of different dsRNA sizes ranging from 0.8 to 4.4 kb in size. In one strain the virus shows clear visible effects on its host with non-sporulating sectors. We quantified the fitness costs of these and more 'cryptic' virus infections on mycelial growth rate and spore production, and on competitive ability with respect to other strains under different growth conditions. Mycovirus infection proved detrimental in all these measures. The reduced success in interference competition due to mycovirus infection belies co-evolution of mycovirus and host to a mutually beneficial symbiosis, like in killer virus systems in yeast and smut and agrees more to recent infections. For a stable virus infection frequency in the black Aspergillus population, fitness costs and spontaneous loss should be balanced with new infections. Implications of even small viral fitness effects combined with the observed transmission limits for host and mycovirus are discussed.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|