1
|
Meachon EJ, Kundlacz M, Wilmut K, Alpers GW. EEG spectral power in developmental coordination disorder and attention-deficit/hyperactivity disorder: a pilot study. Front Psychol 2024; 15:1330385. [PMID: 38765829 PMCID: PMC11099285 DOI: 10.3389/fpsyg.2024.1330385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 05/22/2024] Open
Abstract
Developmental coordination disorder (DCD) and attention-deficit/hyperactivity disorder (ADHD) overlap in symptoms and often co-occur. Differentiation of DCD and ADHD is crucial for a better understanding of the conditions and targeted support. Measuring electrical brain activity with EEG may help to discern and better understand the conditions given that it can objectively capture changes and potential differences in brain activity related to externally measurable symptoms beneficial for targeted interventions. Therefore, a pilot study was conducted to exploratorily examine neurophysiological differences between adults with DCD and/or ADHD at rest. A total of N = 46 adults with DCD (n = 12), ADHD (n = 9), both DCD + ADHD (n = 8), or typical development (n = 17) completed 2 min of rest with eyes-closed and eyes-open while their EEG was recorded. Spectral power was calculated for frequency bands: delta (0.5-3 Hz), theta (3.5-7 Hz), alpha (7.5-12.5 Hz), beta (13-25 Hz), mu (8-13 Hz), gamma (low: 30-40 Hz; high: 40-50 Hz). Within-participants, spectral power in a majority of waveforms significantly increased from eyes-open to eyes-closed conditions. Groups differed significantly in occipital beta power during the eyes-open condition, driven by the DCD versus typically developing group comparison. However, other group comparisons reached only marginal significance, including whole brain alpha and mu power with eyes-open, and frontal beta and occipital high gamma power during eyes-closed. While no strong markers could be determined to differentiate DCD versus ADHD, we theorize that several patterns in beta activity were indicative of potential motor maintenance differences in DCD at rest. Therefore, larger studies comparing EEG spectral power may be useful to identify neurological mechanisms of DCD and continued differentiation of DCD and ADHD.
Collapse
Affiliation(s)
- Emily J. Meachon
- School of Social Sciences, University of Mannheim, Mannheim, Germany
- Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Marlene Kundlacz
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Kate Wilmut
- Centre for Psychological Research, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Georg W. Alpers
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
2
|
Shipkova M, Butera CD, Flores GD, Kilroy E, Jayashankar A, Harrison L, Cermak SA, Aziz-Zadeh L. Caregiver and youth inter-rater assessment agreement in autism spectrum disorder, developmental coordination disorder, and typical development. Autism Res 2024; 17:610-625. [PMID: 38450955 PMCID: PMC11022856 DOI: 10.1002/aur.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Youth diagnosed with autism spectrum disorder (ASD) and those with developmental coordination disorder (DCD) are at heightened risk for co-occurring mental health diagnoses, especially anxiety and attention-deficit/hyperactivity disorder (ADHD). However, caregiver-child agreement on presence of related symptoms in populations with neurodevelopmental conditions is not well understood. Here, we examine the extent to which 37 ASD, 26 DCD, and 40 typically developing children and their caregivers agree on the degree of the child's symptoms of anxiety and ADHD. All caregiver-child dyads completed the Screen for Child Anxiety Related Emotional Disorders and Conners 3 ADHD Index. Across groups, intraclass correlations indicated generally poor agreement on anxiety and ADHD symptomatology. Although youth generally reported greater internalizing symptoms (i.e., anxiety), caregivers tended to report more observable externalizing behaviors (i.e., ADHD). Together, the results of this study support the need for a multi-informant approach in assessments of anxiety and ADHD in youth with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Michelle Shipkova
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christiana D Butera
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Genesis D Flores
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Emily Kilroy
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Aditya Jayashankar
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura Harrison
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Sharon A Cermak
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
| | - Lisa Aziz-Zadeh
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Vishnubhotla RV, Ahmad ST, Zhao Y, Radhakrishnan R. Impact of prenatal marijuana exposure on adolescent brain structural and functional connectivity and behavioural outcomes. Brain Commun 2024; 6:fcae001. [PMID: 38444906 PMCID: PMC10914455 DOI: 10.1093/braincomms/fcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024] Open
Abstract
There has been an increase in the number of women using marijuana whilst pregnant. Previous studies have shown that children with prenatal marijuana exposure have developmental deficits in memory and decreased attentiveness. In this study, we assess whether prenatal marijuana exposure is associated with alterations in brain regional morphometry and functional and structural connectivity in adolescents. We downloaded behavioural scores and subject image files from the Adolescent Brain Cognitive DevelopmentSM Study. A total of 178 anatomical and diffusion magnetic resonance imaging files (88 prenatal marijuana exposure and 90 age- and gender-matched controls) and 152 resting-state functional magnetic resonance imaging files (76 prenatal marijuana exposure and 76 controls) were obtained. Behavioural metrics based on the parent-reported child behavioural checklist were also obtained for each subject. The associations of prenatal marijuana exposure with 17 subscales of the child behavioural checklist were calculated. We assessed differences in brain morphometry based on voxel-based and surface-based morphometry in adolescents with prenatal marijuana exposure versus controls. We also evaluated group differences in structural and functional connectivity in adolescents for region-to-region connectivity and graph theoretical metrics. Interactions of prenatal marijuana exposure and graph networks were assessed for impact on behavioural scores. Multiple comparison correction was performed as appropriate. Adolescents with prenatal marijuana exposure had greater abnormal or borderline child behavioural checklist scores in 9 out of 17 subscales. There were no significant differences in voxel- or surface-based morphometry, structural connectivity or functional connectivity between prenatal marijuana exposure and controls. However, there were significant differences in prenatal marijuana exposure-graph network interactions with respect to behavioural scores. There were three structural prenatal marijuana exposure-graph network interactions and seven functional prenatal marijuana exposure-graph network interactions that were significantly associated with behavioural scores. Whilst this study was not able to confirm anatomical or functional differences between prenatal marijuana exposure and unexposed pre-adolescent children, there were prenatal marijuana exposure-brain structural and functional graph network interactions that were significantly associated with behavioural scores. This suggests that altered brain networks may underlie behavioural outcomes in adolescents with prenatal marijuana exposure. More work needs to be conducted to better understand the prognostic value of brain structural and functional network measures in prenatal marijuana exposure.
Collapse
Affiliation(s)
- Ramana V Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sidra T Ahmad
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
5
|
Broletti MC, Efthymiou C, Murray AL, McDougal E, Rhodes SM. Investigating the Mediating Role of Executive Function in the Relationship Between ADHD and DCD Symptoms and Depression in Adults. J Autism Dev Disord 2023:10.1007/s10803-023-06148-7. [PMID: 37966535 DOI: 10.1007/s10803-023-06148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/16/2023]
Abstract
This study was designed to test the effects of Attention Deficit Hyperactivity Disorder (ADHD) and Developmental Co-ordination Disorder (DCD) on depression levels and investigate the mediating role of executive function (EF) in adults. Adults with ADHD, DCD, and ADHD + DCD (N = 139) completed self-report measures of ADHD, DCD, depression, and EF. There were distinct profiles of EF across diagnostic groups, and higher depression symptoms in adults with ADHD + DCD than DCD alone. All EF domains were predicted by ADHD symptoms, and several by DCD symptoms. ADHD and DCD symptoms, and most EF domains, predicted depression symptoms. Overall EF difficulties fully mediated the relationships between ADHD/DCD and depression symptoms. Several specific EF domains relating to behavioural regulation and metacognition also showed full/partial mediating effects. The mediating role of EF difficulties between these neurodevelopmental conditions and depression symptoms has implications for their understanding and treatment, suggesting that targeting EF may be important for preventing co-occurring depression.
Collapse
Affiliation(s)
- Maria C Broletti
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | | | - Emily McDougal
- Child Life and Health/Centre for Clinical Brain Sciences, University of Edinburgh, Royal Hospital for Children and Young People, Edinburgh, EH16 4TS, UK
- Evidence Based Practice Unit, Anna Freud and University College London, London, UK
| | - Sinéad M Rhodes
- Child Life and Health/Centre for Clinical Brain Sciences, University of Edinburgh, Royal Hospital for Children and Young People, Edinburgh, EH16 4TS, UK.
| |
Collapse
|
6
|
Pranjić M, Rahman N, Kamenetskiy A, Mulligan K, Pihl S, Arnett AB. A systematic review of behavioral and neurobiological profiles associated with coexisting attention-deficit/hyperactivity disorder and developmental coordination disorder. Neurosci Biobehav Rev 2023; 153:105389. [PMID: 37704094 DOI: 10.1016/j.neubiorev.2023.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and developmental coordination disorder (DCD) co-occur in approximately 50% of cases. This study aimed to characterize the behavioral, cognitive, and neurobiological profiles of co-occurring ADHD and DCD diagnoses by mapping, synthesizing, and providing a critical appraisal of the existing literature. A systematic search was conducted across four databases (MEDLINE, PsycINFO, Embase, and Scopus) to identify studies comparing a coexisting ADHD+DCD diagnosis to ADHD and DCD alone. From 2353 screened articles, 15 behavioral and 10 neuroimaging studies were included. Collectively, these studies suggest that the comorbid ADHD+DCD presentation constitutes a more severe phenotype characterized by neurocognitive differences associated with both conditions. Despite sharing some common neural features, our findings support the separate etiology hypothesis indicating that neural network alterations in individuals with ADHD+DCD represent a unique neural pattern rather than a sum of ADHD and DCD characteristics. Considering the heterogeneity inherent to both ADHD and DCD, future studies should involve rigorous and comprehensive assessment procedures to delineate how different subtypes of each diagnosis relate to distinct performance characteristics.
Collapse
Affiliation(s)
- Marija Pranjić
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Navin Rahman
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Adelia Kamenetskiy
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaitlin Mulligan
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Stephen Pihl
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anne B Arnett
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Meachon EJ. Perspective: Acknowledging complexity to advance the understanding of developmental coordination disorder. Front Hum Neurosci 2023; 16:1082209. [PMID: 36684831 PMCID: PMC9859625 DOI: 10.3389/fnhum.2022.1082209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Developmental Coordination Disorder (DCD) is a heterogeneous neurodevelopmental disorder known for primary symptoms of motor learning and execution difficulties. Recent research has consistently suggested DCD symptoms span broadly beyond motor difficulties, yet a majority of research and practice approaches the investigation, diagnosis, and treatment of DCD with a reductionist framework. Therefore, this paper suggests the paradigm of complexity theory as a means for better conceptualization, assessment, and treatment of DCD. First, the perspective of complexity theory and its relevance to DCD is described. Then, examples from recent research which attempt to acknowledge and capture the complex nature of DCD are highlighted. Finally, suggestions for considering and measuring complexity of DCD in future research and practice are provided. Overall, the perspective of complexity can propel the research forward and improve the understanding of DCD relevant to assessment and treatment. The complexity paradigm is highly relevant to describing the evolving and multidimensional picture of DCD, understanding heterogeneous symptom profiles, making connections to interconnected secondary symptoms, and beyond.
Collapse
|
8
|
Kangarani-Farahani M, Izadi-Najafabadi S, Zwicker JG. How does brain structure and function on MRI differ in children with autism spectrum disorder, developmental coordination disorder, and/or attention deficit hyperactivity disorder? Int J Dev Neurosci 2022; 82:681-715. [PMID: 36084947 DOI: 10.1002/jdn.10228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
AIM The purpose of this study was to systematically review the neural similarities and differences in brain structure and function, measured by magnetic resonance imaging (MRI), in children with neurodevelopmental disorders that commonly co-occur to understand if and how they have shared neuronal characteristics. METHOD Using systematic review methodology, the following databases were comprehensively searched: MEDLINE, EMBASE, CINAHL, CENTRAL, PsycINFO, and ProQuest from the earliest record up to December 2021. Inclusion criteria were: (1) peer-reviewed studies, case reports, or theses; (2) children under 18 years of age with at least one of the following neurodevelopmental disorders: autism spectrum disorder (ASD), attention hyperactivity deficit disorder (ADHD), developmental coordination disorder (DCD), and their co-occurrence; (3) studies based on MRI modalities (i.e., structural MRI, diffusion tensor imaging (DTI), and resting-state fMRI). Thirty-one studies that met the inclusion criteria were included for quality assessment by two independent reviewers using the Appraisal tool for Cross-Sectional Studies (AXIS). RESULTS Studies compared brain structure and function of children with DCD and ADHD (n=6), DCD and ASD (n=1), ASD and ADHD (n=17), and various combinations of these co-occurring conditions (n=7). Structural neuroimaging (n=15) was the most commonly reported modality, followed by resting-state (n=8), DTI (n=5), and multi-modalities (n=3). INTERPRETATION Evidence indicated that the neural correlates of the co-occurring conditions were more widespread and distinct compared to a single diagnosis. The majority of findings (77%) suggested that each neurodevelopmental disorder had more distinct neural correlates than shared neural features, suggesting that each disorder is distinct despite commonly co-occurring with each other. As the number of papers examining the co-occurrence of ASD, DCD, and/or ADHD was limited and most findings were not corrected for multiple comparisons, these results must be interpreted with caution.
Collapse
Affiliation(s)
- Melika Kangarani-Farahani
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sara Izadi-Najafabadi
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G Zwicker
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,CanChild Centre for Childhood Disability Research, Hamilton, Canada
| |
Collapse
|
9
|
Joshi S, Weedon BD, Esser P, Liu YC, Springett DN, Meaney A, Inacio M, Delextrat A, Kemp S, Ward T, Izadi H, Dawes H, Ayaz H. Neuroergonomic assessment of developmental coordination disorder. Sci Rep 2022; 12:10239. [PMID: 35715433 PMCID: PMC9206023 DOI: 10.1038/s41598-022-13966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 12/29/2022] Open
Abstract
Until recently, neural assessments of gross motor coordination could not reliably handle active tasks, particularly in realistic environments, and offered a narrow understanding of motor-cognition. By applying a comprehensive neuroergonomic approach using optical mobile neuroimaging, we probed the neural correlates of motor functioning in young people with Developmental Coordination Disorder (DCD), a motor-learning deficit affecting 5-6% of children with lifelong complications. Neural recordings using fNIRS were collected during active ambulatory behavioral task execution from 37 Typically Developed and 48 DCD Children who performed cognitive and physical tasks in both single and dual conditions. This is the first of its kind study targeting regions of prefrontal cortical dysfunction for identification of neuropathophysiology for DCD during realistic motor tasks and is one of the largest neuroimaging study (across all modalities) involving DCD. We demonstrated that DCD is a motor-cognitive disability, as gross motor /complex tasks revealed neuro-hemodynamic deficits and dysfunction within the right middle and superior frontal gyri of the prefrontal cortex through functional near infrared spectroscopy. Furthermore, by incorporating behavioral performance, decreased neural efficiency in these regions were revealed in children with DCD, specifically during motor tasks. Lastly, we provide a framework, evaluating disorder impact in ecologically valid contexts to identify when and for whom interventional approaches are most needed and open the door for precision therapies.
Collapse
Affiliation(s)
- Shawn Joshi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
- College of Medicine, Drexel University, Philadelphia, PA, USA.
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK.
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | - Benjamin D Weedon
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Yan-Ci Liu
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospita, Taipei, Taiwan
| | - Daniella N Springett
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Department for Health, University of Bath, Bath, UK
| | - Andy Meaney
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- NHS Foundation Trust, Oxford University Hospitals, Oxford, UK
| | - Mario Inacio
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Research Center in Sports Sciences, Health Sciences and Human Development, University of Maia, Porto, Portugal
| | - Anne Delextrat
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Steve Kemp
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Tomás Ward
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Hooshang Izadi
- School of Engineering, Computing and Mathematics, School of Technology, Design and Environment, Oxford Brookes University, Oxford, UK
| | - Helen Dawes
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Intersect@Exeter, College of Medicine and Health, University of Exeter, Exeter, UK
- Oxford Health BRC, University of Oxford, Oxford, UK
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
- Drexel Solution Institute, Drexel University, Philadelphia, PA, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|