2
|
Meehan DJ, Cabrita ARJ, Maia MRG, Fonseca AJM. Energy: Protein Ratio in Ruminants: Insights from the Intragastric Infusion Technique. Animals (Basel) 2021; 11:ani11092700. [PMID: 34573666 PMCID: PMC8464725 DOI: 10.3390/ani11092700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary One key question that has confounded nutritional scientists for years is how the ruminant responds metabolically with respect to energy and nitrogen utilisation when no exogenous energy is consumed. Fasting metabolism studies using the intragastric infusion technique (IIT) showed this to be a glucose-deficient state characterised by elevated nitrogen excretion and heat production. However, modern feeding systems continue to adopt fasting as the basis for measuring utilisation efficiency of nutritionally balanced diets, giving rise to the false concept of greater feed utilisation below than above energy maintenance. Another IIT finding was that given the animal’s genetic capacity for protein accretion and provided a rumen undegradable protein is fed, ruminants do not catabolise amino acids as an energy source but instead retain these to attain substantial gains in tissue protein deposition, fuelled by endogenous energy reserves. This suggests that endogenous fat reserves could be used to retain body protein when feed supplies are scarce or of poor nutritive value and questions the need to use high-energy diets in the finishing pre-slaughter period. Moreover, body protein and body fat deposition were also shown to be negatively correlated, contradicting current feeding systems which assume that nitrogen retention is always negative in an underfeeding situation. Abstract Studies on energy:protein ratio in ruminants are constrained by rumen fermentation since it governs nutrient metabolism and the ratio of energy:protein yielding nutrients available for absorption. By circumventing rumen fermentation, the total intragastric infusion technique (IIT) allowed objective quantification of maintenance energy and protein requirements, volatile fatty acid utilisation efficiency, efficiency of energy utilisation for maintenance (Km) and growth (Kf) and the origin of N retention responses to independent variation of energy and protein intake. This review outlines the key IIT findings and whether they are reflected in current feeding systems with implications for different production systems worldwide. Maintenance energy requirements are similar to those derived from comparative slaughter but maintenance N requirements are significantly lower. No differences in utilisation efficiency exist between acetic, propionic and butyric acids. At low energy intakes, endogenous energy reserves are utilised to retain amino acids and fuel substantial tissue protein gains. The use of fasting metabolism to measure the utilisation of nutritionally balanced diets is questioned since it is a glucose-deficient state. Inter-species differences in glucose metabolism appear to exist, suggesting that glucose requirements may be higher in cattle than sheep. The difficulty in predicting nutrient requirements, particularly protein, with any one technique is highlighted.
Collapse
Affiliation(s)
- Denis J. Meehan
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (D.J.M.); (A.R.J.C.); (M.R.G.M.)
- UTAD, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (D.J.M.); (A.R.J.C.); (M.R.G.M.)
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (D.J.M.); (A.R.J.C.); (M.R.G.M.)
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (D.J.M.); (A.R.J.C.); (M.R.G.M.)
- Correspondence:
| |
Collapse
|
4
|
Lapierre H, Lobley GE, Ouellet DR. Histidine optimal supply in dairy cows through determination of a threshold efficiency. J Dairy Sci 2021; 104:1759-1776. [PMID: 33453803 DOI: 10.3168/jds.2020-19205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Two His deletion studies were conducted to examine the mechanisms used by dairy cows to support milk true protein yield (MTPY) when His supply is altered. The potential mechanisms involved in how the efficiency of utilization of His varied included reduced catabolism, more efficient mammary usage, and use of His labile pools. For the first study, 5 multicatheterized cows were used in a 4 × 4 Latin square plus 1 cow with 14-d periods. Treatments were abomasal infusion of increasing doses of His (0, 7.6, 15.2, and 20.8 g/d) in addition to a mixture of AA (595 g/d; casein profile excluding His). Cows were fed the same protein-deficient diet throughout the study. The MTPY increased linearly with a quadratic tendency with increasing doses of His. Muscle concentrations of carnosine, a His-based dipeptide, tended to increase in a quadratic manner with increasing His supply, suggesting that the 0- and 7.6-g doses were insufficient to cover His requirement. Liver catabolism of His decreased as His supply decreased. Mammary fractional removal of His was considerably greater at low His supply, but the ratio of His mammary net uptake to milk output was not affected by the rate of His infusion, averaging 1.02. The mechanisms to face a reduced His supply included reduced His hepatic catabolism, more efficient His mammary use of lowered arterial supply, and, to a lesser extent, use of His labile pools. Two independent estimates of His efficiency were calculated, one based on the sum of exported proteins (measured MTPY plus estimated metabolic fecal protein and scurf; i.e., the anabolic component, EffMTPY) and the other based on liver removal (i.e., the catabolic component). These 2 estimates followed the same pattern of response to His supply, decreasing with increasing His supply. The EffMTPY at which MTPY peaked was 0.785. For the second study, 6 cows were used in a 6 × 6 Latin square with 7-d periods. Two greater doses of His (30.4 and 38.0 g/d) were added; otherwise, the nutritional design was similar to the first study. In this second study, the indicator AA oxidation technique was used instead of the multiorgan approach, with labeled Leu as the indicator of His utilization. The MTPY peaked and Leu oxidation reached the nadir at an average EffMTPY of 0.763. Combined across both studies, the data indicate that optimal usage of His would occur at a threshold EffMTPY of 0.77. The agreement between experimental approaches across both studies indicates that the biological optimal supply of His expressed in grams per day could be calculated as the sum of exported proteins divided by this EffMTPY plus estimated endogenous urinary excretion.
Collapse
Affiliation(s)
- H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8.
| | - G E Lobley
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - D R Ouellet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| |
Collapse
|
5
|
Di Francesco A, Choi Y, Bernier M, Zhang Y, Diaz-Ruiz A, Aon MA, Kalafut K, Ehrlich MR, Murt K, Ali A, Pearson KJ, Levan S, Preston JD, Martin-Montalvo A, Martindale JL, Abdelmohsen K, Michel CR, Willmes DM, Henke C, Navas P, Villalba JM, Siegel D, Gorospe M, Fritz K, Biswal S, Ross D, de Cabo R. NQO1 protects obese mice through improvements in glucose and lipid metabolism. NPJ Aging Mech Dis 2020; 6:13. [PMID: 33298924 PMCID: PMC7678866 DOI: 10.1038/s41514-020-00051-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic nutrient excess leads to metabolic disorders and insulin resistance. Activation of stress-responsive pathways via Nrf2 activation contributes to energy metabolism regulation. Here, inducible activation of Nrf2 in mice and transgenesis of the Nrf2 target, NQO1, conferred protection from diet-induced metabolic defects through preservation of glucose homeostasis, insulin sensitivity, and lipid handling with improved physiological outcomes. NQO1-RNA interaction mediated the association with and inhibition of the translational machinery in skeletal muscle of NQO1 transgenic mice. NQO1-Tg mice on high-fat diet had lower adipose tissue macrophages and enhanced expression of lipogenic enzymes coincident with reduction in circulating and hepatic lipids. Metabolomics data revealed a systemic metabolic signature of improved glucose handling, cellular redox, and NAD+ metabolism while label-free quantitative mass spectrometry in skeletal muscle uncovered a distinct diet- and genotype-dependent acetylation pattern of SIRT3 targets across the core of intermediary metabolism. Thus, under nutritional excess, NQO1 transgenesis preserves healthful benefits.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Youngshim Choi
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yingchun Zhang
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 475004, People's Republic of China
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Crta. de Canto Blanco n° 8, 28049, Madrid, Spain
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Krystle Kalafut
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department Food Science, Cornell University, Ithaca, NY, 14850, USA
| | - Kelsey Murt
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Sophie Levan
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Joshua D Preston
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Emory University School of Medicine (MD/PhD program), Atlanta, GA, USA
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diana M Willmes
- Molecular Diabetology, Paul Langerhans Institute Dresden of the Helmholtz German Center for Diabetes Research Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Christine Henke
- Molecular Diabetology, Paul Langerhans Institute Dresden of the Helmholtz German Center for Diabetes Research Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013, Sevilla, Spain
| | - Jose Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Sevilla, Spain
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kristofer Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
9
|
Gar C, Rottenkolber M, Prehn C, Adamski J, Seissler J, Lechner A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit Rev Clin Lab Sci 2017; 55:21-32. [PMID: 29239245 DOI: 10.1080/10408363.2017.1414143] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Presently, routine screening misses many cases of prediabetes and early type 2 diabetes (T2D). Therefore, better biomarkers are needed for a simple and early detection of abnormalities of glucose metabolism and prediction of future T2D. Possible candidates for this include plasma or serum amino acids because glucose and amino acid metabolism are closely connected. This review presents the available evidence of this connectivity and discusses its clinical implications. First, we examine the underlying physiological, pre-analytical, and analytical issues. Then, we summarize results of human studies that evaluate amino acid levels as markers for insulin resistance, prediabetes, and future incident T2D. Finally, we illustrate the interconnection of amino acid levels and metabolic syndrome with our own data from a deeply phenotyped human cohort. We also discuss how amino acids may contribute to the pathophysiology of T2D. We conclude that elevated branched-chain amino acids and reduced glycine are currently the most robust and consistent amino acid markers for prediabetes, insulin resistance, and future T2D. Yet, we are cautious regarding the clinical potential even of these parameters because their discriminatory power is insufficient and their levels depend not only on glycemia, but also on other components of the metabolic syndrome. The identification of more precise intermediates of amino acid metabolism or combinations with other biomarkers will, therefore, be necessary to obtain in order to develop laboratory tests that can improve T2D screening.
Collapse
Affiliation(s)
- C Gar
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - M Rottenkolber
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - C Prehn
- d Institute of Experimental Genetics, Genome Analysis Center , Helmholtz Zentrum München, German Research Center for Environmental Health , Neuherberg , Germany
| | - J Adamski
- c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany.,d Institute of Experimental Genetics, Genome Analysis Center , Helmholtz Zentrum München, German Research Center for Environmental Health , Neuherberg , Germany.,e Lehrstuhl fu¨r Experimentelle Genetik , Technische Universität München , Freising , Germany
| | - J Seissler
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - A Lechner
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| |
Collapse
|