1
|
Jiang Y, Cui H, Yu Q. A novel near-infrared fluorescent probe for high-sensitivity detection of butyrylcholinesterase in various pathological states. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123801. [PMID: 38142494 DOI: 10.1016/j.saa.2023.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Butyrylcholinesterase (BChE) is a crucial hydrolytic enzyme predominantly synthesized in the liver, playing a significant role in conditions like liver disorders, diabetes, Alzheimer's disease, and fat metabolism regulation. This study aims to address the current limitations in visualizing BChE activity in diseases at various states by introducing an ultra-sensitive near-infrared fluorescent probe, FDCM-BChE. The probe was engineered to have several properties, such as a large Stokes shift, rapid response time, high stability, excellent selectivity, and low detection limits. We validated the efficacy of FDCM-BChE in quantifying BChE activity in human serum and leveraged its low cytotoxicity for cellular imaging. The study revealed the downregulation of BChE activity in liver cancer and hepatic injury and the upregulation in diabetes. Thus, FDCM-BChE shows promise as a tool for specific applications, providing insights into diseases associated with BChE activity.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haizhen Cui
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
2
|
Ganeshpurkar A, Singh R, Tripathi P, Alam Q, Krishnamurthy S, Kumar A, Singh SK. Effect of sulfonamide derivatives of phenylglycine on scopolamine-induced amnesia in rats. IBRAIN 2023; 9:13-31. [PMID: 37786521 PMCID: PMC10529173 DOI: 10.1002/ibra.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease responsible for dementia and other neuropsychiatric symptoms. In the present study, compounds 30 and 33, developed earlier in our laboratory as selective butyrylcholinesterase inhibitors, were tested against scopolamine-induced amnesia to evaluate their pharmacodynamic effect. The efficacy of the compounds was determined by behavioral experiments using the Y-maze and the Barnes maze and neurochemical testing. Both compounds reduced the effect of scopolamine treatment in the behavioral tasks at a dose of 20 mg/kg. The results of the neurochemical experiment indicated a reduction in cholinesterase activity in the prefrontal cortex and the hippocampus. The levels of antioxidant enzymes superoxide dismutase and catalase were restored compared to the scopolamine-treated groups. The docking study on rat butyrylcholinesterase (BChE) indicated tight binding, with free energies of -9.66 and -10.23 kcal/mol for compounds 30 and 33, respectively. The two aromatic amide derivatives of 2-phenyl-2-(phenylsulfonamido) acetic acid produced stable complexes with rat BChE in the molecular dynamics investigation.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pratigya Tripathi
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Qadir Alam
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sushil K. Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
3
|
Yang X, Dang P, Liu W, Ma W, Ge X, Zhu K, Wang M, Huang X, Ding X, Wang X. The role of butyrylcholinesterase in the regulation of cognitive dysfunction in minimal hepatic encephalopathy: A potential blood marker of disease evolution. Front Neurol 2022; 13:900997. [PMID: 36341087 PMCID: PMC9635509 DOI: 10.3389/fneur.2022.900997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background and aims Patients with cirrhosis commonly experience minimal hepatic encephalopathy (MHE), and alterations in neurotransmitters have been thought to be related to cognitive function. However, the relationship between alterations in peripheral and central butyrylcholinesterase (BuChE) with MHE disease progression remains unknown. As such, this study was designed to investigate potential changes in peripheral and central BuChE activity and their effects on cognitive function in the context of MHE. Materials and methods We enrolled 43 patients with cirrhosis secondary to hepatitis B, 20 without MHE and 23 with MHE, and 25 with healthy controls (HC). All the selected subjects underwent resting-state functional MRI, and the original images were processed to obtain the regional homogeneity (ReHo) brain maps. Thereafter, the correlation of BuChE activity with ReHo, number connection test of type A (NCT-A), and digital symbol test (DST) scores with MHE patients were analyzed using Person correlation analysis. Meanwhile, we purchased 12 Sprague-Dawley (SD) rats and divided them into an experimental group (n = 6) and a control group (n = 6). The rats in the experimental group were intraperitoneally injected with thioacetamide (TAA) to prepare MHE model rats. After modeling, we used the Morris water maze (MWM) and elevated plus maze (EPM) to assess the cognition function and exploratory behavior of all rats. The activity of serum, hippocampus, and frontal lobe tissue BuChE was detected by ELISA. Results BuChE activity gradually decreased among the HC, patients with cirrhosis, and MHE groups (all P < 0.01). We observed a linear correlation between serum BuChE and NCT-A and DST scores in MHE patients (all P < 0.01). We noted that BuChE activity can negatively correlate with ReHo values in the left middle temporal gyrus and left inferior temporal gyrus, and positively correlate with ReHo values in the right inferior frontal gyrus, and also found that the peripheral BuChE activity of MHE rats was significantly lower than their control counterparts, and the BuChE activity in frontal lobe extracts was significantly higher than the control rats (all P < 0.05). Conclusion The altered activity of BuChE may contribute to cognitive impairment in MHE patients, which may be a potential biomarker of disease evolution in the context of MHE.
Collapse
Affiliation(s)
- Xuhong Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Pei Dang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenxiao Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wanlong Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Ge
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Kai Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Minglei Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xueying Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangchun Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
- Xiangchun Ding
| | - Xiaodong Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Xiaodong Wang
| |
Collapse
|
4
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Identification of sulfonamide-based butyrylcholinesterase inhibitors using machine learning. Future Med Chem 2022; 14:1049-1070. [PMID: 35707942 DOI: 10.4155/fmc-2021-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This study reports the designing of BChE inhibitors through machine learning (ML), followed by in silico and in vitro evaluations. Methodology: ML technique was used to predict the virtual hit, and its derivatives were synthesized and characterized. The compounds were evaluated by using various in vitro tests and in silico methods. Results: The gradient boosting classifier predicted N-phenyl-4-(phenylsulfonamido) benzamide as an active BChE inhibitor. The derivatives of the inhibitor, i.e., compounds 34, 37 and 54 were potent BChE inhibitors and displayed blood-brain barrier permeability with no significant AChE inhibition. Conclusion: The ML prediction was effective, and the synthesized compounds showed the BChE inhibitory activity, which was also supported by the in silico studies.
Collapse
|
6
|
Ganeshpurkar A, Singh R, Kumar D, Gore P, Shivhare S, Sardana D, Rayala S, Kumar A, Singh SK. Identification of sulfonamide based butyrylcholinesterase inhibitors through scaffold hopping approach. Int J Biol Macromol 2022; 203:195-211. [PMID: 35090939 DOI: 10.1016/j.ijbiomac.2022.01.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Butyrylcholinesterase (BChE), a hydrolytic enzyme, is responsible for the termination of the action of acetylcholine besides acetylcholinesterase (AChE) in the synaptic cleft of the brain. The alteration in the enzyme level, in patients with the progression of Alzheimer's disease, makes it a therapeutic target. In the present study, we developed BChE inhibitors through scaffold hopping by exploring two previously reported compounds, i.e., 1,4-bis((4-chlorophenyl) sulfonyl)-3,6-diphenylpiperazine-2,5-dione and N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide, to afford scaffold and pharmacophore fragments, respectively. The N,2-diphenyl-2-(phenylsulfonamido)acetamide derivatives, thus designed, were synthesised and screened for the inhibition of AChE and BChE enzymes. Compounds 30 and 33 were found to be most active against BChE among the derivatives, with IC50 values of 7.331 ± 0.946 and 10.964 ± 0.936 μM, respectively. The compounds displayed a non-competitive mode of inhibition along with BBB permeability and good cell viability on SH-SY5Y cell line. The molecular docking analysis of the compounds with BChE showed interactions with Trp82, Trp231, Leu286, and His438. The molecular dynamics study revealed the stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pravin Gore
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shalini Shivhare
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divya Sardana
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swetha Rayala
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
7
|
Munir S, Habib R, Awan S, Bibi N, Tanveer A, Batool S, Nurulain SM. Biochemical Analysis and Association of Butyrylcholinesterase SNPs rs3495 and rs1803274 with Substance Abuse Disorder. J Mol Neurosci 2019; 67:445-455. [PMID: 30707402 DOI: 10.1007/s12031-018-1251-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Addiction is a complex mental and behavioral disorder that changes the neurochemistry and physiology of the brain. Genetics also plays a significant role in the pathophysiology of addiction. Butyrylcholinesterase (BChE), a cholinergic enzyme, has been implicated in the metabolism of various drugs, including cocaine, and an association between single-nucleotide polymorphisms (SNPs) of the butyrylcholinesterase gene (BCHE) and neuronal disorders has been reported. We report here the first investigation to be conducted on the status of BChE activity and the potential association of two BCHE gene SNPs, rs3495 (c.*189G > A) and rs1803274 (c.1699G>A, p.Ala567Thr, K-variant), with addiction vulnerability in heroin, hashish and polydrug users. Seventy-five individuals with an addiction to heroin, hashish and/or polydrug use were recruited to this study. BChE levels in the plasma were determined by Ellman's principle. SNPs were genotyped by standard procedures, followed by Sanger sequencing. Plasma BChE levels were found to be significantly higher (p ≤ 0.05) in addicts (mean ± standard error of the mean 0.031 ± 0.004 μmol/L/min; 95% confidence interval [CI] 0.024-0.038) than in non-addicts (controls) (0.014 ± 0.001 μmol/L/min; 95% CI 0.012-0.017). Statistical significant differences were also observed between the addicted cohorts. A statistically significant association for both SNPs (rs3495 and rs1803274) was not observed in addicted subjects tested in the dominant, recessive and allele genetic models, but trends of variations of the rs3495 risk G allele were noted. The authors conclude that BChE plays significant roles in addiction pathophysiology as increased BChE activity in blood samples obtained from the cohorts with addiction was evident. Further studies in this direction may provide novel approaches for the treatment of addiction, but studies with a larger sample size and different ethnic groups are warranted for broader conclusions to be drawn.
Collapse
Affiliation(s)
- Sadaf Munir
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Habib
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Sliha Awan
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazia Bibi
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Arooj Tanveer
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sajida Batool
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed M Nurulain
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
8
|
Zimmermann M. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol 2014; 170:953-67. [PMID: 23991627 DOI: 10.1111/bph.12359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022] Open
Abstract
AChE enzymatic inhibition is a core focus of pharmacological intervention in Alzheimer's disease (AD). Yet, AChE has also been ascribed non-hydrolytic functions, which seem related to its appearance in various isoforms. Neuronal AChE presents as a tailed form (AChE-T) predominantly found on the neuronal synapse, and a facultatively expressed readthough form (AChE-R), which exerts short to medium-term protective effects. Notably, this latter form is also found in the periphery. While these non-hydrolytic functions of AChE are most controversially discussed, there is evidence for them being additional targets of AChE inhibitors. This review aims to provide clarification as to the role of these AChE splice variants and their interplay with other cholinergic parameters and their being targets of AChE inhibition: AChE-R is particularly involved in the mediation of (anti-)apoptotic events in cholinergic cells, involving adaptation of various cholinergic parameters and a time-dependent link to the expression of neuroprotective factors. The AChE-T C-terminus is central to AChE activity regulation, while isolated AChE-T C-terminal fragments mediate toxic effects via the α7 nicotinic acetylcholine receptor. There is direct evidence for roles of AChE-T and AChE-R in neurodegeneration and neuroprotection, with these roles involving AChE as a key modulator of the cholinergic system: in vivo data further encourages the use of AChE inhibitors in the treatment of neurodegenerative conditions such as AD since effects on both enzymatic activity and the enzyme's non-hydrolytic functions can be postulated. It also suggests that novel AChE inhibitors should enhance protective AChE-R, while avoiding the concomitant up-regulation of AChE-T.
Collapse
Affiliation(s)
- M Zimmermann
- Department of Pharmacology, School of Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Lu C, Zhou Q, Yan J, Du Z, Huang L, Li X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer's disease. Eur J Med Chem 2013; 62:745-53. [DOI: 10.1016/j.ejmech.2013.01.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
|
10
|
Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. Prim Care Companion CNS Disord 2013; 15:PCC.12r01412. [PMID: 23930233 PMCID: PMC3733526 DOI: 10.4088/pcc.12r01412] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/11/2012] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To examine the role of butyrylcholinesterase (BuChE) in cholinergic signaling and neurologic conditions, such as Alzheimer's disease (AD). The rationale for inhibiting cholinesterases in the management of AD, including clinical evidence supporting use of the dual acetylcholinesterase (AChE) and BuChE inhibitor rivastigmine, is discussed. DATA SOURCES PubMed searches were performed using butyrylcholinesterase as a keyword. English-language articles referenced in PubMed as of September 2011 were included. Study Selection and Data Synthesis: English-language articles related to BuChE considered to be of clinical relevance to physicians were included. English-language articles specifically related to AChE were not included, as the role of AChE in cholinergic signaling and the underlying pathology of AD is well documented. Reference lists of included publications were used to supplement the search. RESULTS AChE and BuChE play a role in cholinergic signaling; BuChE can hydrolyze acetylcholine and compensate for AChE when levels are depleted. In the AD brain, AChE levels decrease, while BuChE levels are reportedly increased or unchanged, with changes becoming more pronounced during the disease course. Furthermore, BuChE genotype may influence AD risk and rate of disease progression. Strategies that increase acetylcholine levels (eg, cholinesterase inhibitors) demonstrate symptomatic efficacy in AD. Rivastigmine has proven cognitive efficacy in clinical trials, and data suggest that its action is mediated, in part, by inhibition of BuChE. Retrospective analyses of clinical trials provide evidence that BuChE genotype may also influence treatment response. CONCLUSIONS AChE-selective inhibitors and a dual AChE and BuChE inhibitor demonstrate symptomatic efficacy in AD. Mounting preclinical and clinical evidence for a role of BuChE in maintaining normal cholinergic function and the pathology of AD provides a rationale for further studies investigating use of rivastigmine in AD and the influence of BuChE genotype on observed efficacy.
Collapse
Affiliation(s)
- Agneta Nordberg
- Alzheimer Neurobiology Center, Karolinska Institute, Stockholm, Sweden (Drs Nordberg and Darreh-Shori); Wolfson Centre for Age-Related Diseases, King's College, London, United Kingdom (Dr Ballard); Kingshill Research Centre, Victoria Hospital, Swindon, United Kingdom (Dr Bullock); and Novartis Pharmaceuticals Corporation, East Hanover, New Jersey (Dr Somogyi)
| | | | | | | | | |
Collapse
|
11
|
Jiang H, Wang X, Huang L, Luo Z, Su T, Ding K, Li X. Benzenediol-berberine hybrids: multifunctional agents for Alzheimer's disease. Bioorg Med Chem 2011; 19:7228-35. [PMID: 22041172 DOI: 10.1016/j.bmc.2011.09.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/17/2022]
Abstract
We designed and synthesized a series of hybrid molecules, in an effort to identify novel multifunctional drug candidates for Alzheimer's disease (AD), by reacting berberine with benzenediol, melatonin, and ferulic acid. The products were evaluated for: (i) the ability to inhibit multiple cholinesterases (ChEs); (ii) the capacity to prevent amyloid β (Aβ) aggregation; and (iii) antioxidant activity. All of the derivatives were better antioxidants, and inhibited Aβ aggregation to a greater extent, than the lead compound, berberine. Two of the hybrids, in particular, have the potential to be excellent candidates for AD therapy: the berberine-pyrocatechol hybrid (compound 8) was a much better inhibitor of acetylcholinesterase (AChE) than unconjugated berberine (IC(50): 0.123 vs 0.374 μM); and the berberine-hydroquinone hybrid (compound 12) displayed high antioxidant activity, could inhibit AChE (IC(50) of 0.460 μM), and had the greatest ability to inhibit Aβ aggregation.
Collapse
Affiliation(s)
- Huailei Jiang
- Institute of Chemical Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Marcelo F, Silva FV, Goulart M, Justino J, Sinaÿ P, Blériot Y, Rauter AP. Synthesis of novel purine nucleosides towards a selective inhibition of human butyrylcholinesterase. Bioorg Med Chem 2009; 17:5106-16. [DOI: 10.1016/j.bmc.2009.05.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 05/15/2009] [Accepted: 05/23/2009] [Indexed: 10/20/2022]
|
13
|
Darvesh S, Darvesh KV, McDonald RS, Mataija D, Walsh R, Mothana S, Lockridge O, Martin E. Carbamates with Differential Mechanism of Inhibition Toward Acetylcholinesterase and Butyrylcholinesterase. J Med Chem 2008; 51:4200-12. [DOI: 10.1021/jm8002075] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sultan Darvesh
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Katherine V. Darvesh
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S. McDonald
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Diane Mataija
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan Walsh
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sam Mothana
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Oksana Lockridge
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Earl Martin
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
14
|
Darvesh S, McDonald RS, Darvesh KV, Mataija D, Conrad S, Gomez G, Walsh R, Martin E. Selective reversible inhibition of human butyrylcholinesterase by aryl amide derivatives of phenothiazine. Bioorg Med Chem 2007; 15:6367-78. [PMID: 17681768 DOI: 10.1016/j.bmc.2007.06.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/22/2007] [Accepted: 06/29/2007] [Indexed: 11/29/2022]
Abstract
Evidence suggests that specific inhibition of butyrylcholinesterase may be an appropriate focus for the development of more effective drugs to treat dementias such as Alzheimer's disease. Butyrylcholinesterase is a co-regulator of cholinergic neurotransmission and its activity is increased in Alzheimer's disease, and is associated with all neuropathological lesions in this disease. Some selective butyrylcholinesterase inhibitors have already been reported to increase acetylcholine levels and to reduce the formation of abnormal amyloid found in Alzheimer's disease. Synthesized N-(10)-aryl and N-(10)-alkylaryl amides of phenothiazine are specific inhibitors of butyrylcholinesterase. In some cases, inhibition constants in the nanomolar range are achieved. Enzyme specificity and inhibitor potency of these molecules can be related to molecular volumes, steric and electronic factors. Computed logP values indicate high potential for these compounds to cross the blood-brain barrier. Use of such butyrylcholinesterase inhibitors could provide direct evidence for the importance of this enzyme in the normal nervous system and in Alzheimer's disease.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medicine (Neurology), Dalhousie University, Halifax, NS, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Boopathy R, Rajesh RV, Darvesh S, Layer PG. Human serum cholinesterase from liver pathological samples exhibit highly elevated aryl acylamidase activity. Clin Chim Acta 2007; 380:151-6. [PMID: 17379201 DOI: 10.1016/j.cca.2007.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/16/2007] [Accepted: 02/02/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although aspartate aminotransferase (AST) and gamma-glutamyltransferase (gamma GT) enzymes are widely used as markers for liver disorders, the ubiquitous enzyme butyrylcholinesterase (BChE), synthesized in liver is also used as marker in the assessment of liver pathophysiology. This BChE enzyme in addition to its esterase activity has yet another enzymatic function designated as aryl acylamidase (AAA) activity. It is determined in in vitro based on the hydrolysis of the synthetic substrate o-nitroacetanilide. In the present study, human serum cholinesterase (BChE) activity was studied with respect to its AAA activity on the BChE protein (AAA(BChE)) in patients with liver disorders. AST and gamma GT values were taken into account in this study as known markers for liver disorders. METHODS Blood samples were grouped into 3 based on esterase activity associated with BChE protein. They are normal, low, and very low BChE activity but with markedly increased AST and gamma GT levels. These samples were tested for their respective AAA function. Association of AAA with BChE from samples was proved using BChE monoclonal antibody precipitation experiment. RESULTS The absolute levels of AAA were increased as BChE activity decreased while deviating from normal samples and such deviation was directly proportional to the severity of the liver disorder. Differences between these groups became prominent after determining the ratios of AAA(BChE) to BChE activities. Samples showing very high AAA(BChE) to BChE ratio were also showing high to very high gamma GT values. CONCLUSIONS These findings establish AAA(BChE) as an independently regulated enzymatic activity on BChE especially in liver disorders. Moreover, since neither the low esterase activity of BChE by itself nor increased levels of AST/gamma GT are sufficient pathological indicators, this pilot study merits replication with large sample numbers.
Collapse
Affiliation(s)
- Rathanam Boopathy
- Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | | | | | | |
Collapse
|
16
|
Darvesh S, McDonald RS, Penwell A, Conrad S, Darvesh KV, Mataija D, Gomez G, Caines A, Walsh R, Martin E. Structure-activity relationships for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives. Bioorg Med Chem 2005; 13:211-22. [PMID: 15582466 DOI: 10.1016/j.bmc.2004.09.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 09/23/2004] [Indexed: 11/26/2022]
Abstract
Several lines of evidence indicate that inhibition of butyrylcholinesterase (BuChE) is important in the treatment of certain dementias. Further testing of this concept requires inhibitors that are both BuChE-selective and robust. N-alkyl derivatives (2, 3, 4) of phenothiazine (1) have previously been found to inhibit only BuChE in a mechanism involving pi-pi interaction between the phenothiazine tricyclic ring system and aromatic residues in the active site gorge. To explore features of phenothiazines that affect the selectivity and potency of BuChE inhibition, a series of N-carbonyl derivatives (5-25) was synthesized and examined for the ability to inhibit cholinesterases. Some of the synthesized derivatives also inhibited AChE through a different mechanism involving carbonyl interaction within the active site gorge. Binding of these derivatives takes place within the gorge, since this inhibition disappears when the molecular volume of the derivative exceeds the estimated active site gorge volume of this enzyme. In contrast, BuChE, with a much larger active site gorge, exhibited inhibition that increased directly with the molecular volumes of the derivatives. This study describes two distinct mechanisms for binding phenothiazine amide derivatives to BuChE and AChE. Molecular volume was found to be an important parameter for BuChE-specific inhibition.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21:453-78. [PMID: 15132713 DOI: 10.2165/00002512-200421070-00004] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The deficiency in cholinergic neurotransmission in Alzheimer's disease has led to the development of cholinesterase inhibitors as the first-line treatment for symptoms of this disease. The clinical benefits of these agents include improvements, stabilisation or less than expected decline in cognition, function and behaviour. The common mechanism of action underlying this class of agents is an increase in available acetylcholine through inhibition of the catabolic enzyme, acetylcholinesterase. There is substantial evidence that the cholinesterase inhibitors, including donepezil, galantamine and rivastigmine, decrease acetylcholinesterase activity in a number of brain regions in patients with Alzheimer's disease. There is also a significant correlation between acetylcholinesterase inhibition and observed cognitive improvement. However, the cholinesterase inhibitors are reported to have additional pharmacological actions. Rivastigmine inhibits butyrylcholinesterase with a similar affinity to acetylcholinesterase, although it is not clear whether the inhibition of butyrylcholinesterase contributes to the therapeutic effect of rivastigmine. Based on data from preclinical studies, it has been proposed that galantamine also potentiates the action of acetylcholine on nicotinic receptors via allosteric modulation; however, the effects appear to be highly dependent on the concentrations of agonist and galantamine. It is not yet clear whether these concentrations are related to those achieved in the brain of patients with Alzheimer's disease within therapeutic dose ranges. Preclinical studies have shown that donepezil and galantamine also significantly increase nicotinic receptor density, and increased receptor density may be associated with enhanced synaptic strengthening through long-term potentiation, which is related to cognitive function. Despite these differences in pharmacology, a review of clinical data, including head-to-head studies, has not demonstrated differences in efficacy, although they may have an impact on tolerability. It seems clear that whatever the subsidiary modes of action, clinical evidence supporting acetylcholinesterase inhibition as the mechanism by which cholinesterase inhibitors treat the symptoms of Alzheimer's disease is accumulating. Certainly, as a class, the currently approved cholinesterase inhibitors (donepezil, galantamine, rivastigmine and tacrine) provide important benefits in patients with Alzheimer's disease and these drugs offer a significant advance in the management of dementia.
Collapse
Affiliation(s)
- David G Wilkinson
- Memory Assessment and Research Centre, Moorgreen Hospital, Southampton, UK.
| | | | | | | |
Collapse
|
18
|
Lenzi A, Maltinti E, Poggi E, Fabrizio L, Coli E. Effects of Rivastigmine on Cognitive Function and Quality of Life in Patients With Schizophrenia. Clin Neuropharmacol 2003; 26:317-21. [PMID: 14646612 DOI: 10.1097/00002826-200311000-00011] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We aimed to determine whether the cholinesterase inhibitor rivastigmine, an inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), would improve quality of life and cognitive function in 16 clinically stable subjects affected by schizophrenia in the residual phase. Study subjects began rivastigmine treatment at a dose of 1.5 mg bid. This dose was escalated at monthly intervals in increments of 1.5 mg bid to a maximum of 6 mg bid. All subjects were followed for 12 months. Quality of life was assessed using the Satisfaction with Life Domains Scale (SLDS, a self-report scale containing 10 "satisfaction" items); cognitive function, attentional function, and aspects of learning and memory were evaluated using common neuropsychological tests. Psychopathology was evaluated by means of the Brief Psychiatric Rating Scale (BPRS). Rivastigmine treatment resulted in significant improvements in quality of life, which were paralleled by significant improvements in cognitive function, learning and memory, and trends for improvement in attention. The BPRS factor "anergia" showed significant improvement, while low baseline scores in other psychotic factors did not permit further improvements. There were no reports of nausea or vomiting. In conclusion, rivastigmine significantly improved quality of life in subjects with schizophrenia. These benefits may relate to the drug's effects on cognitive deficits and negative symptoms associated with the condition.
Collapse
Affiliation(s)
- Alessandro Lenzi
- Dipartamento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Clinica Psichiatrica, Via Roma 67, 56125 Pisa, Italy.
| | | | | | | | | |
Collapse
|
19
|
Darvesh S, Hopkins DA. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol 2003; 463:25-43. [PMID: 12811800 DOI: 10.1002/cne.10751] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been hypothesized that acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are coregulators of the duration of action of acetylcholine in cholinergic neurotransmission, suggesting that BuChE may also have an important role in the brain. To compare the expression of cholinesterases in the human thalamus, the distributions of BuChE and AChE activity were studied by using a modified Karnovsky-Roots method. BuChE activity was present mainly in neurons, whereas AChE activity was present in both neurons and axons. There was intense staining for BuChE or AChE throughout the thalamus, with some nuclei primarily expressing one or the other cholinesterase. BuChE staining was most intense and widespread in neurons in the anteroventral, mediodorsal, ventral, lateral, and pulvinar thalamic nuclei. AChE was predominantly expressed in neurons of the anterodorsal, midline, ventral, intralaminar, and reticular nuclei. Many nuclei contained both cholinesterases. Considering the overall patterns of labeling in the thalamus for the two cholinesterases, there were both complementary and overlapping relationships of BuChE and AChE activity. Neuronal staining in the subthalamic nucleus and hypothalamus was predominantly positive for AChE activity. The distinct distribution of BuChE activity in neurons in the human thalamus is consistent with an important role for this enzyme in neurotransmission in the human nervous system. Furthermore, BuChE activity, like AChE activity, is found in certain thalamic nuclei related to cognitive and behavioral functions. Involvement of thalamic nuclei in diseases of the nervous system such as Alzheimer's disease and schizophrenia suggests that BuChE could be a potential target for therapeutic intervention in these disorders.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax B3H 1X5, Nova Scotia, Canada.
| | | |
Collapse
|
20
|
Abstract
The most important therapeutic effect of cholinesterase inhibitors (ChEI) on approximately 50% of Alzheimer's disease (AD) patients is to stabilize cognitive function at a steady level during a 1-year period of treatment as compared to placebo. Recent studies show that in a certain percentage (approximately 20%) of patients this cognitive stabilizing effect can be prolonged up to 24 months. This long-lasting effect suggests a mechanism of action other than symptomatic and cholinergic. In vitro and in vivo studies have consistently demonstrated a link between cholinergic activation and APP metabolism. Lesions of cholinergic nuclei cause a rapid increase in cortical APP and CSF. The effect of such lesions can be reversed by ChEI treatment. Reduction in cholinergic neurotransmission--experimental or pathological, such as in AD--leads to amyloidogenic metabolism and contributes to the neuropathology and cognitive dysfunction. To explain the long-term effect of ChEI, mechanisms based on beta-amyloid metabolism are postulated. Recent data show that this mechanism may not necessarily be related to cholinesterase inhibition. A second important aspect of brain cholinesterase function is related to enzymatic differences. The brain of mammals contains two major forms of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The two forms differ genetically, structurally, and for their kinetics. Butyrylcholine is not a physiological substrate in mammalian brain, which makes the function of BuChE of difficult interpretation. In human brain, BuChE is found in neurons and glial cells, as well as in neuritic plaques and tangles in AD patients. Whereas, AChE activity decreases progressively in the brain of AD patients, BuChE activity shows some increase. To study the function of BuChE, we perfused intracortically the rat brain with a selective BuChE inhibitor and found that extracellular acetylcholine increased 15-fold from 5 nM to 75 nM concentrations with little cholinergic side effect in the animal. Based on these data and on clinical data showing a relation between cerebrospinal fluid (CSF) BuChE inhibition and cognitive function in AD patients, we postulated that two pools of cholinesterases may be present in brain, the first mainly neuronal and AChE dependent and the second mainly glial and BuChE dependent. The two pools show different kinetic properties with regard to regulation of ACh concentration in brain and can be separated with selective inhibitors. Within particular conditions, such as in mice nullizygote for AChE or in AD patients at advanced stages of the disease, BuChE may replace AChE in hydrolizing brain acetylcholine.
Collapse
Affiliation(s)
- Ezio Giacobini
- University Hospitals of Geneva, Department of Geriatrics, University of Geneva, Medical school. CH-1226 Thônex, Geneva, Switzerland.
| |
Collapse
|