1
|
Marcos-Rodríguez R, Sobrino-Gómez P, Alcázar-Fuoli L, Alastruey-Izquierdo A, Ceballos-Atienza R, Cobo F. A fatal case of fungemia due to Fusarium thapsinum in a patient with lung cancer. Diagn Microbiol Infect Dis 2025; 113:116907. [PMID: 40408827 DOI: 10.1016/j.diagmicrobio.2025.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Fusarium thapsinum is an uncommon cause of invasive fungal disease. Only one case of a hematological patient has been described previously. Most of cases of Fusarium infection is keratitis affecting healthy people, but fungemia is usually produced in immunossupressed patients, especially in those with neutropenia and/or hematological malignancies. The treatment of this infection is difficult due to the fact that these fungi show high MICs to almost all antifungal drugs. We report a case of F. thapsinum fungemia with a fatal outcome, in a patient with lung cancer. The patient developed fever, mucositis and fungemia, and she rapidly worsened and died as a consequence of this infection.
Collapse
Affiliation(s)
| | - Paloma Sobrino-Gómez
- Department of Microbiology. University Hospital Virgen de las Nieves. Granada, Spain
| | - Laura Alcázar-Fuoli
- Mycology Reference Laboratory. National Centre for Microbiology. Health Institute Carlos III. Carretera Majadahonda-Pozuelo, Km 2. Majadahonda, Madrid, Spain; Centre for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, Health Institute Carlos III, CB21/13/00105), Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory. National Centre for Microbiology. Health Institute Carlos III. Carretera Majadahonda-Pozuelo, Km 2. Majadahonda, Madrid, Spain; Centre for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, Health Institute Carlos III, CB21/13/00105), Madrid, Spain
| | | | - Fernando Cobo
- Department of Microbiology. University Hospital Virgen de las Nieves. Granada, Spain.
| |
Collapse
|
2
|
Uzun Saylan BC, Yılmaz B, Öztürk VÖ, Atmaca H, Emingil G. Evaluation of annexin A1, carbonic anhydrase 1, and elongation factor 1-gamma levels in periodontal diseases. BMC Oral Health 2025; 25:676. [PMID: 40317015 PMCID: PMC12046864 DOI: 10.1186/s12903-025-06049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Periodontitis arises from dysbiotic subgingival microbiota and an unresolved inflammatory response. Annexin A1 (ANXA1), Carbonic Anhydrase I (CA1), and Elongation Factor 1-gamma (EF1-Ɣ) may play a role in periodontal inflammation and disease pathogenesis. This study aimed to investigate the levels of these molecules in gingival crevicular fluid (GCF) of individuals with different periodontal conditions. METHODS GCF samples were collected from 20 patients with Stage III Grade B periodontitis, 20 with Stage III Grade C periodontitis, 19 gingivitis patients, and 21 periodontally healthy individuals. ANXA1, CA1, and EF1-Ɣ levels were measured using ELISA. RESULTS Clinical parameters were significantly higher in periodontitis groups compared to gingivitis and healthy groups (p < 0.001). GCF EF1-Ɣ total amount differed among groups, with higher levels in gingivitis compared to periodontitis and healthy control groups (p < 0.001). Elevated levels of EF1-Ɣ were found in gingivitis compared to Stage III/B and Stage III/C periodontitis (p < 0.001). GCF ANXA1 and CA1 levels were similar across study groups (p > 0.05). CONCLUSION Within the limitations of this study, it might be suggested that the decreased levels of EF1-Ɣ in diseased sites of periodontitis and its elevated levels in gingivitis are associated with the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
| | - Büşra Yılmaz
- Faculty of Dentistry, Department of Periodontology, Ege University, Izmir, Turkey
| | - Veli Özgen Öztürk
- Faculty of Dentistry, Department of Periodontology, Aydın Adnan Menderes University, Aydın, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Gülnur Emingil
- Faculty of Dentistry, Department of Periodontology, İstinye University, Istanbul, Turkey.
| |
Collapse
|
3
|
Erima S, Nyine M, Edema R, Nkuboye A, Habiba N, Candiru A, Paparu P. Molecular Characterisation of Fusarium Species Causing Common Bean Root Rot in Uganda. J Fungi (Basel) 2025; 11:283. [PMID: 40278104 PMCID: PMC12028566 DOI: 10.3390/jof11040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Recently, Fusarium root rot (FRR)-like symptoms were observed in Uganda's agroecology zones, prompting the National Agricultural Organisation (NARO) to conduct a disease survey. The survey reports indicated FRR as the second most prevalent root rot disease of common bean in Uganda after Southern blight. Ninety nine Fusarium spp. strains were obtained from samples collected during the surveys. The strains were morphologically and pathogenically characterised and confirmed to cause Fusarium root rot as observed in the field. However, molecular characterization of the strains was not conducted. In this study, therefore, 80 of the strains were characterized using partial sequences of translation elongation factor 1-alpha (TEF-1α) gene, beta tubulin (β tubulin) gene and internal transcribed spacers (ITS) region of ribosomal RNA to determine species diversity. High-quality Sanger sequences from the target genes were compared to the sequences from Fusarium species available in the National Centre for Biotechnology Information coding sequences (NCBI-CDS) database to determine the most likely species the strains belonged. The sequences from our strains were deposited into the NCBI gene bank under ID#288420, 2883276, 2873058 for TEF-1α, β tubulin and ITS respectively. The Fusarium species identified included; F. oxysporum, F. solani, F. equiseti F. delphinoides, F. commune, F. subflagellisporum, F. fabacearum, F. falciforme, F. brevicaudatum, F. serpentimum, F. fredkrugeri and F. brachygibbosum. The diversity of these Fusarium species needs to be taken into consideration when developing breeding programs for management of the disease since currently there is no variety of common bean resistant to FRR in Uganda.
Collapse
Affiliation(s)
- Samuel Erima
- National Agricultural Research Organization, National Crops Resources Research Institute, Namulonge, Kampala P.O. Box 7084, Uganda; (A.N.); (A.C.); (P.P.)
- Department of Crop Science and Horticulture, School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (R.E.); (N.H.)
- Faculty of Agriculture and Environmental Sciences, Muni University, Arua P.O. Box 725, Uganda
| | - Moses Nyine
- Platain Breeding Program, International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria;
| | - Richard Edema
- Department of Crop Science and Horticulture, School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (R.E.); (N.H.)
| | - Allan Nkuboye
- National Agricultural Research Organization, National Crops Resources Research Institute, Namulonge, Kampala P.O. Box 7084, Uganda; (A.N.); (A.C.); (P.P.)
| | - Nalule Habiba
- Department of Crop Science and Horticulture, School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (R.E.); (N.H.)
| | - Agnes Candiru
- National Agricultural Research Organization, National Crops Resources Research Institute, Namulonge, Kampala P.O. Box 7084, Uganda; (A.N.); (A.C.); (P.P.)
| | - Pamela Paparu
- National Agricultural Research Organization, National Crops Resources Research Institute, Namulonge, Kampala P.O. Box 7084, Uganda; (A.N.); (A.C.); (P.P.)
| |
Collapse
|
4
|
Petrović K, Orzali L, Krsmanović S, Valente MT, Tolimir M, Pavlov J, Riccioni L. Genetic Diversity and Pathogenicity of the Fusarium Species Complex on Soybean in Serbia. PLANT DISEASE 2024; 108:1851-1860. [PMID: 38311795 DOI: 10.1094/pdis-11-23-2450-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Using morphological and cultural characteristics for identification, 36 Fusarium isolates were recovered from diseased roots, stems, and seeds of soybean from several localities throughout Vojvodina Province, Serbia. Based on molecular characterization, 12 Fusarium species were identified: F. acuminatum, F. avenaceum, F. commune, F. equiseti, F. graminearum, F. incarnatum, F. oxysporum, F. proliferatum, F. solani, F. sporotrichioides, F. subglutinans, and F. tricinctum. The elongation factor 1-α-based phylogeny grouped the isolates into 12 well-supported clades, but polymorphisms among sequences in some clades suggested the use of the species complex concept: (i) F. incarnatum-equiseti species complex (FIESC)-F. incarnatum and F. equiseti; (ii) F. oxysporum species complex (FOSC)-F. oxysporum; (iii) F. solani species complex (FSSC)-F. solani; and (iv) F. acuminatum/F. avenaceum/F. tricinctum species complex (FAATSC)-F. acuminatum, F. avenaceum, and F. tricinctum. Pathogenicity tests showed that the most aggressive species causing soybean seed rot were F. sporotrichioides, F. graminearum, FIESC, and F. avenaceum. Furthermore, F. subglutinans, FSSC, and F. proliferatum showed a high percentage of pathogenicity on soybean seeds (80 to 100%), whereas variability in pathogenicity occurred within isolates of F. tricinctum. FOSC, F. commune, and F. acuminatum had the lowest pathogenicity. To our knowledge, this is the first study of the characterization of Fusarium species on soybean in Serbia. This study provides valuable information about the composition of Fusarium species and pathogenicity that will be used in further research on soybean resistance to Fusarium-based diseases.
Collapse
Affiliation(s)
- Kristina Petrović
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
- BioSense Institute, University of Novi Sad, Novi Sad 21001, Serbia
| | - Laura Orzali
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy
| | | | - Maria Teresa Valente
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy
| | - Miodrag Tolimir
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
| | - Jovan Pavlov
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
| | - Luca Riccioni
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy (deceased)
| |
Collapse
|
5
|
Vetrova S, Alyokhina K, Engalycheva I, Kozar E, Mukhina K, Sletova M, Krivenkov L, Tikhonova T, Kameneva A, Frolova S, Chizhik V, Martynov V. Identification and Pathogenicity of Fusarium Species Associated with Onion Basal Rot in the Moscow Region of Russian Federation. J Fungi (Basel) 2024; 10:331. [PMID: 38786686 PMCID: PMC11121879 DOI: 10.3390/jof10050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Fusarium basal rot of onions causes large losses during storage of commercial production of onion bulbs, which in turn adversely affects the food market situation in the off-season period. There are no data on the composition of Fusarium spp., which causes onion basal rot in the Russian Federation. Therefore, our research was aimed at Fusarium spp. causing onion basal rot in the Moscow Region of the Russian Federation and studying the pathogenicity of these species for the host plant. We studied 20 isolates of Fusarium spp. collected from affected mature bulbs and seed bulbs. Species identification of the isolates was carried out using analysis of the nucleotide sequences of the three genetic loci ITS, tef1 and rpb2, as well as was based on the macro- and micromorphological characteristics of these isolates. As a result, the species F. annulatum (F. fujikuroi species complex), F. oxysporum (F. oxysporum species complex), F. acuminatum (F. tricinctum species complex) and F. solani (F. solani species complex) were identified to involve in the pathogenesis of Fusarium basal rot. We have shown for the first time that the species F. annulatum and F. acuminatum are highly aggressive and capable of causing onion basal rot. The predominant species were F. annulatum and F. oxysporum. The proportion of these species in the total number of analyzed isolates was 60% and 25%, respectively. The largest proportion (33%) of highly aggressive on mature bulbs isolates was found in the species F. annulatum. The data obtained provide practical insights for developing strategies to manage Fusarium fungi responsible for onion basal rot Moscow Region of the Russian Federation. In addition, data about species composition and aggressive isolates may be used in onion breeding for resistance to Fusarium basal rot.
Collapse
Affiliation(s)
- Svetlana Vetrova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Ksenia Alyokhina
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Irina Engalycheva
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Elena Kozar
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Kseniya Mukhina
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Maria Sletova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Leonid Krivenkov
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Tatyana Tikhonova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Alina Kameneva
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Svetlana Frolova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Vera Chizhik
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
- Federal State Budgetary Scientific Institution All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| | - Viktor Martynov
- Federal State Budgetary Scientific Institution All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| |
Collapse
|
6
|
Engalycheva I, Kozar E, Frolova S, Vetrova S, Tikhonova T, Dzhos E, Engalychev M, Chizhik V, Martynov V, Shingaliev A, Dudnikova K, Dudnikov M, Kostanchuk Y. Fusarium Species Causing Pepper Wilt in Russia: Molecular Identification and Pathogenicity. Microorganisms 2024; 12:343. [PMID: 38399747 PMCID: PMC10893445 DOI: 10.3390/microorganisms12020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium wilt pathogens represent an ongoing threat to pepper production worldwide. This is the first report providing data on the molecular identification of Fusarium fungi that cause wilt in pepper in the southern regions of Russia. Monitoring of the Fusarium infection on pepper was carried out in 2019-2022 in two economically important regions of this culture production: the Krasnodar Krai and Crimea. Based on a phylogenetic analysis of the translation elongation factor (EF1a) and the internal transcribed spacer (ITS), as well as the macro- and micromorphological characteristics of the fungi, the causative agents of Fusarium wilt have been identified. The causative agents identified as representatives of the Fusarium species composition included: F. clavus, F. solani, F. oxysporum, F. verticillioides, F. commune, F. torulosum, and F. sporotrichioides. Depending on the region, the specifics of biodiversity and the ratio of these species in pathocomplexes were noted. In Crimea, wilting could be attributed to all of the identified species; in the Krasnodar Krai, F. verticillioides and F. clavus were found to contribute to wilting. The pathogenicity test showed that the pathogens of pepper wilting in Russia, in addition to the already known F. oxysporum and F. solani, are the species F. clavus and F. verticillioides. This is the first report on the ability of these species to cause Fusarium wilt in pepper cultures. The obtained data will be of practical value for the development of biological control measures for fungi of the genus Fusarium, which cause pepper wilt in areas of industrial production and seed production. In addition, data on species composition and aggressive isolates will be used in a pepper breeding program for resistance to Fusarium wilt.
Collapse
Affiliation(s)
- Irina Engalycheva
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Elena Kozar
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Svetlana Frolova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Svetlana Vetrova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Tatyana Tikhonova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Elena Dzhos
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Myazar Engalychev
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
| | - Vera Chizhik
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), 143072 Vniissok, Russia; (E.K.); (S.F.); (S.V.); (T.T.); (E.D.); (M.E.); (V.C.)
- State Budgetary Scientific Institution Federal, All-Russian Research Institute of Agricultural Biotechnology (FSBSI ARRIAB), 127550 Moscow, Russia; (V.M.); (A.S.); (K.D.); (M.D.)
| | - Viktor Martynov
- State Budgetary Scientific Institution Federal, All-Russian Research Institute of Agricultural Biotechnology (FSBSI ARRIAB), 127550 Moscow, Russia; (V.M.); (A.S.); (K.D.); (M.D.)
| | - Andrey Shingaliev
- State Budgetary Scientific Institution Federal, All-Russian Research Institute of Agricultural Biotechnology (FSBSI ARRIAB), 127550 Moscow, Russia; (V.M.); (A.S.); (K.D.); (M.D.)
| | - Ksenia Dudnikova
- State Budgetary Scientific Institution Federal, All-Russian Research Institute of Agricultural Biotechnology (FSBSI ARRIAB), 127550 Moscow, Russia; (V.M.); (A.S.); (K.D.); (M.D.)
- Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia
| | - Maksim Dudnikov
- State Budgetary Scientific Institution Federal, All-Russian Research Institute of Agricultural Biotechnology (FSBSI ARRIAB), 127550 Moscow, Russia; (V.M.); (A.S.); (K.D.); (M.D.)
| | - Yulia Kostanchuk
- Federal State Budget Scientific Institution, Research Institute of Agriculture of Crimea, 295034 Simferopol, Russia;
| |
Collapse
|
7
|
Han S, Wang M, Ma Z, Raza M, Zhao P, Liang J, Gao M, Li Y, Wang J, Hu D, Cai L. Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Stud Mycol 2023; 104:87-148. [PMID: 37351543 PMCID: PMC10282163 DOI: 10.3114/sim.2022.104.02] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 11/26/2023] Open
Abstract
Fusarium species are important cereal pathogens that cause severe production losses to major cereal crops such as maize, rice, and wheat. However, the causal agents of Fusarium diseases on cereals have not been well documented because of the difficulty in species identification and the debates surrounding generic and species concepts. In this study, we used a citizen science initiative to investigate diseased cereal crops (maize, rice, wheat) from 250 locations, covering the major cereal-growing regions in China. A total of 2 020 Fusarium strains were isolated from 315 diseased samples. Employing multi-locus phylogeny and morphological features, the above strains were identified to 43 species, including eight novel species that are described in this paper. A world checklist of cereal-associated Fusarium species is provided, with 39 and 52 new records updated for the world and China, respectively. Notably, 56 % of samples collected in this study were observed to have co-infections of more than one Fusarium species, and the detailed associations are discussed. Following Koch's postulates, 18 species were first confirmed as pathogens of maize stalk rot in this study. Furthermore, a high-confidence species tree was constructed in this study based on 1 001 homologous loci of 228 assembled genomes (40 genomes were sequenced and provided in this study), which supported the "narrow" generic concept of Fusarium (= Gibberella). This study represents one of the most comprehensive surveys of cereal Fusarium diseases to date. It significantly improves our understanding of the global diversity and distribution of cereal-associated Fusarium species, as well as largely clarifies the phylogenetic relationships within the genus. Taxonomic novelties: New species: Fusarium erosum S.L. Han, M.M. Wang & L. Cai, Fusarium fecundum S.L. Han, M.M. Wang & L. Cai, Fusarium jinanense S.L. Han, M.M. Wang & L. Cai, Fusarium mianyangense S.L. Han, M.M. Wang & L. Cai, Fusarium nothincarnatum S.L. Han, M.M. Wang & L. Cai, Fusarium planum S.L. Han, M.M. Wang & L. Cai, Fusarium sanyaense S.L. Han, M.M. Wang & L. Cai, Fusarium weifangense S.L. Han, M.M. Wang & L. Cai. Citation: Han SL, Wang MM, Ma ZY, Raza M, Zhao P, Liang JM, Gao M, Li YJ, Wang JW, Hu DM, Cai L (2023). Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Studies in Mycology 104: 87-148. doi: 10.3114/sim.2022.104.02.
Collapse
Affiliation(s)
- S.L. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - M.M. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Z.Y. Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - J.M. Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - M. Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - Y.J. Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - J.W. Wang
- Institute of Biology Co., Ltd., Henan Academy of Science, Zheng Zhou 450008, Henan, P. R. China;
| | - D.M. Hu
- College of Bioscience & Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| |
Collapse
|
8
|
Qiu HL, Fox EGP, Qin CS, Yang H, Tian LY, Wang DS, Xu JZ. First record of Fusarium concentricum (Hypocreales: Hypocreaceae) isolated from the moth Polychrosis cunninhamiacola (Lepidoptera: Tortricidae) as an entomopathogenic fungus. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:2. [PMID: 36916278 PMCID: PMC10011878 DOI: 10.1093/jisesa/iead008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fusarium concentricum Nirenberg & O' Donnell (Ascomycota: Hypocreales) is a fungal species known to infect plants, but never reported as entomopathogenic. Polychrosis cunninhamiacola Liu et Pei (Lepidoptera: Tortricidae: Olethreutinae) is a major and widespread insect pest causing economic losses to cultivated Chinese fir Cunninghamia lanceolata (Lamb.) Hook. It is routinely controlled by extensive use of chemical insecticides, which is perceived as environmentally unsustainable. During March and April of 2019-2020, muscardine cadavers of larvae and pupae of P. cunninhamiacola infected with growing fungus were collected in a fir forest in northern Guangdong Province, China. Conidia were isolated and cultured on PDA medium, from which the fungal strain was identified as F. concentricum FCPC-L01 by morphology and by sequence alignment match with Tef-1α gene. Pathogenicity bioassays at the conidial concentration 1 × 107 revealed P. cunninhamiacola adults and Danaus chrysippus (L.) (Lepidoptera: Nymphalidae) larvae are sensitive to the fungal infection, but not the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). We believe results indicate this fungal strain might be applicable against specific target insect pests. As this is the first record of a natural infection caused by F. concentricum in insects, we propose host specificity tests should be done to evaluate its potential as a biocontrol agent.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Eduardo G P Fox
- Programa de Pós-Graduação em Ambiente e Sociedade (PPGAS), Universidade Estadual de Goiás (UEG), Quirinópolis, Goiás 75860-000, Brazil
| | - Chang-Sheng Qin
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Hua Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Long-Yan Tian
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - De-Sen Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
9
|
Evaluation of Candidate Reference Genes for Gene Expression Analysis in Wild Lamiophlomis rotata. Genes (Basel) 2023; 14:genes14030573. [PMID: 36980847 PMCID: PMC10048348 DOI: 10.3390/genes14030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lamiophlomis rotata (Benth.) Kudo is a perennial and unique medicinal plant of the Qinghai–Tibet Plateau. It has the effects of diminishing inflammation, activating blood circulation, removing blood stasis, reducing swelling, and relieving pain. However, thus far, reliable reference gene identifications have not been reported in wild L. rotata. In this study, we identified suitable reference genes for the analysis of gene expression related to the medicinal compound synthesis in wild L. rotata subjected to five different-altitude habitats. Based on the RNA-Seq data of wild L. rotata from five different regions, the stability of 15 candidate internal reference genes was analyzed using geNorm, NormFinder, BestKeeper, and RefFinder. TFIIS, EF-1α, and CYP22 were the most suitable internal reference genes in the leaves of L. rotata from different regions, while OBP, TFIIS, and CYP22 were the optimal reference genes in the roots of L. rotata. The reference genes identified here would be very useful for gene expression studies with different tissues in L. rotata from different habitats.
Collapse
|
10
|
Udonsom R, Reamtong O, Adisakwattana P, Popruk S, Jirapattharasate C, Nishikawa Y, Inpankaew T, Toompong J, Kotepui M, Mahittikorn A. Immunoproteomics to identify species-specific antigens in Neospora caninum recognised by infected bovine sera. Parasite 2022; 29:60. [PMID: 36562441 PMCID: PMC9879140 DOI: 10.1051/parasite/2022059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bovine neosporosis is a disease of concern due to its global distribution and significant economic impact through massive losses in the dairy and meat industries. To date, there is no effective chemotherapeutic drug or vaccine to prevent neosporosis. Control of this disease is therefore dependent on efficient detection tests that may affect treatment management strategies. This study was conducted to identify the specific immunoreactive proteins of Neospora caninum tachyzoites recognised by sera from cattle infected with N. caninum, Toxoplasma gondii, Cryptosporidium parvum, Babesia bovis and B. bigemina, and by sera from uninfected cattle using two-DE dimensional gel electrophoresis (2-DE) combined with immunoblot and mass spectrometry (LC-MS/MS). Among 70 protein spots that reacted with all infected sera, 20 specific antigenic spots corresponding to 14 different antigenic proteins were recognised by N. caninum-positive sera. Of these immunoreactive antigens, proteins involved in cell proliferation and invasion process were highly immunogenic, including HSP90-like protein, putative microneme 4 (MIC4), actin, elongation factor 1-alpha and armadillo/beta-catenin-like repeat-containing protein. Interestingly, we discovered an unnamed protein product, rhoptry protein (ROP1), possessing strong immunoreactivity against N. caninum but with no data on function available. Moreover, we identified cross-reactive antigens among these apicomplexan parasites, especially N. caninum, T. gondii and C. parvum. Neospora caninum-specific immunodominant proteins were identified for immunodiagnosis and vaccine development. The cross-reactive antigens could be evaluated as potential common vaccine candidates or drug targets to control the diseases caused by these apicomplexan protozoan parasites.
Collapse
Affiliation(s)
- Ruenruetai Udonsom
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Onrapak Reamtong
-
Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Poom Adisakwattana
-
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Supaluk Popruk
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Charoonluk Jirapattharasate
-
Department of Pre-clinic and Animal Science, Faculty of Veterinary Science, Mahidol University Salaya Nakhon Pathom 73170 Thailand
| | - Yoshifumi Nishikawa
-
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080-8555 Japan
| | - Tawin Inpankaew
-
Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University Bangkok 10900 Thailand
| | - Jitbanjong Toompong
-
Department of Parasitology, Faculty of Veterinary Medicine, Mahanakorn University of Technology Bangkok 10530 Thailand
| | - Manas Kotepui
-
Medical Technology, School of Allied Health Sciences, Walailak University Tha Sala Nakhon Si Thammarat 80160 Thailand
| | - Aongart Mahittikorn
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
,Corresponding author:
| |
Collapse
|
11
|
Wang Y, Wang R, Sha Y. Distribution, pathogenicity and disease control of Fusarium tricinctum. Front Microbiol 2022; 13:939927. [PMID: 35958126 PMCID: PMC9360978 DOI: 10.3389/fmicb.2022.939927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Plant pathogenic fungi such as Fusarium tricinctum cause various plant diseases worldwide, especially in temperate regions. In cereals, F. tricinctum is one of the most common species causing Fusarium head blight (FHB) and root rot. Infection with F. tricinctum results in high yield losses and reduction in quality, mainly due to mycotoxin contamination of grain. Mycotoxins produced by F. tricinctum, such as enniatins (ENs) and moniliformin (MON), which are the most studied mycotoxins, have been reported to have multiple toxic effects on humans and animals. Although chemical control of Fusarium infection has been applied to grains, it is not always effective in controlling disease or reducing the level of mycotoxins in wheat grains. To the contrary, chemical control may significantly increase infection of F. tricinctum in fungicide-treated plots after treatment. Our studies show that the bacterium Bacillus amyloliquefaciens, has good control effects against F. tricinctum. Therefore, its use as a biological control agent against various plant pathogens may be an effective strategy to control the spread of Fusarium pathogens. Here, we conduct a review of the literature involving this plant pathogen, its diversity, virulence, and methods to control.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Ruoyu Wang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Ruoyu Wang,
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|
12
|
Velásquez-Zapata V, Palacio-Rúa K, Cano LE, Gaviria-Rivera A. Assessment of genotyping markers in the molecular characterization of a population of clinical isolates of Fusarium in Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:18-30. [PMID: 35471167 PMCID: PMC9059811 DOI: 10.7705/biomedica.5869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Fusarium is a very heterogeneous group of fungi, difficult to classify, with a wide range of living styles, acting as saprophytes, parasites of plants, or pathogens for humans and animals. Prevalence of clinical fusariosis and lack of effective treatments have increased the interest in the precise diagnosis, which implies a molecular characterization of Fusarium populations. OBJECTIVE We compared different genotyping markers in their assessment of the genetic variability and molecular identification of clinical isolates of Fusarium. MATERIALS AND METHODS We evaluated the performance of the fingerprinting produced by two random primers: M13, which amplifies a minisatellite sequence, and (GACA)4, which corresponds to a simple repetitive DNA sequence. Using the Hunter Gaston Discriminatory Index (HGDI), an analysis of molecular variance (AMOVA), and a Mantel test, the resolution of these markers was compared to the reference sequencing-based and PCR genotyping methods. RESULTS The highest HGDI value was associated with the M13 marker followed by (GACA)4. AMOVA and the Mantel tests supported a strong correlation between the M13 classification and the reference method given by the partial sequencing of the transcription elongation factor 1-alpha (TEF1-α) and rDNA 28S. CONCLUSION The strong correlation between the M13 classification and the sequencingbased reference together with its higher resolution demonstrates its adequacy for the characterization of Fusarium populations.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Katherine Palacio-Rúa
- Laboratorio Integrado de Medicina Especializada, Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Medellín, Colombia.
| | - Luz E Cano
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| | - Adelaida Gaviria-Rivera
- Escuela de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia.
| |
Collapse
|
13
|
Żelechowski M, Molcan T, Bilska K, Myszczyński K, Olszewski J, Karpiesiuk K, Wyrębek J, Kulik T. Patterns of Diversity of Fusarium Fungi Contaminating Soybean Grains. Toxins (Basel) 2021; 13:884. [PMID: 34941721 PMCID: PMC8706617 DOI: 10.3390/toxins13120884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Soybean is an important, high protein source of food and feed. However, like other agricultural grains, soybean may pose a risk to human and animal health due to contamination of the grains with toxigenic Fusaria and associated mycotoxins. In this study, we investigated the diversity of Fusaria on a panel of 104 field isolates obtained from soybean grains during the growing seasons in 2017-2020. The results of species-specific PCR analyses showed that Fusarium avenaceum was the most common (n = 40) species associated with soybean grains in Poland, followed by F. equiseti (n = 22) and F. sporotrichioides (11 isolates). A set of isolates, which was not determined based on PCR analyses, was whole genome sequenced. Multiple sequence analyses using tef-1α, top1, rpb1, rpb2, tub2, pgk, cam and lsu genes showed that most of them belonged to Equiseti clade. Three cryptic species from this clade: F. clavum, F. flagelliforme and FIESC 31 (lacking Latin binomial) were found on soybean for the first time. This is the first report demonstrating the prevalence of Fusaria on soybean grains in Poland.
Collapse
Affiliation(s)
- Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Jacek Olszewski
- Experimental Education Unit, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Joanna Wyrębek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| |
Collapse
|
14
|
Hafez M, Abdelmagid A, Aboukhaddour R, Adam LR, Daayf F. Fusarium Root Rot Complex in Soybean: Molecular Characterization, Trichothecene Formation, and Cross-Pathogenicity. PHYTOPATHOLOGY 2021; 111:2287-2302. [PMID: 33938238 DOI: 10.1094/phyto-03-21-0083-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soybean is threatened by many pathogens that negatively affect this crop's yield and quality, such as various Fusarium species that cause wilting and root rot diseases. Fusarium root rot (FRR) in soybean can be caused by F. graminearum and other Fusarium spp. that are associated with Fusarium head blight (FHB) in cereals. Therefore, it was important to inquire whether Fusarium pathogens from soybean can cause disease in wheat and vice versa. Here, we investigated the FRR complex in Manitoba (Canada) from symptomatic plants, using both culture- and molecular-based methods. We developed a molecular diagnostic toolkit to detect and differentiate between several Fusarium spp. involved in FHB and FRR, then we evaluated cross-pathogenicity of selected Fusarium isolates collected from soybean and wheat, and the results indicate that isolates recovered from one host can infect the other host. Trichothecene production by selected Fusarium spp. was also analyzed chemically via liquid chromatography mass spectrometry in both soybean (root) and wheat (spike) tissues. Trichothecenes were also analyzed in soybean seeds from plants with FRR to check the potentiality of trichothecene translocation from infected roots to the seeds. All of the tested Fusarium isolates were capable of producing trichothecenes in wheat spikes and soybean roots, but no trichothecenes were detected in soybean seeds. This study provided evidence, for the first time, that trichothecenes were produced by several Fusarium spp. (F. cerealis, F. culmorum, and F. sporotrichioides) during FRR development in soybean.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez, Egypt
| | - Ahmed Abdelmagid
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Department of Plant Pathology, Assiut University, Assiut, 71515, Egypt
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
| | - Lorne R Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| |
Collapse
|
15
|
Phylogenetic analysis and growth profiles of Fusarium incarnatum-equiseti species complex strains isolated from Tunisian cereals. Int J Food Microbiol 2021; 353:109297. [PMID: 34153829 DOI: 10.1016/j.ijfoodmicro.2021.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) is a phylogenetically rich complex. It includes more than 30 cryptic phylogenetic species, making morphological identification problematic. FIESC has previously been detected in Tunisian cereals, but knowledge on the phylogeny and the ecophysiology of their species is lacking. In this work a phylogenetic analysis was performed using partial sequences of the translation elongation factor 1a gene (EF1a) of three FIESC strains isolated from barley and wheat from Tunisia, situated south in the Mediterranean basin, and additional strains from other countries. The results indicated that all Tunisian strains clustered with FIESC 5 group (F. clavum) together with other Spanish FIESC 5 strains also isolated from cereals. Growth rate profiles of the Tunisian strains were also determined on wheat and sorghum based media at a range of temperatures (15, 20, 25, 30, 35 and 40 °C) and water potential values (-0.7, -2.8, -7.0, and -9.8 MPa, corresponding to 0.995, 0.98, 0.95 and 0.93 aw values). Optimal growth was observed at 20-30 °C and between -0.7 and -7.0 MPa on both substrates (wheat and sorghum). The highest growth rate for the three strains was seen at 25 °C combined with -2.8 MPa. The comparison between the growth profiles of Tunisian and Spanish FIESC 5 strains showed similar trends with some interesting differences regarding temperature and water potential factors. Tunisian strains seem to perform better between 15 and 30 °C and, notably, at even lower water potentials included -9.8 Mpa. This might suggest that tolerance to low water potentials might be for Tunisian strains a more important selective clue than to higher temperatures. These results appeared to be consistent with a population well adapted to the present climatic conditions and predicted scenarios for North Africa.
Collapse
|
16
|
Ma L, Jiang T, Liu X, Xiao H, Peng Y, Zhang W. Evaluation of candidate reference genes for gene expression analysis in the brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). PLoS One 2021; 16:e0251920. [PMID: 34081693 PMCID: PMC8174695 DOI: 10.1371/journal.pone.0251920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
The brassica leaf beetle Phaedon brassicae is a notorious defoliator of cruciferous vegetables. However, few molecular studies of this pest have been conducted due to limited sequence data. Recently, RNA sequencing has offered a powerful platform to generate numerous transcriptomic data, which require RT-qPCR to validate target gene expression. The selection of reliable reference genes to normalize RT-qPCR data is a prerequisite for gene expression analysis. In the present study, the expression stabilities of eight candidate reference genes under biotic conditions (development stages and various tissues) and abiotic perturbations (thermal stress and pesticide exposure) were evaluated using four different statistical algorithms. The optimal suites of reference genes were recommended for the respective experimental conditions. For tissue expression analysis, RPL32 and EF-1α were recommended as the suitable reference genes. RPL19 and TBP were the optimal reference genes across different developmental stages. RPL32 and TBP were identified as the most suitable references for thermal stress. Furthermore, RPL32 and RPL19 were ranked as the best references for insecticide exposure. This work provides a systematic exploration of the optimal reference genes for the respective experimental conditions, and our findings would facilitate molecular studies of P. brassicae.
Collapse
Affiliation(s)
- Long Ma
- College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Ting Jiang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Xiangya Liu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
17
|
Jedidi I, Mateo EM, Marín P, Jiménez M, Said S, González-Jaén MT. Contamination of Wheat, Barley, and Maize Seeds with Toxigenic Fusarium Species and Their Mycotoxins in Tunisia. J AOAC Int 2021; 104:959-967. [DOI: 10.1093/jaoacint/qsab020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023]
Abstract
Abstract
Background
Fusarium is a worldwide distributed fungal genus. It includes different species pathogenic to cereals among others crops. Some of these species can also produce toxic compounds toward animals and humans.
Objective
In this work, occurrence of fumonisins B1+B2, zearalenone, type A trichothecenes (T-2 and HT-2 toxins), and type B trichothecenes (deoxynivalenol[DON] and nivalenol[NIV]) was studied in 65 samples of stored and freshly harvested wheat, barley, and maize collected in Tunisia.
Methods
Mycotoxins analyses were performed by using gas chromatography for type B trichothecenes and HPLC for other mycotoxins. Obtained results were compared with the presence of mycotoxigenic species considered responsible for their synthesis by using species-specific polymerase chain reaction (PCR).
Results
Fumonisins occurred in 20.83% of wheat, 40% of barley, and 57.14% of maize samples, at levels exceeding European limits and suggesting a risk in Tunisian cereals, especially maize. Zearalenone, DON, NIV, and T-2+HT-2 toxins were detected at lower values in only wheat and barley samples. PCR protocols showed the predominance of F. verticillioides especially in maize, and occurrence of F. equiseti and F. graminearum in wheat and barley, and F. proliferatum in only two maize samples. A very consistent correlation was found between the detection of F. verticillioides and the contamination by fumonisins, as well as between the presence of F. graminearum and the contamination by zearalenone, DON, and NIV in the analyzed cereals.
Conclusions
Consequently, the detection of Fusarium species with the current PCR assays strategy in wheat, barley, and maize grains may be considered predictive of their potential mycotoxin risk in these matrices.
Highlights
This work is the first to report information on the occurrence of fumonisins, trichothecene, and ZEN, together with their potentially producing Fusarium species in wheat, barley, and maize in Tunisia. The high level of fumonisins in cereals, especially maize, stresses the importance of the control and the regularization of these mycotoxins for food safety.
Collapse
Affiliation(s)
- Ines Jedidi
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Av. Mohamed El Karoui, Sousse, Tunisia
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, Spain
| | - Patricia Marín
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, Spain
| | - Salem Said
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Av. Mohamed El Karoui, Sousse, Tunisia
| | - María T González-Jaén
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
| |
Collapse
|
18
|
Laraba I, McCormick SP, Vaughan MM, Geiser DM, O’Donnell K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS One 2021; 16:e0245037. [PMID: 33434214 PMCID: PMC7802971 DOI: 10.1371/journal.pone.0245037] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum, Graminearum, Longipes, Novel, Sambucinum, and Sporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta, the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum, Longipes, Novel, Sambucinum, and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Collapse
Affiliation(s)
- Imane Laraba
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Susan P. McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Martha M. Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, PA, United States of America
| | - Kerry O’Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| |
Collapse
|
19
|
Chen J, Li Z, Cheng Y, Gao C, Guo L, Wang T, Xu J. Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls. J Fungi (Basel) 2020; 6:E312. [PMID: 33255427 PMCID: PMC7711896 DOI: 10.3390/jof6040312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
20
|
Urbaniak M, Waśkiewicz A, Koczyk G, Błaszczyk L, Stępień Ł. Divergence of Beauvericin Synthase Gene among Fusarium and Trichoderma Species. J Fungi (Basel) 2020; 6:E288. [PMID: 33203083 PMCID: PMC7712144 DOI: 10.3390/jof6040288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Beauvericin (BEA) is a cyclodepsipeptide mycotoxin, showing insecticidal, antibiotic and antimicrobial activities, as well as inducing apoptosis of cancer cell lines. BEA can be produced by multiple fungal species, including saprotrophs, plant, insect and human pathogens, particularly belonging to Fusarium, Beauveria and Isaria genera. The ability of Trichoderma species to produce BEA was until now uncertain. Biosynthesis of BEA is governed by a non-ribosomal peptide synthase (NRPS), known as beauvericin synthase (BEAS), which appears to present considerable divergence among different fungal species. In the present study we compared the production of beauvericin among Fusarium and Trichoderma strains using UPLC methods. BEAS fragments were sequenced and analyzed to examine the level of the gene's divergence between these two genera and confirm the presence of active BEAS copy in Trichoderma. Seventeen strains of twelve species were studied and phylogenetic analysis showed distinctive grouping of Fusarium and Trichoderma strains. The highest producers of beauvericin were F. proliferatum and F. nygamai. Trichoderma strains of three species (T. atroviride, T. viride, T. koningiopsis) were minor BEA producers. The study showed beauvericin production by Fusarium and Trichoderma species and high variance of the non-ribosomal peptide synthase gene among fungal species from the Hypocreales order.
Collapse
Affiliation(s)
- Monika Urbaniak
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Grzegorz Koczyk
- Functional Evolution of Biological Systems Team, Department of Biometrics and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Lidia Błaszczyk
- Plant Microbiome Structure and Function Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| |
Collapse
|
21
|
Occurrence, Pathogenicity, and Mycotoxin Production of Fusarium temperatum in Relation to Other Fusarium Species on Maize in Germany. Pathogens 2020; 9:pathogens9110864. [PMID: 33105838 PMCID: PMC7690569 DOI: 10.3390/pathogens9110864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/03/2022] Open
Abstract
Fusarium subglutinans is a plant pathogenic fungus infecting cereal grain crops. In 2011, the species was divided in Fusarium temperatumsp. nov. and F. subglutinans sensu stricto. In order to determine the occurrence and significance of F. temperatum and F. subglutinans on maize, a monitoring of maize ears and stalks was carried out in Germany in 2017 and 2018. Species identification was conducted by analysis of the translation elongation factor 1α (TEF-1α) gene. Ninety-four isolates of F. temperatum and eight isolates of F. subglutinans were obtained during two years of monitoring from 60 sampling sites in nine federal states of Germany. Inoculation of maize ears revealed a superior aggressiveness for F. temperatum, followed by Fusarium graminearum, Fusarium verticillioides, and F. subglutinans. On maize stalks, F. graminearum was the most aggressive species while F. temperatum and F. subglutinans caused only small lesions. The optimal temperature for infection of maize ears with F. temperatum was 24 °C and 21 °C for F. subglutinans. All strains of F. temperatum and F. subglutinans were pathogenic on wheat and capable to cause moderate to severe head blight symptoms. The assessment of mycotoxin production of 60 strains of F. temperatum cultivated on rice revealed that all strains produced beauvericin, moniliformin, fusaric acid, and fusaproliferin. The results demonstrate a higher prevalence and aggressiveness of F. temperatum compared to F. subglutinans in German maize cultivation areas.
Collapse
|
22
|
Barral B, Chillet M, Doizy A, Grassi M, Ragot L, Léchaudel M, Durand N, Rose LJ, Viljoen A, Schorr-Galindo S. Diversity and Toxigenicity of Fungi that Cause Pineapple Fruitlet Core Rot. Toxins (Basel) 2020; 12:toxins12050339. [PMID: 32455651 PMCID: PMC7291148 DOI: 10.3390/toxins12050339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces. The genus Fusarium made up 79% of the isolates, including 108 F. ananatum, 10 F. oxysporum, and one F. proliferatum. The genus Talaromyces accounted for 21% of the isolated fungi, which were all Talaromyces stollii. As the isolated fungal strains are potentially mycotoxigenic, identification and quantification of mycotoxins were carried out on naturally or artificially infected diseased fruits and under in vitro cultures of potential toxigenic isolates. Fumonisins B1 and B2 (FB1-FB2) and beauvericin (BEA) were found in infected fruitlets of pineapple and in the culture media of Fusarium species. Regarding the induction of mycotoxin in vitro, F.proliferatum produced 182 mg kg⁻1 of FB1 and F. oxysporum produced 192 mg kg⁻1 of BEA. These results provide a better understanding of the causal agents of FCR and their potential risk to pineapple consumers.
Collapse
Affiliation(s)
- Bastien Barral
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Reunion, France
- Correspondence: ; Tel.: +262-2-62-49-27-88
| | - Marc Chillet
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Reunion, France
| | - Anna Doizy
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Reunion, France;
| | - Maeva Grassi
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
| | - Laetitia Ragot
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
| | - Mathieu Léchaudel
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
| | - Noel Durand
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Lindy Joy Rose
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa; (L.J.R.); (A.V.)
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa; (L.J.R.); (A.V.)
| | - Sabine Schorr-Galindo
- Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; (M.C.); (M.G.); (L.R.); (M.L.); (N.D.); (S.S.-G.)
| |
Collapse
|
23
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|
24
|
Hafez M, Abdelmagid A, Adam LR, Daayf F. Specific Detection and Identification of Fusarium graminearum Sensu Stricto Using a PCR-RFLP Tool and Specific Primers Targeting the Translational Elongation Factor 1α Gene. PLANT DISEASE 2020; 104:1076-1086. [PMID: 32031910 DOI: 10.1094/pdis-03-19-0572-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium graminearum is a toxigenic plant pathogen that causes Fusarium head blight (FHB) disease on cereal crops. It has recently shown to have cross-pathogenicity on noncereals (i.e., Fusarium root rot [FRR] on soybean) in Canada and elsewhere. Specific detection and differentiation of this potent toxigenic, trichothecene-producing pathogen among other closely related species is extremely important for disease control and mycotoxin monitoring. Here, we designed a PCR restriction fragment length polymorphism protocol based on the DNA sequence of the translational elongation factor 1α (TEF1α) gene. A unique restriction site to the enzyme HpaII is only found in F. graminearum sensu stricto strains among different Fusarium strains in the F. graminearum species complex (FGSC) and other Fusarium spp. associated with FHB in cereals and FRR in soybean. Partial amplification of the TEF1α gene with newly designed primers mh1/mh2 generated a 459-bp PCR fragment. Restriction digestion of the generated fragments with the HpaII enzyme generated a unique restriction pattern that can rapidly and accurately differentiate F. graminearum sensu stricto among all other Fusarium spp. A primer pair (FgssF/FgssR) specific to F. graminearum sensu stricto also was designed and can distinguish F. graminearum sensu stricto from all other Fusarium spp. in the FGSC and other closely related Fusarium spp. involved in FHB and FRR. This finding will be very useful for the specific detection of F. graminearum sensu stricto for diagnostic purposes as well as for the accurate detection of this pathogen in breeding and other research purposes.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez, Egypt
| | - Ahmed Abdelmagid
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
- Department of Plant Pathology, Assiut University, Assiut,71515, Egypt
| | - Lorne R Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| |
Collapse
|
25
|
Pakshir K, Farazmand F, Ghasemi F, Mirhendi H, Zomorodian K, Kharazi M, Alborzi Pour R, Golestani H, Motamedi M. Translation elongation factor 1-alpha gene as a marker for diagnosing of candidal onychomycosis. Curr Med Mycol 2020; 6:15-21. [PMID: 32420503 PMCID: PMC7217255 DOI: 10.18502/cmm.6.1.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: Culture-based identification methods have been the gold standard for the diagnosis of candidal onychomycosis. Molecular technologies, such as polymerase chain reaction (PCR) assays, can provide an alternative for the rapid detection of Candida species. The present study was conducted to investigate a pan-Candida PCR assay based on the translation elongation factor 1-alpha (TEF-1α) gene for the detection of the most prevalent pathogenic Candida species. Materials and Methods: For the purpose of the study, an optimized pan-Candida PCR primer pair was designed, and the target was amplified and sequenced. The analytical and clinical diagnostic performance of the designed primers was tested using 17 reference strains, 137 nail scrapings suspected of onychomycosis, and 10 healthy nail specimens. Results: The use of the universal pan-Candida primers designed on TEF-1α gene resulted in the successful amplification of a 270-base pair fragment in all Candida species tested, except for C. glabrata, and reacted neither with other fungi nor with E. coli. The sequence difference count matrix showed poor insertion/deletion differences (0-2 nt) among Candida species. Among 137 nail specimens, 35% (n=48), 30.7% (n=42), and 40.1% (n=55) of the samples were found to be positive by direct microscopy, culture, and pan-Candida PCR, respectively. Conclusion: Based on the findings, the PCR-based detection targeting the DNA TEF-1α gene is a rapid and simple procedure for the diagnosis of candidal onychomycosis directly from nail sample.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough Farazmand
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoush Ghasemi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Kharazi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hajar Golestani
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Motamedi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Ehsan M, Gadahi JA, Lu M, Yan R, Xu L, Song X, Zhu XQ, Du A, Hu M, Li X. Recombinant elongation factor 1 alpha of Haemonchus contortus affects the functions of goat PBMCs. Parasite Immunol 2020; 42:e12703. [PMID: 32043596 PMCID: PMC7187238 DOI: 10.1111/pim.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Excretory/secretory proteins of Haemonchus contortus (HcESPs) intermingle comprehensively with host immune cells and modulate host immune responses. In this study, H contortus ES antigen named as elongation factor 1 alpha (HcEF‐1α) was cloned and expressed. The influences of recombinant HcEF‐1α on multiple functions of goat peripheral blood mononuclear cells (PBMCs) were observed in vitro. Immunoblot analysis revealed that rHcEF‐1α was recognized by the serum of goat infected with H contortus. Immunofluorescence analysis indicated that rHcEF‐1α was bound on surface of PBMCs. Moreover, the productions of IL‐4, TGF‐β1, IFN‐γ and IL‐17 of cells were significantly modulated by the incubation with rHcEF‐1α. The production of interleukin IL‐10 was decreased. Cell migration, cell proliferation and cell apoptosis were significantly increased; however, nitric oxide production (NO) was significantly decreased. The MHC II molecule expression of cells incubated with rHcEF‐1α was increased significantly, whereas MHC‐I was not changed as compared to the control groups (PBS control and pET32a). These findings indicated that rHcEF‐1α protein might play essential roles in functional regulations of HcESPs on goat PBMC and mediate the immune responses of the host during host‐parasite relationship.
Collapse
Affiliation(s)
- Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - AiFang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Ellingham O, David J, Culham A. Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia 2019; 111:798-812. [DOI: 10.1080/00275514.2019.1643644] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oliver Ellingham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - John David
- Royal Horticultural Society Garden Wisley, Woking, Surrey, GU23 6QB, UK
| | - Alastair Culham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| |
Collapse
|
28
|
Aggressiveness and molecular characterization of Fusarium spp. associated with foot rot and wilt in Tomato in Sinaloa, Mexico. 3 Biotech 2019; 9:276. [PMID: 31245240 DOI: 10.1007/s13205-019-1808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022] Open
Abstract
Fusarium wilt is one of the main limiting factors for tomato production in Mexico. One thousand and fifty isolates were obtained from vascular tissues tomato plants showing wilt and yellowing symptoms in Sinaloa, Mexico. The pathogenic isolates were evaluated through phylogenetic analysis of the TEF-1α gene and ITS region, morphological markers and pathogenicity tests. Within the 15 pathogenic Fusarium isolates, 7 were identified as F. oxysporum and 8 as F. falciforme. Phylogenetic analysis of Fusarium oxysporum f. sp. lycopersici and Fusarium falciforme isolates confirmed that both populations are constituted by distinct phylogenetic lineages. The isolates showed differences in aggressiveness; F. falciforme was the most aggressive. Isolates of both complexes triggered similar aerial symptoms of yellowing and darkening of the vascular tissues in tomato plants. But only F. falciforme isolates triggered necrosis in the plant crowns. Morphological markers allowed differentiating isolates from distinct complexes but not differentiating between lineages.
Collapse
|
29
|
Liu X, Xing M, Kong C, Fang Z, Yang L, Zhang Y, Wang Y, Ling J, Yang Y, Lv H. Genetic Diversity, Virulence, Race Profiling, and Comparative Genomic Analysis of the Fusarium oxysporum f. sp. conglutinans Strains Infecting Cabbages in China. Front Microbiol 2019; 10:1373. [PMID: 31293534 PMCID: PMC6603142 DOI: 10.3389/fmicb.2019.01373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Cabbage Fusarium wilt (CFW) caused by Fusarium oxysporum f. sp. conglutinans (FOC) is known to significantly affect yield and quality of cabbages worldwide. CFW was first detected in New York, NY, United States, and has now spread to almost all cabbage-planting areas, including a recent outbreak of the disease in China. However, it was unknown whether the FOC strains emerged in China differed from the strains in other areas of the world. From 2009 to 2018, we collected Chinese FOC isolates and compared them to the races 1 and 2 strains in other areas to define their characteristics. Race tests indicated that most of the Chinese FOC strains belonged to race 1 and were more virulent than type strain 52557. To evaluate the genome level diversity, we performed next-generation sequencing and genome assembly for the race 2 strain 58385. Based on the assembled genome, we discovered abundant single-nucleotide polymorphisms and 645 insertion-deletions (InDels) compared with the race 1 strain FGL03-6 by comparative genomic analysis and showed that all FOC race 1 strains have a low genetic variability, with a genomic background distinct from 58385. Furthermore, the internal transcribed spacer, elongation factor-1α, and whole-genome InDel variation studies suggested that the last might be a powerful tool in phylogenetic as well as evolution analysis for F. oxysporum Schlechtend.: Fr. The race, virulence, and genome-based variation profiles could contribute to our knowledge of FOC diversity and support the studies of pathogen characterization in genomic era and also provide clues for CFW-resistance breeding. To our knowledge, this is the first extensive survey conducted for FOC strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
30
|
Calvillo-Medina RP, Reyes-Grajeda JP, Barba-Escoto L, Bautista-Hernandez LA, Campos-Guillén J, Jones GH, Bautista-de Lucio VM. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. Microb Pathog 2019; 130:232-241. [DOI: 10.1016/j.micpath.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
31
|
Pollard AT, Okubara PA. Real-time PCR quantification of Fusarium avenaceum in soil and seeds. J Microbiol Methods 2019; 157:21-30. [DOI: 10.1016/j.mimet.2018.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
32
|
O’Donnell K, McCormick SP, Busman M, Proctor RH, Ward TJ, Doehring G, Geiser DM, Alberts JF, Rheeder JP. Marasas et al. 1984 “Toxigenic Fusarium Species: Identity and Mycotoxicology” revisited. Mycologia 2018; 110:1058-1080. [DOI: 10.1080/00275514.2018.1519773] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Todd J. Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Gail Doehring
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Johanna F. Alberts
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology (IBMB), Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - John P. Rheeder
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology (IBMB), Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
33
|
Wollenberg RD, Sondergaard TE, Nielsen MR, Knutsson S, Pedersen TB, Westphal KR, Wimmer R, Gardiner DM, Sørensen JL. There it is! Fusarium pseudograminearum did not lose the fusaristatin gene cluster after all. Fungal Biol 2018; 123:10-17. [PMID: 30654953 DOI: 10.1016/j.funbio.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/27/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023]
Abstract
Fusarium pseudograminearum is a significant pathogen of cereals in arid regions worldwide and has the ability to produce numerous bioactive secondary metabolites. The genome sequences of seven F. pseudograminearum strains have been published and in one of these strains, C5834, we identified an intact gene cluster responsible for biosynthesis of the cyclic lipopeptide fusaristatin A. The high level of sequence identity of the fusaristatin cluster remnant in strains that do not produce fusaristatin suggests that the absence of the cluster evolved once, and subsequently the resulting locus with the cluster fragments became widely dispersed among strains of F. pseudograminearum in Australia. We examined a selection of 99 Australian F. pseudograminearum isolates to determine how widespread the ability to produce fusaristatin A is in F. pseudograminearum. We identified 15 fusaristatin producing strains, all originating from Western Australia. Phylogenetic analyses could not support a division of F. pseudograminearum into fusaristatin producing and nonproducing populations, which could indicate the loss has occurred relatively recent.
Collapse
Affiliation(s)
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Simon Knutsson
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | | | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Donald Max Gardiner
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Queensland Bioscience Precinct, Brisbane, Australia
| | | |
Collapse
|
34
|
A Comparative Study of the Pathogenicity of Fusarium circinatum and other Fusarium Species in Polish Provenances of P. sylvestris L. FORESTS 2018. [DOI: 10.3390/f9090560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fungal pathogen Fusarium circinatum is the causal agent of Pine Pitch Canker (PPC), a disease which seriously affects different species of pine in forests and nurseries worldwide. In Europe, the fungus affects pines in northern Spain and Portugal, and it has also been detected in France and Italy. Here, we report the findings of the first trial investigating the susceptibility of Polish provenances of Scots pine, Pinus sylvestris L., to infection by F. circinatum. In a greenhouse experiment, 16 Polish provenances of Scots pine were artificially inoculated with F. circinatum and with six other Fusarium species known to infect pine seedlings in nurseries. All pines proved highly susceptible to PPC and displayed different levels of susceptibility to the other Fusarium spp. tested. The findings obtained indicate the potentially strong threat of establishment of an invasive pathogen such as F. circinatum following unintentional introduction into Poland.
Collapse
|
35
|
Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study). Antimicrob Agents Chemother 2018; 62:AAC.00358-18. [PMID: 29941643 DOI: 10.1128/aac.00358-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Antifungal resistance is increasing by the emergence of intrinsically resistant species and by the development of secondary resistance in susceptible species. A previous study performed in Spain revealed levels of azole resistance in molds of between 10 and 12.7%, but secondary resistance in Aspergillus fumigatus was not detected. We used itraconazole (ITZ)-supplemented medium to select resistant strains. A total of 500 plates supplemented with 2 mg/liter of ITZ were sent to 10 Spanish tertiary hospitals, and molecular identification and antifungal susceptibility testing were performed. In addition, the cyp51A gene in those A. fumigatus strains showing azole resistance was sequenced. A total of 493 isolates were included in the study. Sixteen strains were isolated from patients with an infection classified as proven, 104 were isolated from patients with an infection classified as probable, and 373 were isolated from patients with an infection classified as colonization. Aspergillus was the most frequent genus isolated, at 80.3%, followed by Scedosporium-Lomentospora (7.9%), Penicillium-Talaromyces (4.5%), Fusarium (2.6%), and the order Mucorales (1%). Antifungal resistance was detected in Scedosporium-Lomentospora species, Fusarium, Talaromyces, and Mucorales Three strains of A. fumigatus sensu stricto were resistant to azoles; two of them harbored the TR34+L98H mechanism of resistance, and the other one had no mutations in cyp51A The level of azole resistance in A. fumigatus remains low, but cryptic species represent over 10% of the isolates and have a broader but overall higher range of antifungal resistance.
Collapse
|
36
|
Endophthalmitis caused by Fusarium: An emerging problem in patients with corneal trauma. A case series. Rev Iberoam Micol 2018; 35:92-96. [PMID: 29724456 DOI: 10.1016/j.riam.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although fortunately very rare in countries with a temperate climate, certain factors, such as clinical or pharmacological immunosuppression, may cause Fusarium-related fungal infections to become an emerging problem. Moreover, Fusarium is one of the most important etiological agents in exogenous endophthalmitis, which is often favored by the disruption of the epithelial barriers. AIMS The aim of this series of clinical cases is to identify characteristic clinical findings that may allow an early diagnosis and more efficient management of this ophthalmologic emergency. METHODS Three cases of endophthalmitis due to Fusarium solani and Fusarium oxysporum, diagnosed in 2009, 2010, and 2014 in patients from two different health regions belonging to the same health system and separated by around 43 miles, are presented. The Fusarium isolates were initially identified microscopically and the species subsequently confirmed by sequencing the elongation factor alpha (EFα) and internal transcribed spacers (ITS). Susceptibility to antifungal agents was determined using the EUCAST broth dilution method. RESULTS Evolution was poor as two of the three patients progressed to phthisis bulbi despite surgical measures and broad-spectrum antifungal antibiotic therapy. CONCLUSIONS It is essential to rapidly instigate multidisciplinary measures to combat suspected endophthalmitis due to Fusarium given the poor prognosis of this type of infection.
Collapse
|
37
|
Multiplex Polymerase Chain Reaction Assay for Screening of Mycotoxin Genes From Ocular Isolates of Fusarium species. Cornea 2018; 37:1042-1046. [DOI: 10.1097/ico.0000000000001607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Lin H, Jiang X, Yi J, Wang X, Zuo R, Jiang Z, Wang W, Zhou E. Molecular identification of Neofabraea species associated with bull's-eye rot on apple using rolling-circle amplification of partial EF-1α sequence. Can J Microbiol 2017; 64:57-68. [PMID: 29084390 DOI: 10.1139/cjm-2017-0448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A rolling-circle amplification (RCA) method with padlock probes targeted on EF-1α regions was developed for rapid detection of apple bull's-eye rot pathogens, including Neofabraea malicorticis, N. perennans, N. kienholzii, and N. vagabunda (synonym: N. alba). Four padlock probes (PLP-Nm, PLP-Np, PLP-Nk, and PLP-Nv) were designed and tested against 28 samples, including 22 BER pathogen cultures, 4 closely related species, and 2 unrelated species that may cause serious apple decays. The assay successfully identified all the bull's-eye rot pathogenic fungi at the level of species, while no cross-reaction was observed in all target species and no false-positive reaction was observed with all strains used for reference. This study showed that the use of padlock probes and the combination of probe signal amplification by RCA provided an effective and sensitive method for the rapid identification of Neofabraea spp. The method could therefore be a useful tool for monitoring bull's-eye rot pathogens in port quarantine and orchard epidemiological studies.
Collapse
Affiliation(s)
- Huijiao Lin
- a Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,b Inspection and Test Center, Huangpu Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510730, China
| | - Xiang Jiang
- b Inspection and Test Center, Huangpu Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510730, China
| | - Jianping Yi
- c Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Xinguo Wang
- b Inspection and Test Center, Huangpu Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510730, China
| | - Ranling Zuo
- b Inspection and Test Center, Huangpu Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510730, China
| | - Zide Jiang
- a Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weifang Wang
- d Guangdong Key Laboratory of Import and Export Technical Measures of Animal, Plant and Food, Guangdong Inspection and Quarantine Technology Center, Guangzhou 510623, China
| | - Erxun Zhou
- a Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
39
|
Abd Murad NB, Mohamed Nor NMI, Shohaimi S, Mohd Zainudin NAI. Genetic diversity and pathogenicity of Fusarium species associated with fruit rot disease in banana across Peninsular Malaysia. J Appl Microbiol 2017; 123:1533-1546. [PMID: 28891270 DOI: 10.1111/jam.13582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/26/2022]
Abstract
AIMS The aims of this study were to identify the Fusarium isolates based on translation elongation factor (tef) 1α sequence, to determine the genetic diversity among isolates and species using selected microsatellite markers and to examine the pathogenicity of Fusarium isolates causing fruit rot disease of banana. METHODS AND RESULTS One-hundred and thirteen microfungi isolates were obtained from fruit rot infected banana in Peninsular Malaysia. However, this study was focused on the dominant number of the discovered microfungi that belongs to the genus Fusarium; 48 isolates of the microfungi have been identified belonging to 11 species of Fusarium, namely Fusarium incarnatum, Fusarium equiseti, Fusarium camptoceras, Fusarium solani, Fusarium concolor, Fusarium oxysporum, Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari, Fusarium concentricum and Fusarium fujikuroi. All Fusarium isolates were grouped into their respective clades indicating their similarities and differences in genetic diversity among isolates. Out of 48 Fusarium isolates tested, 42 isolates caused the fruit rot symptom at different levels of severity based on Disease Severity Index (DSI). The most virulent isolate was F. proliferatum B2433B with DSI of 100%. CONCLUSIONS All the isolated Fusarium species were successfully identified and some of them were confirmed as the causal agents of pre- and postharvest fruit rot in banana across Peninsular Malaysia. SIGNIFICANCE AND IMPACT OF THE STUDY Our results will provide additional information regarding new report of Fusarium species in causing banana fruit rot and in the search of potential biocontrol agent of the disease.
Collapse
Affiliation(s)
- N B Abd Murad
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N M I Mohamed Nor
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Pulau Pinang, Malaysia
| | - S Shohaimi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N A I Mohd Zainudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
40
|
Reich M, Labes A. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 2017; 36:57-75. [PMID: 29031541 DOI: 10.1016/j.margen.2017.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/30/2022]
Abstract
Marine fungi have attracted attention in recent years due to increased appreciation of their functional role in ecosystems and as important sources of new natural products. The concomitant development of various "omic" technologies has boosted fungal research in the fields of biodiversity, physiological ecology and natural product biosynthesis. Each of these research areas has its own research agenda, scientific language and quality standards, which have so far hindered an interdisciplinary exchange. Inter- and transdisciplinary interactions are, however, vital for: (i) a detailed understanding of the ecological role of marine fungi, (ii) unlocking their hidden potential for natural product discovery, and (iii) designing access routes for biotechnological production. In this review and opinion paper, we describe the two different "worlds" of marine fungal natural product chemists and marine fungal molecular ecologists. The individual scientific approaches and tools employed are summarised and explained, and enriched with a first common glossary. We propose a strategy to find a multidisciplinary approach towards a comprehensive view on marine fungi and their chemical potential.
Collapse
Affiliation(s)
- Marlis Reich
- University of Bremen, BreMarE, NW2 B3320, Leobener Str. 5, D-28359 Bremen, Germany.
| | - Antje Labes
- Flensburg University of Applied Sciences, Kanzleistr. 91-93, D-24943 Flensburg, Germany.
| |
Collapse
|
41
|
Characterization of the Activities of Dinuclear Thiolato-Bridged Arene Ruthenium Complexes against Toxoplasma gondii. Antimicrob Agents Chemother 2017; 61:AAC.01031-17. [PMID: 28652238 DOI: 10.1128/aac.01031-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
The in vitro effects of 18 dinuclear thiolato-bridged arene ruthenium complexes (1 monohiolato compound, 4 dithiolato compounds, and 13 trithiolato compounds), originally designed as anticancer agents, on the apicomplexan parasite Toxoplasma gondii grown in human foreskin fibroblast (HFF) host cells were studied. Some trithiolato compounds exhibited antiparasitic efficacy at concentrations of 250 nM and below. Among those, complex 1 and complex 2 inhibited T. gondii proliferation with 50% inhibitory concentrations (IC50s) of 34 and 62 nM, respectively, and they did not affect HFFs at dosages of 200 μM or above, resulting in selectivity indices of >23,000. The IC50s of complex 9 were 1.2 nM for T. gondii and above 5 μM for HFFs. Transmission electron microscopy detected ultrastructural alterations in the matrix of the parasite mitochondria at the early stages of treatment, followed by a more pronounced destruction of tachyzoites. However, none of the three compounds applied at 250 nM for 15 days was parasiticidal. By affinity chromatography using complex 9 coupled to epoxy-activated Sepharose followed by mass spectrometry, T. gondii translation elongation factor 1α and two ribosomal proteins, RPS18 and RPL27, were identified to be potential binding proteins. In conclusion, organometallic ruthenium complexes exhibit promising activities against Toxoplasma, and the potential mechanisms of action of these compounds as well as their prospective applications for the treatment of toxoplasmosis are discussed.
Collapse
|
42
|
Vanheule A, De Boevre M, Moretti A, Scauflaire J, Munaut F, De Saeger S, Bekaert B, Haesaert G, Waalwijk C, van der Lee T, Audenaert K. Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae. Toxins (Basel) 2017; 9:toxins9090255. [PMID: 28832503 PMCID: PMC5618188 DOI: 10.3390/toxins9090255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/19/2017] [Indexed: 01/02/2023] Open
Abstract
Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6. To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae.
Collapse
Affiliation(s)
- Adriaan Vanheule
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
- Laboratory of Applied Mycology and Phenomics, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy.
| | - Jonathan Scauflaire
- Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Françoise Munaut
- Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Boris Bekaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
- Laboratory of Applied Mycology and Phenomics, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Geert Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Cees Waalwijk
- Wageningen University and Research Centre, 6708PB Wageningen, The Netherlands.
| | - Theo van der Lee
- Wageningen University and Research Centre, 6708PB Wageningen, The Netherlands.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
43
|
Gálvez L, Urbaniak M, Waśkiewicz A, Stępień Ł, Palmero D. Fusarium proliferatum - Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production. Food Microbiol 2017. [PMID: 28648292 DOI: 10.1016/j.fm.2017.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fusarium proliferatum is a world-wide occurring fungal pathogen affecting several crops included garlic bulbs. In Spain, this is the most frequent pathogenic fungus associated with garlic rot during storage. Moreover, F. proliferatum is an important mycotoxigenic species, producing a broad range of toxins, which may pose a risk for food safety. The aim of this study is to assess the intraspecific variability of the garlic pathogen in Spain implied by analyses of translation elongation factor (tef-1α) and FUM1 gene sequences as well as the differences in growth rates. Phylogenetic characterization has been complemented with the characterization of mating type alleles as well as the species potential as a toxin producer. Phylogenetic trees based on the sequence of the translation elongation factor and FUM1 genes from seventy nine isolates from garlic revealed a considerable intraspecific variability as well as high level of diversity in growth speed. Based on the MAT alleles amplified by PCR, F. proliferatum isolates were separated into different groups on both trees. All isolates collected from garlic in Spain proved to be fumonisin B1, B2, and B3 producers. Quantitative analyses of fumonisins, beauvericin and moniliformin (common secondary metabolites of F. proliferatum) showed no correlation with phylogenetic analysis neither mycelial growth. This pathogen presents a high intraspecific variability within the same geographical region and host, which is necessary to be considered in the management of the disease.
Collapse
Affiliation(s)
- Laura Gálvez
- Department of Agricultural Production, Plant Protection Laboratory, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Technical University of Madrid, Avda. Puerta de Hierro 4, 28040, Madrid, Spain
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Daniel Palmero
- Department of Agricultural Production, Plant Protection Laboratory, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Technical University of Madrid, Avda. Puerta de Hierro 4, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Nouripour-Sisakht S, Ahmadi B, Makimura K, Hoog SD, Umeda Y, Alshahni MM, Mirhendi H. Characterization of the translation elongation factor 1-α gene in a wide range of pathogenic Aspergillus species. J Med Microbiol 2017; 66:419-429. [PMID: 28425876 DOI: 10.1099/jmm.0.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We aimed to evaluate the resolving power of the translation elongation factor (TEF)-1α gene for phylogenetic analysis of Aspergillus species. METHODOLOGY Sequences of 526 bp representing the coding region of the TEF-1α gene were used for the assessment of levels of intra- and inter-specific nucleotide polymorphism in 33 species of Aspergillus, including 57 reference, clinical and environmental strains. RESULTS Analysis of TEF-1α sequences indicated a mean similarity of 92.6 % between the species, with inter-species diversity ranging from 0 to 70 nucleotides. The species with the closest resemblance were A. candidus/A. carneus, and A. flavus/A. oryzae/A. ochraceus, with 100 and 99.8 % identification, respectively. These species are phylogenetically very close and the TEF-1α gene appears not to have sufficient discriminatory power to differentiate them. Meanwhile, intra-species differences were found within strains of A. clavatus, A. clavatonanicus, A. candidus, A. fumigatus, A. terreus, A. alliaceus, A. flavus, Eurotium amstelodami and E. chevalieri. The tree topology with strongly supported clades (≥70 % bootstrap values) was almost compatible with the phylogeny inferred from analysis of the DNA sequences of the beta tubulin gene (BT2). However, the backbone of the tree exhibited low bootstrap values, and inter-species correlations were not obvious in some clades; for example, tree topologies based on BT2 and TEF-1α genes were incompatible for some species, such as A. deflectus, A. janus and A. penicillioides. CONCLUSION The gene was not phylogenetically more informative than other known molecular markers. It will be necessary to test other genes or larger genomic regions to better understand the taxonomy of this important group of fungi.
Collapse
Affiliation(s)
- Sadegh Nouripour-Sisakht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Departments of Medical Parasitology & Mycology, School of Public Health; National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Ahmadi
- Department of Microbiology and Parasitology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Koichi Makimura
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Sybren de Hoog
- Fungal Biodiversity Center, Institute of the Royal Netherlands, Academy of Arts and Sciences, Centraalbureau voor Schimmelcultures-KNAW, Utrecht, Netherlands
| | - Yoshiko Umeda
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Mohamed Mahdi Alshahni
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Hossein Mirhendi
- Departments of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Liu YY, Sun HY, Li W, Xia YL, Deng YY, Zhang AX, Chen HG. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS One 2017; 12:e0174040. [PMID: 28306726 PMCID: PMC5357014 DOI: 10.1371/journal.pone.0174040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
In China, Fusarium head blight is caused mainly by the Fusarium graminearum species complex (FGSC), which produces trichothecene toxins. The FGSC is divided into three chemotypes: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and nivalenol (NIV). In order to predict the geographical changes in the distribution of these chemotype populations in major winter wheat-producing areas in China, the biological characteristics of twenty randomly selected isolates from each of the three chemotypes were studied. No significant difference was exhibited in the growth rate of 3-ADON, 15-ADON, and NIV isolates at 15°C. At 20°C and 25°C, the growth rate of 15-ADON isolates was the highest. At 30°C, the growth rate of NIV and 3-ADON isolates was significantly higher than that of 15-ADON isolates. The 15-ADON isolates produced the highest quantities of perithecia and two to three days earlier than the other two populations at each temperature, and released more ascospores at 18°C. The aggressiveness test on wheat seedlings and ears indicated there was no significant difference between the 3-ADON and 15-ADON isolates. However, the aggressiveness of NIV isolates was significantly lower than that of the 3-ADON and 15-ADON isolates. The DON content in grains from heads inoculated with the 3-ADON isolates was higher than the content of 15-ADON and NIV isolates. The results showed that 15-ADON population had the advantage in perithecia formation and ascospore release, and the 3-ADON population produced more DON in wheat grains. We suggested that distribution of these three chemotype populations may be related to these biological characteristics.
Collapse
Affiliation(s)
- Yang-yang Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Han-yan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun-lei Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuan-yu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ai-xiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huai-gu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
46
|
Wang S, Zhang Z, Wang Y, Gadahi JA, Xu L, Yan R, Song X, Li X. Toxoplasma gondii Elongation Factor 1-Alpha (TgEF-1α) Is a Novel Vaccine Candidate Antigen against Toxoplasmosis. Front Microbiol 2017; 8:168. [PMID: 28243226 PMCID: PMC5304420 DOI: 10.3389/fmicb.2017.00168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite which can infect almost all warm-blood animals, leading to toxoplasmosis. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, the recombinant T. gondii elongation factor 1-alpha (rTgEF-1α) was successfully expressed in in Escherichia coli. Passive immunization of mice with anti-rTgEF-1α polyclonal antibody following challenge with a lethal dose of tachyzoites significantly increased the survival time compared with PBS control group. The survival time of mice challenged with tachyzoites pretreated with anti-rTgEF-1α PcAb also was significantly increased. Invasion of tachyzoites into mouse macrophages was significantly inhibited in the anti-rTgEF-1α PcAb pretreated group. Mice vaccinated with rTgEF-1α induced a high level of specific anti-T. gondii antibodies and production of IFN-gamma, interleukin-4. The expression levels of MHC-I and MHC-II molecules as well as the percentages of CD4+ and CD8+ T cells in mice vaccinated with rTgEF-1α was significantly increased, respectively (P < 0.05), compared with all the controls. Immunization with rTgEF-1α significantly (P < 0.05) prolonged survival time (14.53 ± 1.72 days) after challenge infection with the virulent T. gondii RH strain. These results indicate that T. gondii EF-1α plays an essential role in mediating host cell invasion by the parasite and, as such, could be a candidate vaccine antigen against toxoplasmosis.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang, China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang, China
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Javaid A Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
47
|
Elmer WH, Marra RE. New species of Fusarium associated with dieback of Spartina alterniflora in Atlantic salt marshes. Mycologia 2017; 103:806-19. [DOI: 10.3852/10-155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Robert E. Marra
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, P. O. Box 1106, New Haven, Connecticut 06504
| |
Collapse
|
48
|
DNA Barcoding for Diagnosis and Monitoring of Fungal Plant Pathogens. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
|
50
|
Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics 2016; 17:1014. [PMID: 27938326 PMCID: PMC5148886 DOI: 10.1186/s12864-016-3371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Fusarium graminearum species complex is composed of many distinct fungal species that cause several diseases in economically important crops, including Fusarium Head Blight of wheat. Despite being closely related, these species and individuals within species have distinct phenotypic differences in toxin production and pathogenicity, with some isolates reported as non-pathogenic on certain hosts. In this report, we compare genomes and gene content of six new isolates from the species complex, including the first available genomes of F. asiaticum and F. meridionale, with four other genomes reported in previous studies. RESULTS A comparison of genome structure and gene content revealed a 93-99% overlap across all ten genomes. We identified more than 700 k base pairs (kb) of single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) within common regions of the genome, which validated the species and genetic populations reported within species. We constructed a non-redundant pan gene list containing 15,297 genes from the ten genomes and among them 1827 genes or 12% were absent in at least one genome. These genes were co-localized in telomeric regions and select regions within chromosomes with a corresponding increase in SNPs and indels. Many are also predicted to encode for proteins involved in secondary metabolism and other functions associated with disease. Genes that were common between isolates contained high levels of nucleotide variation and may be pseudogenes, allelic, or under diversifying selection. CONCLUSIONS The genomic resources we have contributed will be useful for the identification of genes that contribute to the phenotypic variation and niche specialization that have been reported among members of the F. graminearum species complex.
Collapse
Affiliation(s)
- Sean Walkowiak
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Canada.,Agriculture and Agri-Food Canada, Government of Canada, 960 Carling Ave, Ottawa, Canada
| | - Owen Rowland
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Canada
| | - Nicolas Rodrigue
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Canada
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Government of Canada, 960 Carling Ave, Ottawa, Canada.
| |
Collapse
|