1
|
Pfordt A, Douanla-Meli C, Schäfer BC, Schrader G, Tannen E, Chandarana MJ, von Tiedemann A. Phylogenetic analysis of plant-pathogenic and non-pathogenic Trichoderma isolates on maize from plants, soil, and commercial bio-products. Appl Environ Microbiol 2025; 91:e0193124. [PMID: 40013788 PMCID: PMC11921352 DOI: 10.1128/aem.01931-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Fungi of the genus Trichoderma are primarily associated with the mycobiome of dead wood but can also be occasionally found in soil and plant rhizospheres. Several Trichoderma spp. are used in crop health management to promote growth and control plant diseases. Although widely considered beneficial to plants, some members have been reported to be pathogenic to maize, causing a disease called Trichoderma ear rot. Since 2018, Trichoderma afroharzianum has caused significant infections of maize cobs in Germany, France, and Italy. This study aimed to investigate the pathogenicity and phylogenetic relationships among different Trichoderma strains from diverse sources and geographical origins. While previous studies primarily identified T. afroharzianum as the main species causing Trichoderma ear rot, this study found that isolates of T. asperellum, T. atroviride, and T. guizhouense may also exhibit pathogenicity on maize cobs. Additionally, Trichoderma strains from commercial biocontrol products displayed unexpected pathogenicity inducing up to 92% disease severity on maize cobs. Most T. afroharzianum strains induced high levels of disease severity, although some isolates of the same species did not cause any disease, indicating a large heterogeneity in pathogenicity within the species. Notably, phylogeny reconstruction based on the tef1-α and rpb2 genes did not result in any discernible clustering between pathogenic and non-pathogenic isolates. A further novel finding is the isolation of pathogenic Trichoderma isolates from agricultural soil, demonstrating that soil can serve as a reservoir for pathogenic species. This study highlights the need for biosecurity assessment and monitoring of Trichoderma strains for agricultural use, considering their beneficial and pathogenic potential.IMPORTANCEIn this study, we explored the ability of different Trichoderma species to infect maize plants. Trichoderma is a group of fungi known for its beneficial role in agriculture, often used as a biological pesticide to control fungal plant diseases. However, some species within this genus can also act as pathogens, causing infections in crops like maize. We found that one species, T. afroharzianum, is particularly aggressive, capable of infecting maize without the plant being wounded first. This makes it a potentially serious threat to crop health. In contrast, other species, such as T. atroviride and T. asperellum, only caused infections when maize plants were injured before. Our research suggests that pathogenic Trichoderma species not only effectively infect plants but can also survive well in soil, making their control difficult. These findings highlight the need for better understanding of how these fungi operate in order to manage the risks they pose to important crops like maize, while still taking advantage of their beneficial uses in agriculture.
Collapse
Affiliation(s)
- Annette Pfordt
- Plant Pathology and Crop Protection, Georg August University of Goettingen, Goettingen, Germany
| | - Clovis Douanla-Meli
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Bernhard C Schäfer
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Gritta Schrader
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Eike Tannen
- Plant Pathology and Crop Protection, Georg August University of Goettingen, Goettingen, Germany
| | - Madhav Jatin Chandarana
- Plant Pathology and Crop Protection, Georg August University of Goettingen, Goettingen, Germany
| | - Andreas von Tiedemann
- Plant Pathology and Crop Protection, Georg August University of Goettingen, Goettingen, Germany
| |
Collapse
|
2
|
Gorman Z, Chen J, de Leon AAP, Wallis CM. Comparison of assembly platforms for the assembly of the nuclear genome of Trichoderma harzianum strain PAR3. BMC Genomics 2023; 24:454. [PMID: 37568116 PMCID: PMC10416523 DOI: 10.1186/s12864-023-09544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Trichoderma is a diverse genus of fungi that includes several species that possess biotechnological and agricultural applications, including the biocontrol of pathogenic fungi and nematodes. The mitochondrial genome of a putative strain of Trichoderma harzianum called PAR3 was analyzed after isolation from the roots of Scarlet Royal grapevine scion grafted to Freedom rootstock, located in a grapevine vineyard in Parlier, CA, USA. Here, we report the sequencing, comparative assembly, and annotation of the nuclear genome of PAR3 and confirm its identification as a strain of T. harzianum. We subsequently compared the genes found in T. harzianum PAR3 to other known T. harzianum strains. Assembly of Illumina and/or Oxford Nanopore reads by the popular long-read assemblers, Flye and Canu, and the hybrid assemblers, SPAdes and MaSuRCA, was performed and the quality of the resulting assemblies were compared to ascertain which assembler generated the highest quality draft genome assembly. RESULTS MaSuRCA produced the most complete and high-fidelity assembly yielding a nuclear genome of 40.7 Mb comprised of 112 scaffolds. Subsequent annotation of this assembly produced 12,074 gene models and 210 tRNAs. This included 221 genes that did not have equivalent genes in other T. harzainum strains. Phylogenetic analysis of ITS, rpb2, and tef1a sequences from PAR3 and established Trichoderma spp. showed that all three sequences from PAR3 possessed more than 99% identity to those of Trichoderma harzianum, confirming that PAR3 is an isolate of Trichoderma harzianum. We also found that comparison of gene models between T. harzianum PAR3 and other T. harzianum strains resulted in the identification of significant differences in gene type and number, with 221 unique genes identified in the PAR3 strain. CONCLUSIONS This study gives insight into the efficacy of several popular assembly platforms for assembly of fungal nuclear genomes, and found that the hybrid assembler, MaSuRCA, was the most effective program for genome assembly. The annotated draft nuclear genome and the identification of genes not found in other T. harzainum strains could be used to investigate the potential applications of T. harzianum PAR3 for biocontrol of grapevine fungal canker pathogens and as source of anti-microbial compounds.
Collapse
Affiliation(s)
- Zachary Gorman
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Jianchi Chen
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Adalberto A Perez de Leon
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Christopher Michael Wallis
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA.
| |
Collapse
|
3
|
Nascimento Brito V, Lana Alves J, Sírio Araújo K, de Souza Leite T, Borges de Queiroz C, Liparini Pereira O, de Queiroz MV. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front Microbiol 2023; 14:1095199. [PMID: 37143529 PMCID: PMC10151590 DOI: 10.3389/fmicb.2023.1095199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Fungi belonging to the genus Trichoderma have been widely recognized as efficient controllers of plant diseases. Although the majority of isolates currently deployed, thus far, have been isolated from soil, endophytic Trichoderma spp. is considered to be a promising option for application in biocontrol. In this study, 30 endophytic Trichoderma isolates-obtained from the leaves, stems, and roots of wild Hevea spp. in the Brazilian Amazon-were analyzed using specific DNA barcodes: sequences of internal transcribed spacers 1 and 2 of rDNA (ITS region), genes encoding translation elongation factor 1-α (TEF1-α), and the second largest subunit of RNA polymerase II (RPB2). The genealogical concordance phylogenetic species recognition (GCPSR) concept was used for species delimitation. A phylogenetic analysis showed the occurrence of Trichoderma species, such as T. erinaceum, T. ovalisporum, T. koningiopsis, T. sparsum, T. lentiforme, T. virens, and T. spirale. Molecular and morphological features resulted in the discovery of four new species, such as T. acreanum sp. nov., T. ararianum sp. nov., T. heveae sp. nov., and T. brasiliensis sp. nov. The BI and ML analyses shared a similar topology, providing high support to the final trees. The phylograms show three distinct subclades, namely, T. acreanum and T. ararianum being paraphyletic with T. koningiopsis; T. heveae with T. subviride; and T. brasiliensis with T. brevicompactum. This study adds to our knowledge of the diversity of endophytic Trichoderma species in Neotropical forests and reveals new potential biocontrol agents for the management of plant diseases.
Collapse
Affiliation(s)
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tiago de Souza Leite
- Instituto Federal do Sudeste de Minas Gerais—Campus Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Casley Borges de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Dos Santos UR, Dos Santos JL. Trichoderma after crossing kingdoms: infections in human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:97-126. [PMID: 36748123 DOI: 10.1080/10937404.2023.2172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trichoderma is a saprophytic fungus that is used worldwide as a biocontrol and biofertilizer agent. Although considered nonpathogenic until recently, reports of human infections produced by members of the Trichoderma genus are increasing. Numerous sources of infection were proposed based upon patient data and phylogenetic analysis, including air, agriculture, and healthcare facilities, but the deficit of knowledge concerning Trichoderma infections makes patient treatment difficult. These issues are compounded by isolates that present profiles which exhibit high minimum inhibitory concentration values to available antifungal drugs. The aim of this review is to present the global distribution and sources of infections that affect both immunocompetent and immunocompromised hosts, clinical features, therapeutic strategies that are used to treat patients, as well as highlighting treatments with the best responses. In addition, the antifungal susceptibility profiles of Trichoderma isolates that have emerged in recent decades were examined and which antifungal drugs need to be further evaluated as potential candidates to treat Trichoderma infections are also indicated.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
5
|
Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production. BIOLOGY 2023; 12:biology12020299. [PMID: 36829575 PMCID: PMC9953464 DOI: 10.3390/biology12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Due to the evident aggressive nature of green mold and the consequently huge economic damage it causes for producers of edible mushrooms, there is an urgent need for prevention and infection control measures, which should be based on the early detection of various Trichoderma spp. as green mold causative agents. The most promising current diagnostic tools are based on molecular methods, although additional optimization for real-time, in-field detection is still required. In the first part of this review, we briefly discuss cultivation-based methods and continue with the secondary metabolite-based methods. Furthermore, we present an overview of the commonly used molecular methods for Trichoderma species/strain detection. Additionally, we also comment on the potential of genomic approaches for green mold detection. In the last part, we discuss fast screening molecular methods for the early detection of Trichoderma infestation with the potential for in-field, point-of-need (PON) application, focusing on isothermal amplification methods. Finally, current challenges and future perspectives in Trichoderma diagnostics are summarized in the conclusions.
Collapse
|
6
|
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030432. [PMID: 36771517 PMCID: PMC9921048 DOI: 10.3390/plants12030432] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 06/02/2023]
Abstract
Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Ajay Kumar
- Department of Postharvest Science, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregón 85000, Mexico
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
7
|
Küpper V, Steiner U, Kortekamp A. Trichoderma species isolated from grapevine with tolerance towards common copper fungicides used in viticulture for plant protection. PEST MANAGEMENT SCIENCE 2022; 78:3266-3276. [PMID: 35524976 DOI: 10.1002/ps.6951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Copper-containing fungicides are applied broadly in organic viticulture against downy mildew caused by Plasmopara viticola. Although long-term application of copper-based fungicides is associated with ecotoxic effects on the environment, their use in viticulture is required until sustainable alternatives are available. Trichoderma spp. might be a promising approach to fungicide reduction while promoting plant growth and development and displaying biocontrol activity. This study aims to examine the tolerance and compatibility of Trichoderma spp. to copper fungicides. This work contributes to the development of a spray application consisting of a copper-tolerant Trichoderma sp. combined with a downscaled copper fungicide rate against P. viticola. RESULTS Trichoderma spp. isolated from grapevine wood in vineyards were identified and used for tolerance screening in various concentrations of copper fungicides. Copper hydroxide was identified as being highly compatible with Trichoderma. Two Trichoderma candidates, T. koningiopsis and T. harzianum, showed high copper tolerance in mycelial growth and germination tests, and were adapted to 2.85 g Cu L-1 of the selected fungicide. Microscopic investigations showed the attachment of copper compounds to fungal cell walls and copper uptake within the cytoplasm. In the case of high tolerance, large-scale copper uptake was prevented. CONCLUSION Our findings identified two highly copper-tolerant Trichoderma isolates with natural adaptation to the vineyard ecosystem, which could be further tested as biostimulants and biocontrol agents, combined with a reduced fungicide rate for sustainable plant protection. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Verena Küpper
- Institute for Plant Protection, Department of Phytomedicine, State Education and Research Center of Viticulture, Horticulture and Rural Development (DLR) Rheinpfalz, Neustadt/Weinstraße, Germany
- Institute for Crop Science and Resource Conservation (INRES), Department of Plant Pathology, University of Bonn, Bonn, Germany
| | - Ulrike Steiner
- Institute for Crop Science and Resource Conservation (INRES), Department of Plant Pathology, University of Bonn, Bonn, Germany
| | - Andreas Kortekamp
- Institute for Plant Protection, Department of Phytomedicine, State Education and Research Center of Viticulture, Horticulture and Rural Development (DLR) Rheinpfalz, Neustadt/Weinstraße, Germany
| |
Collapse
|
8
|
Tamizi AA, Mat-Amin N, Weaver JA, Olumakaiye RT, Akbar MA, Jin S, Bunawan H, Alberti F. Genome Sequencing and Analysis of Trichoderma (Hypocreaceae) Isolates Exhibiting Antagonistic Activity against the Papaya Dieback Pathogen, Erwinia mallotivora. J Fungi (Basel) 2022; 8:246. [PMID: 35330248 PMCID: PMC8949440 DOI: 10.3390/jof8030246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/13/2023] Open
Abstract
Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have been reported, but the availability of antagonistic fungi remains unknown. In this study, mycelial suspensions from five rhizospheric Trichoderma isolates of Malaysian origin were found to exhibit notable antagonisms against E. mallotivora during co-cultivation. We further characterised three isolates, Trichoderma koningiopsis UKM-M-UW RA5, UKM-M-UW RA6, and UKM-M-UW RA3a, that showed significant growth inhibition zones on plate-based inhibition assays. A study of the genomes of the three strains through a combination of Oxford nanopore and Illumina sequencing technologies highlighted potential secondary metabolite pathways that might underpin their antimicrobial properties. Based on these findings, the fungal isolates are proven to be useful as potential biological control agents against E. mallotivora, and the genomic data opens possibilities to further explore the underlying molecular mechanisms behind their antimicrobial activity, with potential synthetic biology applications.
Collapse
Affiliation(s)
- Amin-Asyraf Tamizi
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters (MARDI), Serdang 43400, Selangor, Malaysia; (A.-A.T.); (N.M.-A.)
| | - Noriha Mat-Amin
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters (MARDI), Serdang 43400, Selangor, Malaysia; (A.-A.T.); (N.M.-A.)
| | - Jack A. Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Richard T. Olumakaiye
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Muhamad Afiq Akbar
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Sophie Jin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| |
Collapse
|
9
|
Huilgol SN, Nandeesha KL, Banu H. Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Cai F, Dou K, Wang P, Chenthamara K, Chen J, Druzhinina IS. The Current State of Trichoderma Taxonomy and Species Identification. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Genome-Mediated Methods to Unravel the Native Biogeographical Diversity and Biosynthetic Potential of Trichoderma for Plant Health. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
14
|
Rahimi MJ, Cai F, Grujic M, Chenthamara K, Druzhinina IS. Molecular Identification of Trichoderma reesei. Methods Mol Biol 2021; 2234:157-175. [PMID: 33165788 DOI: 10.1007/978-1-0716-1048-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungi comprise one of the most diverse groups of eukaryotes with many cryptic species that are difficult to identify. In this chapter, we detail a protocol for the molecular identification of the most industrially relevant species of Trichoderma-T. reesei. We first describe how a single spore culture should be isolated and used for the sequencing of the diagnostic fragment of the tef1 gene. Then, we provide two alternative methods that can be used for molecular identification and offer the diagnostic oligonucleotide hallmark of the tef1 sequence that is present in sequences of all T. reesei strains known to date and that is therefore suitable for reliable and straightforward identification.
Collapse
Affiliation(s)
- Mohammad J Rahimi
- Fungal Genomics Laboratory (FungiG), The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Feng Cai
- Fungal Genomics Laboratory (FungiG), The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Marica Grujic
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Irina S Druzhinina
- Fungal Genomics Laboratory (FungiG), The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.
| |
Collapse
|
15
|
Ding M, Chen W, Ma X, Lv B, Jiang S, Yu Y, Rahimi M, Gao R, Zhao Z, Cai F, Druzhinina I. Emerging salt marshes as a source of Trichoderma arenarium sp. nov. and other fungal bioeffectors for biosaline agriculture. J Appl Microbiol 2021; 130:179-195. [PMID: 32590882 PMCID: PMC7818382 DOI: 10.1111/jam.14751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023]
Abstract
AIMS Sustainable agriculture requires effective and safe biofertilizers and biofungicides with low environmental impact. Natural ecosystems that closely resemble the conditions of biosaline agriculture may present a reservoir for fungal strains that can be used as novel bioeffectors. METHODS AND RESULTS We isolated a library of fungi from the rhizosphere of three natural halotolerant plants grown in the emerging tidal salt marshes on the south-east coast of China. DNA barcoding of 116 isolates based on the rRNA ITS1 and 2 and other markers (tef1 or rpb2) revealed 38 fungal species, including plant pathogenic (41%), saprotrophic (24%) and mycoparasitic (28%) taxa. The mycoparasitic fungi were mainly species from the hypocrealean genus Trichoderma, including at least four novel phylotypes. Two of them, representing the taxa Trichoderma arenarium sp. nov. (described here) and T. asperelloides, showed antagonistic activity against five phytopathogenic fungi, and significant growth promotion on tomato seedlings under the conditions of saline agriculture. CONCLUSIONS Trichoderma spp. of salt marshes play the role of natural biological control in young soil ecosystems with a putatively premature microbiome. SIGNIFICANCE AND IMPACT OF THE STUDY The saline soil microbiome is a rich source of halotolerant bioeffectors that can be used in biosaline agriculture.
Collapse
Affiliation(s)
- M.‐Y. Ding
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - W. Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - X.‐C. Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - B.‐W. Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - S.‐Q. Jiang
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - Y.‐N. Yu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - M.J. Rahimi
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE)TU WienViennaAustria
| | - R.‐W. Gao
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - Z. Zhao
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - F. Cai
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE)TU WienViennaAustria
| | - I.S. Druzhinina
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE)TU WienViennaAustria
| |
Collapse
|
16
|
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) is an efficient industrial cell factory for the production of cellulolytic enzymes used for biofuel and other applications. Therefore, researches addressing T. reesei are relatively advanced compared to other Trichoderma spp. because of the significant bulk of available knowledge, multiple genomic data, and gene manipulation techniques. However, the established role of T. reesei in industry has resulted in a frequently biased understanding of the biology of this fungus. Thus, the recent studies unexpectedly show that the superior cellulolytic activity of T. reesei and other Trichoderma species evolved due to multiple lateral gene transfer events, while the innate ability to parasitize other fungi (mycoparasitism) was maintained in the genus, including T. reesei. In this chapter, we will follow the concept of ecological genomics and describe the ecology, distribution, and evolution of T. reesei, as well as critically discuss several common misconceptions that originate from the success of this species in applied sciences and industry.
Collapse
|
17
|
Zhang S, Sun F, Liu L, Bao L, Fang W, Yin C, Zhang Y. Dragonfly-Associated Trichoderma harzianum QTYC77 Is Not Only a Potential Biological Control Agent of Fusarium oxysporum f. sp. cucumerinum But Also a Source of New Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14161-14167. [PMID: 33198460 DOI: 10.1021/acs.jafc.0c05760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A strain isolated from the gut of Pantala flavescens was characterized as Trichoderma harzianum QTYC77. The strain was assessed as a potential biocontrol agent against Fusarium oxysporum f. sp. cucumerinum (FOC). Mycoparasitism and competing abilities of T. harzianum QTYC77 lead to inhibition of the mycelial growth of FOC, with the inhibition rate of 70.99%, in dual culture assays. Activities of chitinase and β-1,3-glucanase, responsible for fungal cell-wall degradation, were gradually increased and their activities were the maximum on the fifth day of fermentation with 23.20 and 1.84 U/mL, respectively. T. harzianum QTYC77 was discovered to have potent biocontrol potential with the control efficiency of 67.43% against the FOC in vivo pot experiment. Furthermore, two novel compounds azaphilone D (1) and E (2) along with three known metabolites 3-hydroxymethyl-6, 8-dimethoxycoumarin (3), harzianone (4), and pachybasin (5) were isolated and identified from T. harzianum QTYC77. Unfortunately, these metabolites did not show antifungal activities against FOC. However, both metabolites 1 and 3 displayed moderate activity against Staphylococcus aureus with disc diameters of zone of inhibition (ZOI) of 7.3 and 7.2 mm, respectively, compared with that of referenced gentamycin (ZOI = 14.5 mm). In addition, metabolite 1 possessed a moderate antibacterial activity against Bacillus subtilis with a ZOI value of 7.0 mm compared with that of positive gentamycin (ZOI = 15.2 mm). The present results suggested that T. harzianum QTYC77 was not only a potential biofungicide against FOC but also the source of new antibacterial agents.
Collapse
Affiliation(s)
- Shuxiang Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Feifei Sun
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lijun Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Liyun Bao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Wei Fang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Caiping Yin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
18
|
Gu X, Wang R, Sun Q, Wu B, Sun JZ. Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 2020; 73:109-132. [PMID: 33117081 PMCID: PMC7561617 DOI: 10.3897/mycokeys.73.51424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/08/2020] [Indexed: 11/12/2022] Open
Abstract
The Harzianum clade of Trichoderma comprises many species, which are associated with a wide variety of substrates. In this study, four new species of Trichoderma, namely T. lentinulae, T. vermifimicola, T. xixiacum, and T. zelobreve, were encountered from a fruiting body and compost of Lentinula, soil, and vermicompost. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the gene encoding the second largest nuclear RNA polymerase subunit (RPB2), the translation elongation factor 1-α encoding gene (TEF1-α). The analysis combining sequences of the three gene regions distinguished four new species in the Harzianum clade of Trichoderma. Among them, T. lentinulae and T. xixiacum clustered with T. lixii, from which these new species differ in having shorter phialides and smaller conidia. Additionally, T. lentinulae differs from T. xixiacum in forming phialides with inequilateral to a strongly-curved apex, cultural characteristics, and slow growth on PDA. Trichoderma vermifimicola is closely related to T. simmonsii, but it differs from the latter by producing phialides in verticillate whorls and smaller conidia. Trichoderma zelobreve is the sister species of T. breve but is distinguished from T. breve by producing shorter and narrower phialides, smaller conidia, and by forming concentric zones on agar plates. This study updates our knowledge of species diversity of Trichoderma.
Collapse
Affiliation(s)
- Xin Gu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China Ningxia University Yinchuan China
| | - Rui Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China Ningxia University Yinchuan China
| | - Quan Sun
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China Ningxia University Yinchuan China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China Chinese Academy of Sciences Beijing China
| | - Jing-Zu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China Chinese Academy of Sciences Beijing China
| |
Collapse
|
19
|
MIST: a Multilocus Identification System for Trichoderma. Appl Environ Microbiol 2020; 86:AEM.01532-20. [PMID: 32680870 DOI: 10.1128/aem.01532-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Due to the rapid expansion in microbial taxonomy, precise identification of common industrially and agriculturally relevant fungi such as Trichoderma species is challenging. In this study, we introduce the online multilocus identification system (MIST) for automated detection of 349 Trichoderma species based on a set of three DNA barcodes. MIST is based on the reference databases of validated sequences of three commonly used phylogenetic markers collected from public databases. The databases consist of 414 complete sequences of the nuclear rRNA internal transcribed spacers (ITS) 1 and 2, 583 sequence fragments of the gene encoding translation elongation factor 1-alpha (tef1), and 534 sequence fragments of the gene encoding RNA polymerase subunit 2 (rpb2). Through MIST, information from different DNA barcodes can be combined and the identification of Trichoderma species can be achieved based on the integrated parametric sequence similarity search (blastn) performed in the manner of a decision tree classifier. In the verification process, MIST provided correct identification for 44 Trichoderma species based on DNA barcodes consisting of tef1 and rpb2 markers. Thus, MIST can be used to obtain an automated species identification as well as to retrieve sequences required for manual identification by means of phylogenetic analysis.IMPORTANCE The genus Trichoderma is important to humankind, with a wide range of applications in industry, agriculture, and bioremediation. Thus, quick and accurate identification of Trichoderma species is paramount, since it is usually the first step in Trichoderma-based research. However, it frequently becomes a limitation, especially for researchers who lack taxonomic knowledge of fungi. Moreover, as the number of Trichoderma-based studies has increased, a growing number of unidentified sequences have been stored in public databases, which has made the species identification more ambiguous. In this study, we provide an easy-to-use tool, MIST, for automated species identification, a list of Trichoderma species, and corresponding sequences of reference DNA barcodes. Therefore, this study will facilitate the research on the biodiversity and applications of the genus Trichoderma.
Collapse
|
20
|
Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 2020; 10:362. [PMID: 32821644 PMCID: PMC7392985 DOI: 10.1007/s13205-020-02301-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Trichoderma spp., a cosmopolitan fungal genus, has remarkable economic value in industry and agriculture. The resources of Trichoderma spp. in the grassland and forest ecosystems of northern Xinjiang were explored in this study. A total of 634 soil samples was collected, and 312 strains assigned to 23 species of Trichoderma spp. were identified. T. harzianum was the dominant species with 28.2% from all isolates. The principal components analysis indicated that ecosystem was the most dominant impact factor among longitude, latitude, altitude and ecosystems for the species diversities of Trichoderma spp. with the decreasing trend from the north to the south of northern Xinjiang (e.g., from Altay, followed by Yili, Changji, Bayingolin and finally Urumqi). Overall, Trichoderma spp. were more frequently encountered in forest ecosystems (coniferous forest and coniferous and broadleaf mixed forest) than in grassland ecosystems (desert steppe and temperate steppe). Frequency of Trichoderma spp. was significantly decreased along with increased altitude and only a few strains were isolated from altitudes above 3000 m. The results provided essential information on Trichoderma occurrence and distribution, which should benefit the application of Trichoderma in agriculture.
Collapse
|
21
|
Lee SH, Jung HJ, Hong SB, Choi JI, Ryu JS. Molecular Markers for Detecting a Wide Range of Trichoderma spp. that Might Potentially Cause Green Mold in Pleurotus eryngii. MYCOBIOLOGY 2020; 48:313-320. [PMID: 32952414 PMCID: PMC7476530 DOI: 10.1080/12298093.2020.1785754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 05/31/2023]
Abstract
In Pleurotus sp., green mold, which is considered a major epidemic, is caused by several Trichoderma species. To develop a rapid molecular marker specific for Trichoderma spp. that potentially cause green mold, eleven Trichoderma species were collected from mushroom farms and the Korean Agricultural Culture Collection (KACC). A dominant fungal isolate from a green mold-infected substrate was identified as Trichoderma pleuroticola based on the sequences of its internal transcribed spacer (ITS) and translation elongation factor 1-α (tef1) genes. In artificial inoculation tests, all Trichoderma spp., including T. atroviride, T. cf. virens, T. citrinoviride, T. harzianum, T. koningii, T. longibrachiatum, T. pleurotum, and T. pleuroticola, showed pathogenicity to some extent, and the observed symptoms were soaked mycelia with a red-brown pigment and retarded mycelium regeneration. A molecular marker was developed for the rapid detection of wide range of Trichoderma spp. based on the DNA sequence alignment of the ITS1 and ITS2 regions of Trichoderma spp. The developed primer set detected only Trichoderma spp., and no cross reactivity with edible mushrooms was observed. The detection limits for the PCR assay of T. harzianum (KACC40558), T. pleurotum (KACC44537), and T. pleuroticola (CAF-TP3) were found to be 500, 50, and 5 fg, respectively, and the detection limit for the pathogen-to-host ratio was approximately 1:10,000 (wt/wt).
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Mushroom Science, Korea National
College of Agriculture and Fisheries, Jeonju,
Korea
| | - Hwa Jin Jung
- Department of Mushroom Science, Korea National
College of Agriculture and Fisheries, Jeonju,
Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection,
Agricultural Microbiology Division, National Academy of Agricultural Science, Rural
Development Administration, Wanju,
Korea
| | - Jong In Choi
- Mushroom Research Institute,
GARES, Gwangju, Republic of Korea
| | - Jae-San Ryu
- Department of Mushroom Science, Korea National
College of Agriculture and Fisheries, Jeonju,
Korea
| |
Collapse
|
22
|
Grujić M, Dojnov B, Potočnik I, Atanasova L, Duduk B, Srebotnik E, Druzhinina IS, Kubicek CP, Vujčić Z. Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw. World J Microbiol Biotechnol 2019; 35:194. [PMID: 31776792 DOI: 10.1007/s11274-019-2774-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023]
Abstract
Lignocellulosic plant biomass is the world's most abundant carbon source and has consequently attracted attention as a renewable resource for production of biofuels and commodity chemicals that could replace fossil resources. Due to its recalcitrant nature, it must be pretreated by chemical, physical or biological means prior to hydrolysis, introducing additional costs. In this paper, we tested the hypothesis that fungi which thrive on lignocellulosic material (straw, bark or soil) would be efficient in degrading untreated lignocellulose. Wheat straw was used as a model. We developed a fast and simple screening method for cellulase producers and tested one hundred Trichoderma strains isolated from wheat straw. The most potent strain-UB483FTG2/ TUCIM 4455, was isolated from substrate used for mushroom cultivation and was identified as T. guizhouense. After optimization of growth medium, high cellulase activity was already achieved after 72 h of fermentation on raw wheat straw, while the model cellulase overproducing strain T. reesei QM 9414 took 170 h and reached only 45% of the cellulase activity secreted by T. guizhouense. Maximum production levels were 1.1 U/mL (measured with CMC as cellulase substrate) and 0.7 U/mL (β-glucosidase assay). The T. guizhouense cellulase cocktail hydrolyzed raw wheat straw within 35 h. Our study shows that screening for fungi that successfully compete for special substrates in nature will lead to the isolation of strains with qualitatively and quantitatively superior enzymes needed for their digestion which could be used for industrial purposes.
Collapse
Affiliation(s)
- Marica Grujić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Biljana Dojnov
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| | - Ivana Potočnik
- Laboratory of Applied Phytopathology, Institute of Pesticides and Environmental Protection, Banatska 31b, PO Box 163, Belgrade, Serbia
| | - Lea Atanasova
- Microbiology and Applied Genomics Group, Research Division of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a/E166-5, 1060, Vienna, Austria.,Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Bojan Duduk
- Laboratory of Applied Phytopathology, Institute of Pesticides and Environmental Protection, Banatska 31b, PO Box 163, Belgrade, Serbia
| | - Ewald Srebotnik
- Bioresource Technology Group, Research Division of Bioresources and Plant Science, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Getreidemarkt 9/E166-A, 1060, Vienna, Austria
| | - Irina S Druzhinina
- Microbiology and Applied Genomics Group, Research Division of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a/E166-5, 1060, Vienna, Austria.,Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Christian P Kubicek
- Microbiology and Applied Genomics Group, Research Division of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a/E166-5, 1060, Vienna, Austria.,, Steinschötelgasse 7, 1100, Vienna, Austria
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| |
Collapse
|
23
|
Towards the Biological Control of Devastating Forest Pathogens from the Genus Armillaria. FORESTS 2019. [DOI: 10.3390/f10111013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research Highlights: A large scale effort to screen, characterize, and select Trichoderma strains with the potential to antagonize Armillaria species revealed promising candidates for field applications. Background and Objectives: Armillaria species are among the economically most relevant soilborne tree pathogens causing devastating root diseases worldwide. Biocontrol agents are environment-friendly alternatives to chemicals in restraining the spread of Armillaria in forest soils. Trichoderma species may efficiently employ diverse antagonistic mechanisms against fungal plant pathogens. The aim of this paper is to isolate indigenous Trichoderma strains from healthy and Armillaria-damaged forests, characterize them, screen their biocontrol properties, and test selected strains under field conditions. Materials and Methods: Armillaria and Trichoderma isolates were collected from soil samples of a damaged Hungarian oak and healthy Austrian spruce forests and identified to the species level. In vitro antagonism experiments were performed to determine the potential of the Trichoderma isolates to control Armillaria species. Selected biocontrol candidates were screened for extracellular enzyme production and plant growth-promoting traits. A field experiment was carried out by applying two selected Trichoderma strains on two-year-old European Turkey oak seedlings planted in a forest area heavily overtaken by the rhizomorphs of numerous Armillaria colonies. Results: Although A. cepistipes and A. ostoyae were found in the Austrian spruce forests, A. mellea and A. gallica clones dominated the Hungarian oak stand. A total of 64 Trichoderma isolates belonging to 14 species were recovered. Several Trichoderma strains exhibited in vitro antagonistic abilities towards Armillaria species and produced siderophores and indole-3-acetic acid. Oak seedlings treated with T. virens and T. atrobrunneum displayed better survival under harsh soil conditions than the untreated controls. Conclusions: Selected native Trichoderma strains, associated with Armillaria rhizomorphs, which may also have plant growth promoting properties, are potential antagonists of Armillaria spp., and such abilities can be exploited in the biological control of Armillaria root rot.
Collapse
|
24
|
Chou H, Xiao YT, Tsai JN, Li TT, Wu HY, Liu LYD, Tzeng DS, Chung CL. In Vitro and in Planta Evaluation of Trichoderma asperellum TA as a Biocontrol Agent Against Phellinus noxius, the Cause of Brown Root Rot Disease of Trees. PLANT DISEASE 2019; 103:2733-2741. [PMID: 31483183 DOI: 10.1094/pdis-01-19-0179-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown root rot (BRR), caused by the white rot fungus Phellinus noxius, is an epidemic disease of diverse broadleaved and coniferous tree species in many tropical and subtropical regions. Flooding and trenching control measures are difficult to implement, and chemical controls can have an adverse impact on ecosystems. Previous studies have provided in vitro evidence for the potential use of Trichoderma spp. for biocontrol of BRR. Here, we analyzed the in vitro antagonistic and mycoparasitic abilities of four Trichoderma spp. isolates against four P. noxius isolates in dual culture and Ficus microcarpa wood blocks. A convenient inoculation system based on root inoculation of a highly susceptible loquat (Eriobotrya japonica) with P. noxius-colonized wheat-oat grains was developed to examine the effect of Trichoderma treatment in planta. Preventive application of Trichoderma asperellum TA, the isolate showing high antagonistic activity in vitro, was effective in preventing and delaying the wilting of P. noxius-inoculated loquat cuttings in greenhouse trials. To understand the specific niche in which T. asperellum TA interacts with P. noxius, KOH-aniline blue fluorescence microscopy was used to investigate the colonization of loquat roots by P. noxius and/or T. asperellum TA. Dilution plating assays were also conducted to quantify Trichoderma populations in the rhizosphere and potting mix. T. asperellum TA was able to robustly establish in the rhizosphere and potting mix but with scarce root penetration limited to the superficial layer. We discuss the timing and strategy for applying antagonistic Trichodema sp. on living trees or in BRR-infested areas for BRR management.
Collapse
Affiliation(s)
- Hao Chou
- Master Program for Plant Medicine, National Taiwan University, Taipei City 10617, Taiwan
| | - Yi-Ting Xiao
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 10617, Taiwan
| | - Jyh-Nong Tsai
- Plant Pathology Division, Taiwan Agricultural Research Institute, Taichung City 41362, Taiwan
| | - Ting-Ting Li
- Master Program for Plant Medicine, National Taiwan University, Taipei City 10617, Taiwan
| | - Hung-Yi Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 10617, Taiwan
| | - Li-Yu D Liu
- Department of Agronomy, National Taiwan University, Taipei City 10617, Taiwan
| | - Der-Syh Tzeng
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Chia-Lin Chung
- Master Program for Plant Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
25
|
Lignocellulolytic characterization and comparative secretome analysis of a Trichoderma erinaceum strain isolated from decaying sugarcane straw. Fungal Biol 2019; 123:330-340. [PMID: 30928041 DOI: 10.1016/j.funbio.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 11/21/2022]
Abstract
The fungus Trichoderma reesei is employed in the production of most enzyme cocktails used by the lignocellulosic biofuels industry today. Despite significant improvements, the cost of the required enzyme preparations remains high, representing a major obstacle for the industrial production of these alternative fuels. In this study, a new Trichoderma erinaceum strain was isolated from decaying sugarcane straw. The enzyme cocktail secreted by the new isolate during growth in pretreated sugarcane straw-containing medium presented higher specific activities of β-glucosidase, endoxylanase, β-xylosidase and α-galactosidase than the cocktail of a wild T. reesei strain and yielded more glucose in the hydrolysis of pretreated sugarcane straw. A proteomic analysis of the two strains' secretomes identified a total of 86 proteins, of which 48 were exclusive to T. erinaceum, 35 were exclusive to T. reesei and only 3 were common to both strains. The secretome of T. erinaceum also displayed a higher number of carbohydrate-active enzymes than that of T. reesei (37 and 27 enzymes, respectively). Altogether, these results reveal the significant potential of the T. erinaceum species for the production of lignocellulases, both as a possible source of enzymes for the supplementation of industrial cocktails and as a candidate chassis for enzyme production.
Collapse
|
26
|
Li J, Wu Y, Chen K, Wang Y, Hu J, Wei Y, Yang H. Trichoderma cyanodichotomus sp. nov., a new soil-inhabiting species with a potential for biological control. Can J Microbiol 2018; 64:1020-1029. [PMID: 30199653 DOI: 10.1139/cjm-2018-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During a biodiversity survey of Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) in coastal and lake wetlands of China, a new species, Trichoderma cyanodichotomus, was isolated from Dongting Lake wetland of Hunan province. The strain TW21990-1 was characterized as having two types of conidia and producing a distinct blue–green pigment on potato dextrose agar and cornmeal dextrose agar. The taxonomic position was analyzed using three molecular markers, internal transcribed spacer rDNA, translation elongation factor 1-alpha, and RNA polymerase II subunit B, revealing less than 95.0% homology with all known Trichoderma species. The combined phylogenetic tree further identified T. cyanodichotomus as an independent subgroup belonging to Section Pachybasium, with no close relatives. In vitro antagonistic activity by dual-culture assay exhibited broad inhibition against various plant pathogens, including Botryosphaeria dothidea, Pythium aphanidermatum, Rhizoctonia solani, and Verticillium dahliae. In addition, TW21990-1 demonstrated moderate hydrolase activity of cellulase, chitinase, β-1,3-glucanase, and protease, which might be involved in mycoparasitism. Greenhouse experiments showed strong biocontrol effects against tomato damping-off incited by P. aphanidermatum, together with increased seedling height and weight gain. The identification of T. cyanodichotomus will provide useful information for sufficient utilization of fungal resources.
Collapse
Affiliation(s)
- Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Yuanzheng Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Kai Chen
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Yilian Wang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Jindong Hu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Yanli Wei
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| | - Hetong Yang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan 250103, P.R. China
| |
Collapse
|
27
|
Castagnoli E, Marik T, Mikkola R, Kredics L, Andersson M, Salonen H, Kurnitski J. IndoorTrichodermastrains emitting peptaibols in guttation droplets. J Appl Microbiol 2018; 125:1408-1422. [DOI: 10.1111/jam.13920] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
Affiliation(s)
- E. Castagnoli
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - T. Marik
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - R. Mikkola
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - L. Kredics
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - M.A. Andersson
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Food and Environmental Science; Helsinki University; Helsinki Finland
| | - H. Salonen
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - J. Kurnitski
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Civil Engineering and Architecture; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
28
|
Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS, Vágvölgyi C. Molecular Tools for Monitoring Trichoderma in Agricultural Environments. Front Microbiol 2018; 9:1599. [PMID: 30090089 PMCID: PMC6068273 DOI: 10.3389/fmicb.2018.01599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Various Trichoderma species possess significance in agricultural systems as biofertilizers or biocontrol agents (BCAs). Besides these beneficial features, certain Trichoderma species can also act as agricultural pests, causing the green mold disease of cultivated mushrooms. This double-faced nature of the genus in agricultural environments points at the importance of proper monitoring tools, which can be used to follow the presence and performance of candidate as well as patented and/or registered biocontrol strains, to assess the possible risks arising from their application, but also to track harmful, unwanted Trichoderma species like the green molds in mushroom growing facilities. The objective of this review is to discuss the molecular tools available for the species- and strain-specific monitoring of Trichoderma, ranging from immunological approaches and fingerprinting tools to exogenous markers, specific primers used in polymerase chain reaction (PCR) as well as "omics" approaches.
Collapse
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rita Büchner
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktor D Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
MARECIK ROMAN, BŁASZCZYK LIDIA, BIEGAŃSKA-MARECIK RÓŻA, PIOTROWSKA-CYPLIK AGNIESZKA. Screening and Identification of Trichoderma Strains Isolated from Natural Habitats with Potential to Cellulose and Xylan Degrading Enzymes Production. Pol J Microbiol 2018; 67:181-190. [PMID: 30015456 PMCID: PMC7256729 DOI: 10.21307/pjm-2018-021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
A total of 123 Trichoderma strains were isolated from different habitats and tested for their ability to degrade cellulose and xylan by simple plate screening method. Among strains, more than 34 and 45% respectively, exhibited higher cellulolytic and xylanolytic activity, compared to the reference strain T. reesei QM 9414. For strains efficiently degrading cellulose, a highest enzyme activity was confirmed using filter paper test, and it resulted in a range from 1.01 to 7.15 FPU/ml. Based on morphological and molecular analysis, the isolates were identified as Trichoderma. The most frequently identified strains belonged to Trichoderma harzianum species. Among all strains, the most effective in degradation of cellulose and xylose was T. harzianum and T. virens, especially those isolated from forest wood, forest soil or garden and mushroom compost. The results of this work confirmed that numerous strains from the Trichoderma species have high cellulose and xylan degradation potential and could be useful for lignocellulose biomass conversion e.g. for biofuel production.
Collapse
Affiliation(s)
- ROMAN MARECIK
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - LIDIA BŁASZCZYK
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - RÓŻA BIEGAŃSKA-MARECIK
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
30
|
Rico-Munoz E, Samson RA, Houbraken J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol 2018; 81:51-62. [PMID: 30910088 DOI: 10.1016/j.fm.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
Fungal spoilage of products manufactured by the food and beverage industry imposes significant annual global revenue losses. Mould spoilage can also be a food safety issue due to the production of mycotoxins by these moulds. To prevent mould spoilage, it is essential that the associated mycobiota be adequately isolated and accurately identified. The main fungal groups associated with spoilage are the xerophilic, heat-resistant, preservative-resistant, anaerobic and psychrophilic fungi. To assess mould spoilage, the appropriate methodology and media must be used. While classic mycological detection methods can detect a broad range of fungi using well validated protocols, they are time consuming and results can take days or even weeks. New molecular detection methods are faster but require good DNA isolation techniques, expensive equipment and may detect viable and non-viable fungi that probably will not spoil a specific product. Although there is no complete and easy method for the detection of fungi in food it is important to be aware of the limitation of the methodology. More research is needed on the development of methods of detection and identification that are both faster and highly sensitive.
Collapse
Affiliation(s)
- Emilia Rico-Munoz
- BCN Research Laboratories, Inc., 2491 Stock Creek Blvd., Rockford, TN 37853, USA.
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| |
Collapse
|
31
|
Nováková A, Hubka V, Valinová Š, Kolařík M, Hillebrand-Voiculescu AM. Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol (Praha) 2017; 63:43-55. [PMID: 28551852 DOI: 10.1007/s12223-017-0527-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
Movile Cave, a unique groundwater ecosystem in southern Romania, was discovered in 1986. This chemoautotrophic cave contains an abundant and diverse fauna with terrestrial and aquatic invertebrate communities, including 33 endemic species. Since its discovery, studies have focused mainly on cave chemoautotrophic bacteria, while the microfungal community has been largely neglected. In this study, we determined the microfungal species living on various substrates in Movile Cave and compared this spectrum with the mycobiota detected outside the cave (outside air-borne and soil-borne microfungi). To investigate all of the niches, we collected samples for two consecutive years from the dry part of the cave (cave air and sediment, corroded limestone walls, isopod feces, and isopod and spider cadavers) and from the post-siphon part of the cave, i.e., Airbell II (sediment and floating microbial mat). A total of 123 microfungal species were identified from among several hundred isolates. Of these, 96 species were only detected in the cave environment and not outside of the cave, while 90 species were from the dry part of the cave and 28 were from Airbell II. The most diverse genera were Penicillium (at least 18 species) and Aspergillus (14 species), followed by Cladosporium (9 species). Surprisingly, high CFU counts of air-borne microfungi were found inside the cave; they were even higher than outside the cave during the first year of investigation.
Collapse
Affiliation(s)
- Alena Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology AS CR, v.v.i, Vídeňská 1083, 142 20, Praha 4, Czech Republic. .,Institute of Soil Biology, Biology Centre AS CR, v.v.i., Na Sádkách 7, České Budějovice, Czech Republic.
| | - Vít Hubka
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology AS CR, v.v.i, Vídeňská 1083, 142 20, Praha 4, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Praha 2, Czech Republic
| | - Šárka Valinová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Praha 2, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology AS CR, v.v.i, Vídeňská 1083, 142 20, Praha 4, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Praha 2, Czech Republic
| | - Alexandra Maria Hillebrand-Voiculescu
- Emil Racoviţă Institute of Speleology, Str. Frumoasă, No. 31, Sect.1, 010986, Bucharest, Romania.,Group for Underwater and Speleological Exploration, Str. Frumoasă, No. 31, Sect.1, 010986, Bucharest, Romania
| |
Collapse
|
32
|
Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea voglmayriisp. nov. from the Austrian Alps represents a new phylogenetic clade inHypocrea/Trichoderma. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832743] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Irina S. Druzhinina
- Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9-166.5, A-1060 Wien, Austria
| |
Collapse
|
33
|
Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea crystalligena sp. nov., a common European species with a white-spored Trichoderma anamorph. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Irina S. Druzhinina
- Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9-166.5, A-1060 Vienna, Austria
| |
Collapse
|
34
|
Jaklitsch WM, Kubicek CP, Druzhinina IS. Three European species of Hypocrea with reddish brown stromata and green ascospores. Mycologia 2017; 100:796-815. [DOI: 10.3852/08-039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Walter M. Jaklitsch
- Faculty Centre for Systematic Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | - Irina S. Druzhinina
- Institute of Chemical Engineering, Research Division of Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9-166.5, A-1060 Vienna, Austria
| |
Collapse
|
35
|
Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL. Improving taxonomic accuracy for fungi in public sequence databases: applying 'one name one species' in well-defined genera with Trichoderma/Hypocrea as a test case. Database (Oxford) 2017; 2017:4553317. [PMID: 29220466 PMCID: PMC5641268 DOI: 10.1093/database/bax072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/18/2023]
Abstract
The ITS (nuclear ribosomal internal transcribed spacer) RefSeq database at the National Center for Biotechnology Information (NCBI) is dedicated to the clear association between name, specimen and sequence data. This database is focused on sequences obtained from type material stored in public collections. While the initial ITS sequence curation effort together with numerous fungal taxonomy experts attempted to cover as many orders as possible, we extended our latest focus to the family and genus ranks. We focused on Trichoderma for several reasons, mainly because the asexual and sexual synonyms were well documented, and a list of proposed names and type material were recently proposed and published. In this case study the recent taxonomic information was applied to do a complete taxonomic audit for the genus Trichoderma in the NCBI Taxonomy database. A name status report is available here: https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi. As a result, the ITS RefSeq Targeted Loci database at NCBI has been augmented with more sequences from type and verified material from Trichoderma species. Additionally, to aid in the cross referencing of data from single loci and genomes we have collected a list of quality records of the RPB2 gene obtained from type material in GenBank that could help validate future submissions. During the process of curation misidentified genomes were discovered, and sequence records from type material were found hidden under previous classifications. Source metadata curation, although more cumbersome, proved to be useful as confirmation of the type material designation. Database URL:http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353
Collapse
Affiliation(s)
- Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pooja K Strope
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Romina Gazis
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stacy Ciufo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Domrachev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Yun SH, Lee SH, So KK, Kim JM, Kim DH. Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. FEMS Microbiol Lett 2016; 363:fnw220. [PMID: 27664058 DOI: 10.1093/femsle/fnw220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/28/2016] [Accepted: 09/22/2016] [Indexed: 11/14/2022] Open
Abstract
A total of 315 fungal isolates causing green mold disease were collected from contaminated artificial logs and sawdust bags used for cultivating shiitake Lentinula edodes in Korea and were analyzed for the presence of double-stranded RNA (dsRNA). dsRNA, which was purified using dsRNA-specific chromatography and verified by dsRNA-specific RNaseIII digestion, was detected in 32 isolates. The molecular taxonomy of dsRNA-infected isolates indicated that all isolates belonged to the Trichoderma spp.. The number and size of dsRNAs varied among isolates and the band patterns could be categorized into 15 groups. Although there were seven dsRNA groups observed in multiple isolates, eight groups were found to occur in single isolates. The most common dsRNA group, group VI, which contained a band of 10 kb, occurred in 10 isolates encompassing three species of Trichoderma. Partial sequence analysis of two selected dsRNA groups revealed a high degree of similarity to sequences of a RNA-dependent RNA polymerase, hypothetical protein and polyprotein genes of other hypoviruses such as Macrophomina phaseolina hypovirus 1, Trichoderma hypovirus, and Fusarium graminearum hypovirus 2, respectively, indicating the occurrence of mycoviruses in Trichoderma spp.. Northern blot analysis suggested that many different mycoviruses, which have not been identified yet, exist in Trichoderma.
Collapse
Affiliation(s)
- Suk-Hyun Yun
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Song Hee Lee
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Kum-Kang So
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| |
Collapse
|
37
|
Yahr R, Schoch CL, Dentinger BTM. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150336. [PMID: 27481788 PMCID: PMC4971188 DOI: 10.1098/rstb.2015.0336] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/15/2022] Open
Abstract
The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'.
Collapse
Affiliation(s)
- Rebecca Yahr
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, UK
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Bryn T M Dentinger
- Royal Botanic Gardens Kew, Richmond, Surrey, UK Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cledwyn Building, Penglais, Aberystwyth SY23 3DD, UK
| |
Collapse
|
38
|
Jiang H, Zhang L, Zhang JZ, Ojaghian MR, Hyde KD. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro *. J Zhejiang Univ Sci B 2016; 17:271-281. [PMCID: PMC4829632 DOI: 10.1631/jzus.b1500243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/10/2015] [Indexed: 09/21/2023]
Abstract
Phytophthora capsici is a phytopathogen that causes a destructive pepper blight that is extremely difficult to control. Using a fungicide application against the disease is costly and relatively ineffective and there is also a huge environmental concern about the use of such chemicals. The genus Trichoderma has been known to have a potential biocontrol issue. In this paper we investigate the mechanism for causing the infection of T. asperellum against P. capsici . Trichoderma sp. (isolate CGMCC 6422) was developed to have a strong antagonistic action against hyphae of P. capsici through screening tests. The strain was identified as T. asperellum through using a combination of morphological characteristics and molecular data. T. asperellum was able to collapse the mycelium of the colonies of the pathogen through dual culture tests by breaking down the pathogenic hyphae into fragments. The scanning electron microscope showed that the hyphae of T. asperellum surrounded and penetrated the pathogens hyphae, resulting in hyphal collapse. The results show that seven days after inoculation, the hyphae of the pathogen were completely degraded in a dual culture. T. asperellum was also able to enter the P. capsici oospores through using oogonia and then developed hyphae and produced conidia, leading to the disintegration of the oogonia and oospores. Seven days after inoculation, an average 10.8% of the oospores were infected, but at this stage, the structures of oospores were still intact. Subsequently, the number of infected oospores increased and the oospores started to collapse. Forty-two days after inoculation, almost all the oospores were infected, with 9.3% of the structures of the oospores being intact and 90.7% of the oospores having collapsed.
Collapse
Affiliation(s)
- Heng Jiang
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jing-ze Zhang
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohammad Reza Ojaghian
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
39
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
40
|
Błaszczyk L, Strakowska J, Chełkowski J, Gąbka-Buszek A, Kaczmarek J. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization. J Appl Genet 2015; 57:397-407. [PMID: 26586561 PMCID: PMC4963455 DOI: 10.1007/s13353-015-0326-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/23/2015] [Accepted: 11/02/2015] [Indexed: 10/29/2022]
Abstract
The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Judyta Strakowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Jerzy Chełkowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Agnieszka Gąbka-Buszek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Joanna Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
41
|
Ding LJ, Gu BB, Jiao WH, Yuan W, Li YX, Tang WZ, Yu HB, Liao XJ, Han BN, Li ZY, Xu SH, Lin HW. New Furan and Cyclopentenone Derivatives from the Sponge-Associated Fungus Hypocrea Koningii PF04. Mar Drugs 2015; 13:5579-92. [PMID: 26343687 PMCID: PMC4584341 DOI: 10.3390/md13095579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Two new furan derivatives, hypofurans A and B (1 and 2), and three new cyclopentenone derivatives, hypocrenones A-C (3-5), along with seven known compounds (6-12), were isolated from a marine fungus Hypocrea koningii PF04 associated with the sponge Phakellia fusca. Among them, compounds 10 and 11 were obtained for the first time as natural products. The planar structures of compounds 1-5 were elucidated by analysis of their spectroscopic data. Meanwhile, the absolute configuration of 1 was determined as 2R,3R by the comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. All the isolates were evaluated for their antibacterial and antioxidant activity. Compounds 1, 10, and 12 all showed modest antibacterial activity against Staphylococcus aureus ATCC25923 (MIC, 32 μg/mL). In addition, compounds 1, 10 and 11 exhibited moderate DPPH radical scavenging capacity with IC50 values of 27.4, 16.8, and 61.7 µg/mL, respectively.
Collapse
Affiliation(s)
- Li-Jian Ding
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (L.-J.D.); (X.-J.L.)
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Bin-Bin Gu
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Wei-Hua Jiao
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Wei Yuan
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Ying-Xin Li
- State Key Laboratory of Microbial Metabolism, Marine Biotechnology Laboratory, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mail:
| | - Wei-Zhuo Tang
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Hao-Bing Yu
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Xiao-Jian Liao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (L.-J.D.); (X.-J.L.)
| | - Bing-Nan Han
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| | - Zhi-Yong Li
- State Key Laboratory of Microbial Metabolism, Marine Biotechnology Laboratory, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mail:
| | - Shi-Hai Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (L.-J.D.); (X.-J.L.)
| | - Hou-Wen Lin
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mails: (B.-B.G.); (W.-H.J.); (W.Y.); (W.-Z.T.); (H.-B.Y.); (B.-N.H.)
| |
Collapse
|
42
|
Irinyi L, Lackner M, de Hoog GS, Meyer W. DNA barcoding of fungi causing infections in humans and animals. Fungal Biol 2015; 120:125-36. [PMID: 26781368 DOI: 10.1016/j.funbio.2015.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.
Collapse
Affiliation(s)
- Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, NSW, Australia
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, 3508 AD, The Netherlands
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Skoneczny D, Oskiera M, Szczech M, Bartoszewski G. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol (Praha) 2015; 60:297-307. [PMID: 25791292 PMCID: PMC4445485 DOI: 10.1007/s12223-015-0385-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/05/2015] [Indexed: 11/30/2022]
Abstract
Molecular markers that enable monitoring of fungi in their natural environment or assist in the identification of specific strains would facilitate Trichoderma utilization, particularly as an agricultural biocontrol agent (BCA). In this study, sequence analysis of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the ribosomal RNA (rRNA) gene cluster, a fragment of the translation elongation factor 1-alpha (tef1) gene, and random amplified polymorphic DNA (RAPD) markers were applied to determine the genetic diversity of Trichoderma atroviride strains collected in Poland, and also in order to identify loci and PCR-based molecular markers useful in genetic variation assessment of that fungus. Although tef1 and RAPD analysis showed limited genetic diversity among T. atroviride strains collected in Poland, it was possible to distinguish major groups that clustered most of the analyzed strains. Polymorphic RAPD amplicons were cloned and sequenced, yielding sequences representing 13 T. atroviride loci. Based on these sequences, a set of PCR-based markers specific to T. atroviride was developed and examined. Three cleaved amplified polymorphic sequence (CAPS) markers could assist in distinguishing T. atroviride strains. The genomic regions identified may be useful for further exploration and development of more precise markers suitable for T. atroviride identification and monitoring, especially in environmental samples.
Collapse
Affiliation(s)
- Dominik Skoneczny
- Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warszawa, Poland
| | | | | | | |
Collapse
|
44
|
Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 2013. [DOI: 10.1007/s11557-013-0942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Enhancing the Sustainability of Quinoa Production and Soil Resilience by Using Bioproducts Made with Native Microorganisms. AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3040732] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Novel Endophytic Trichoderma spp. Isolated from Healthy Coffea arabica Roots are Capable of Controlling Coffee Tracheomycosis. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5040750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
β -Glucosidases from the fungus trichoderma: an efficient cellulase machinery in biotechnological applications. BIOMED RESEARCH INTERNATIONAL 2013; 2013:203735. [PMID: 23984325 PMCID: PMC3747355 DOI: 10.1155/2013/203735] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/15/2013] [Indexed: 11/17/2022]
Abstract
β-glucosidases catalyze the selective cleavage of glucosidic linkages and are an important class of enzymes having significant prospects in industrial biotechnology. These are classified in family 1 and family 3 of glycosyl hydrolase family. β-glucosidases, particularly from the fungus Trichoderma, are widely recognized and used for the saccharification of cellulosic biomass for biofuel production. With the rising trends in energy crisis and depletion of fossil fuels, alternative strategies for renewable energy sources need to be developed. However, the major limitation accounts for low production of β-glucosidases by the hyper secretory strains of Trichoderma. In accordance with the increasing significance of β-glucosidases in commercial applications, the present review provides a detailed insight of the enzyme family, their classification, structural parameters, properties, and studies at the genomics and proteomics levels. Furthermore, the paper discusses the enhancement strategies employed for their utilization in biofuel generation. Therefore, β-glucosidases are prospective toolbox in bioethanol production, and in the near future, it might be successful in meeting the requirements of alternative renewable sources of energy.
Collapse
|
48
|
López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, Müller WH, Boekhout T, Druzhinina I. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie van Leeuwenhoek 2013; 104:657-74. [PMID: 23884864 PMCID: PMC3824238 DOI: 10.1007/s10482-013-9975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/13/2013] [Indexed: 01/24/2023]
Abstract
The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.
Collapse
|
49
|
Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH. Multilocus species identification and fungal DNA barcoding: insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 2013; 10:946-59. [PMID: 21565104 DOI: 10.1111/j.1755-0998.2010.02844.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is strong community-wide interest in applying molecular techniques to fungal species delimitation and identification, but selection of a standardized region or regions of the genome has not been finalized. A single marker, the ribosomal DNA internal transcribed spacer region, has frequently been suggested as the standard for fungi. We used a group of closely related blue stain fungi associated with the mountain pine beetle (Dendroctonus ponderosae Hopkins) to examine the success of such single-locus species identification, comparing the internal transcribed spacer with four other nuclear markers. We demonstrate that single loci varied in their utility for identifying the six fungal species examined, while use of multiple loci was consistently successful. In a literature survey of 21 similar studies, individual loci were also highly variable in their ability to provide consistent species identifications and were less successful than multilocus diagnostics. Accurate species identification is the essence of any molecular diagnostic system, and this consideration should be central to locus selection. Moreover, our study and the literature survey demonstrate the value of using closely related species as the proving ground for developing a molecular identification system. We advocate use of a multilocus barcode approach that is similar to the practice employed by the plant barcode community, rather than reliance on a single locus.
Collapse
Affiliation(s)
- Amanda D Roe
- CW 405 - Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | |
Collapse
|
50
|
Błaszczyk L, Siwulski M, Sobieralski K, Frużyńska-Jóźwiak D. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol (Praha) 2013; 58:325-33. [PMID: 23192526 PMCID: PMC3683140 DOI: 10.1007/s12223-012-0214-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 11/13/2012] [Indexed: 11/28/2022]
Abstract
The present study includes the molecular characteristics of Trichoderma pleurotum and Trichoderma pleuroticola isolates collected from green moulded cereal straw substrates at 47 oyster mushroom farms in Poland. The screening of the 80 Trichoderma isolates was performed by morphological observation and by using the multiplex PCR assay. This approach enabled specific detection of 47 strains of T. pleurotum and 2 strains of T. pleuroticola. Initial identifications were confirmed by sequencing the fragment of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the rRNA gene cluster and the fragment including the fourth and fifth introns and the last long exon of the translation-elongation factor 1-alpha (tef1) gene. ITS and tef1 sequence information was also used to establish the intra- and interspecies relationship of T. pleurotum and T. pleuroticola originating from the oyster mushroom farms in Poland and from other countries. Comparative analysis of the ITS sequences showed that all T. pleurotum isolates from Poland represent one haplotype, identical to that of T. pleurotum strains from Hungary and Romania. Sequence analysis of the tef1 locus revealed two haplotypes ("T" and "N") of Polish T. pleurotum isolates. The "T" type isolates of T. pleurotum were identical to those of strains from Hungary and Romania. The "N" type isolates possessed a unique tef1 allele. Detailed analysis of the ITS and tef1 sequences of two T. pleuroticola isolates showed their identicalness to Italian strain C.P.K. 1540.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań, Poland.
| | | | | | | |
Collapse
|