1
|
Brandt M, Kosmeijer C, Achterberg E, de Theije C, Nijboer C. Timed fetal inflammation and postnatal hypoxia cause cortical white matter injury, interneuron imbalances, and behavioral deficits in a double-hit rat model of encephalopathy of prematurity. Brain Behav Immun Health 2024; 40:100817. [PMID: 39188404 PMCID: PMC11345510 DOI: 10.1016/j.bbih.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Extreme preterm birth-associated adversities are a major risk factor for aberrant brain development, known as encephalopathy of prematurity (EoP), which can lead to long-term neurodevelopmental impairments. Although progress in clinical care for preterm infants has markedly improved perinatal outcomes, there are currently no curative treatment options available to combat EoP. EoP has a multifactorial etiology, including but not limited to pre- or postnatal immune activation and oxygen fluctuations. Elucidating the underlying mechanisms of EoP and determining the efficacy of potential therapies relies on valid, clinically translatable experimental models that reflect the neurodevelopmental and pathophysiological hallmarks of EoP. Here, we expand on our double-hit rat model that can be used to study EoP disease mechanisms and therapeutic options in a preclinical setting. Pregnant Wistar dams were intraperitoneally injected with 10 μg/kg LPS on embryonic day (E)20 and offspring was subjected to hypoxia (140 min, 8% O2) at postnatal day 4. Rats exposed to fetal inflammation and postnatal hypoxia (FIPH) showed neurodevelopmental impairments, such as reduced nest-seeking ability, ultrasonic vocalizations, social engagement, and working memory, and increased anxiety and sensitivity. Impairments in myelination, oligodendrocyte maturation and interneuron development were examined as hallmarks for EoP, in different layers and coordinates of the cortex using histological and molecular techniques. Myelin density and complexity was decreased in the cortex, which partially coincided with a decrease in mature oligodendrocytes. Furthermore, interneuron populations (GAD67+ and PVALB+) were affected. To determine if the timing of inducing fetal inflammation affected the severity of EoP hallmarks in the cortex, multiple timepoints of fetal inflammation were compared. Inflammation at E20 combined with postnatal hypoxia gave the most severe EoP phenotype in the cortex. In conclusion, we present a double-hit rat model which displays various behavioral, anatomical and molecular hallmarks of EoP, including diffuse white matter injury. This double-hit model can be used to investigate pathophysiological mechanisms and potential therapies for EoP.
Collapse
Affiliation(s)
- M.J.V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.M. Kosmeijer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - E.J.M. Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - C.G.M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| |
Collapse
|
2
|
Gorham LS, Latham AR, Alexopoulos D, Kenley JK, Iannopollo E, Lean RE, Loseille D, Smyser TA, Neil JJ, Rogers CE, Smyser CD, Garcia K. Children born very preterm experience altered cortical expansion over the first decade of life. Brain Commun 2024; 6:fcae318. [PMID: 39329081 PMCID: PMC11426356 DOI: 10.1093/braincomms/fcae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
The brain develops rapidly from the final trimester of gestation through childhood, with cortical surface area expanding greatly in the first decade of life. However, it is unclear exactly where and how cortical surface area changes after birth, or how prematurity affects these developmental trajectories. Fifty-two very preterm (gestational age at birth = 26 ± 1.6 weeks) and 41 full-term (gestational age at birth = 39 ± 1.2 weeks) infants were scanned using structural magnetic resonance imaging at term-equivalent age and again at 9/10 years of age. Individual cortical surface reconstructions were extracted for each scan. Infant and 9/10 cortical surfaces were aligned using anatomically constrained Multimodal Surface Matching (aMSM), a technique that allows calculation of local expansion gradients across the cortical surface for each individual subject. At the neonatal time point, very preterm infants had significantly smaller surface area than their full-term peers (P < 0.001), but at the age 9/10-year time point, very preterm and full-term children had comparable surface area (P > 0.05). Across all subjects, cortical expansion by age 9/10 years was most pronounced in frontal, temporal, and supramarginal/inferior parietal junction areas, which are key association cortices (P Spin < 0.001). Very preterm children showed greater cortical surface area expansion between term-equivalent age and age 9/10 compared to their full-term peers in the medial and lateral frontal areas, precuneus, and middle temporal/banks of the superior sulcus junction (P < 0.05). Furthermore, within the very preterm group, expansion was highly variable within the orbitofrontal cortex and posterior regions of the brain. By mapping these patterns across the cortex, we identify differences in association cortices that are known to be important for executive functioning, emotion processing, and social cognition. Additional longitudinal work will be needed to understand if increased expansion in very preterm children is adaptive, or if differences persist into adulthood.
Collapse
Affiliation(s)
- Lisa S Gorham
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aidan R Latham
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Iannopollo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Loseille
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kara Garcia
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Evansville, IN 46202, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Horowitz-Kraus T, Randell K, Morag I. Neurobiological perspective on the development of executive functions. Acta Paediatr 2023; 112:1860-1864. [PMID: 37338188 DOI: 10.1111/apa.16883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Executive functions are a set of top-down cognitive processes necessary for emotional self-regulation and goal-directed behaviour supporting, among others, academic abilities. Premature infants are at high risk for subsequent cognitive, psychosocial, or behavioural problems even in the absence of medical complications and in spite of normal brain imaging. Given that this is a sensitive period of brain growth and maturation, these factors may place preterm infants at high risk for executive function dysfunction, disrupted long-term development, and lower academic achievements. Therefore, careful attention to interventions at this age is essential for intact executive functions and academic development.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and Faculty of Biomedical Engineering, The Technion, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Iris Morag
- Department of Pediatrics, Shamir Medical Center affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Visuospatial working memory of children and adults born very preterm and/or very low birth weight. Pediatr Res 2022; 91:1436-1444. [PMID: 34923577 DOI: 10.1038/s41390-021-01869-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND This paper examines the visuospatial working memory (WM) performance of children and adults born very preterm (VPT) and/or very low birth weight (VLBW) relative to their full-term (FT)-born peers. Of interest was the nature and severity of observed impairments, as well associations with educational/occupational functioning at each age point. METHODS Participants were drawn from two prospective cohort studies: (1) a regional cohort of 110 VPT (<32 weeks' gestation and <1500 g) and 113 FT born children assessed at age 12 years; (2) a national cohort of 229 VLBW (<1500 g) and 100 FT born adults assessed at age 28 years. Visuospatial WM was assessed using a four-span/difficulty-level computerized task. RESULTS Both children and adults born VPT/VLBW had poorer visuospatial WM than FT controls, with their performance less accurate, slower (correct trials), and less efficient with increasing task difficulty (Cohen's d = 0.27-0.51; p < 0.05). Adults had better visuospatial WM than children, but between-group differences were highly similar across ages, before and after adjustment for confounding social background and individual factors. Poorer WM was associated with lower levels of educational and occupational/socioeconomic achievement. CONCLUSIONS Visuospatial WM difficulties persist into adulthood raising concerns for the longer-term cognitive and adaptive functioning of VPT survivors. IMPACT Both children and adults born very preterm have poorer visuospatial working memory than their term-born peers. They are less accurate, take longer to respond correctly and are less efficient, with test performance declining with increasing cognitive demand. Similar differences in visuospatial working memory are observed between VPT/VLBW and full-term individuals during both childhood and adulthood, with these differences remaining even after covariate adjustment. Individuals with poorer visuospatial working memory have lower levels of educational achievement and occupational/socioeconomic success. Visuospatial working memory difficulties persist into adulthood and appear to continue to impact everyday functioning and life-course opportunities.
Collapse
|
5
|
Individual Attention Patterns in Children Born Very Preterm and Full Term at 7 and 13 Years of Age. J Int Neuropsychol Soc 2021; 27:970-980. [PMID: 33478617 DOI: 10.1017/s1355617720001411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To identify attention profiles at 7 and 13 years, and transitions in attention profiles over time in children born very preterm (VP; <30 weeks' gestation) and full term (FT), and examine predictors of attention profiles and transitions. METHODS Participants were 167 VP and 60 FT children, evaluated on profiles across five attention domains (selective, shifting and divided attention, processing speed, and behavioral attention) at 7 and 13 years using latent profile analyses. Transitions in profiles were assessed with contingency tables. For VP children, biological and social risk factors were tested as predictors with a multinomial logistic regression. RESULTS At 7 and 13 years, three distinct profiles of attentional functioning were identified. VP children were 2-3 times more likely to show poorer attention profiles compared with FT children. Transition patterns between 7 and 13 years were stable average, stable low, improving, and declining attention. VP children were two times less likely to have a stable average attention pattern and three times more likely to have stable low or improving attention patterns compared with FT children. Groups did not differ in declining attention patterns. For VP children, brain abnormalities on neonatal MRI and greater social risk at 7 years predicted stable low or changing attention patterns over time. CONCLUSIONS VP children show greater variability in attention profiles and transition patterns than FT children, with almost half of the VP children showing adverse attention patterns over time. Early brain pathology and social environment are markers for attentional functioning.
Collapse
|
6
|
Vanes LD, Hadaya L, Kanel D, Falconer S, Ball G, Batalle D, Counsell SJ, Edwards AD, Nosarti C. Associations Between Neonatal Brain Structure, the Home Environment, and Childhood Outcomes Following Very Preterm Birth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:146-155. [PMID: 34471914 PMCID: PMC8367847 DOI: 10.1016/j.bpsgos.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background Very preterm birth is associated with an increased risk of childhood psychopathology and cognitive deficits. However, the extent to which these developmental problems associated with preterm birth are amenable to environmental factors or determined by neurobiology at birth remains unclear. Methods We derived neonatal brain structural covariance networks using non-negative matrix factorization in 384 very preterm infants (median gestational age [range], 30.29 [23.57–32.86] weeks) who underwent magnetic resonance imaging at term-equivalent age (median postmenstrual age, 42.57 [37.86–44.86] weeks). Principal component analysis was performed on 32 behavioral and cognitive measures assessed at preschool age (n = 206; median age, 4.65 [4.19–7.17] years) to identify components of childhood psychopathology and cognition. The Cognitively Stimulating Parenting Scale assessed the level of cognitively stimulating experiences available to the child at home. Results Cognitively stimulating parenting was associated with reduced expression of a component reflecting developmental psychopathology and executive dysfunction consistent with the preterm phenotype (inattention-hyperactivity, autism spectrum behaviors, and lower executive function scores). In contrast, a component reflecting better general cognitive abilities was associated with larger neonatal gray matter volume in regions centered on key nodes of the salience network, but not with cognitively stimulating parenting. Conclusions Our results suggest that while neonatal brain structure likely influences cognitive abilities in very preterm children, the severity of behavioral symptoms that are typically observed in these children is sensitive to a cognitively stimulating home environment. Very preterm children may derive meaningful mental health benefits from access to cognitively stimulating experiences during childhood.
Collapse
Affiliation(s)
- Lucy D. Vanes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Address correspondence to Lucy D. Vanes, Ph.D.
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Gareth Ball
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - A. David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Bogičević L, Verhoeven M, van Baar AL. Exploring predictors at toddler age of distinct profiles of attentional functioning in 6-year-old children born moderate-to-late preterm and full term. PLoS One 2021; 16:e0254797. [PMID: 34324546 PMCID: PMC8320975 DOI: 10.1371/journal.pone.0254797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Examining relationships of toddler abilities in attention, cognitive, motor, and language development, and behavioral problems, with distinct attention profiles at 6 years of age in children born moderate-to-late preterm and full term. METHOD Longitudinal study with a cohort of 88 moderate-to-late preterm and 83 full term born children. At 18 months attention abilities were assessed. At 24 months cognitive, motor, and language development was examined and behavioral problems were screened. At 6 years ten measures of attention were administered, which were used to classify children in one of four attentional functioning profiles (normal attention, overall poorer attention, poorer cognitive attention, and behavioral attention problems). Performance at 18 and 24 months was examined in relation to these four distinct attention profiles, as well as in relation to normal (first profile) versus subaverage attention (second, third, and fourth profiles) using multinomial logistic regressions. RESULTS Orienting and alerting attention, and receptive language were related to distinct attention profiles. Specifically, children with an overall poorer attention profile at 6 years were differentiated by lower orienting attention and receptive language scores at toddler age, while those with a poorer cognitive attention profile showed lower early alerting attention at 18 months. Children with a behavioral attention problems profile at 6 years were differentiated by lower orienting attention but higher alerting attention scores at toddler age. Orienting attention and receptive language, but not alerting attention, at toddler age were related to normal versus subaverage attention, with lower scores predicting subaverage attention. CONCLUSIONS Children at risk of poorer attentional functioning at school-age, expressed in distinct attention profiles, already showed differentiated functioning in attention abilities and in language comprehension as toddlers. Distinguishing distinct attention profiles could be important for future research and clinical practice, as is early monitoring of attention and language abilities in children at risk.
Collapse
Affiliation(s)
- Lilly Bogičević
- Child and Adolescent Studies, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|
8
|
Ginnell L, Boardman JP, Reynolds RM, Fletcher‐Watson S. Attention profiles following preterm birth: A review of methods and findings from infancy to adulthood. INFANT AND CHILD DEVELOPMENT 2021. [DOI: 10.1002/icd.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lorna Ginnell
- Centre for Clinical Brain Sciences The University of Edinburgh Edinburgh UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute The University of Edinburgh Edinburgh UK
| | - Rebecca M. Reynolds
- Centre for Cardiovascular Science, The Queen's Medical Research Institute The University of Edinburgh Edinburgh UK
| | | |
Collapse
|
9
|
Bogičević L, Verhoeven M, van Baar AL. Distinct Profiles of Attention in Children Born Moderate-to-Late Preterm at 6 Years. J Pediatr Psychol 2021; 45:685-694. [PMID: 32483608 PMCID: PMC7306696 DOI: 10.1093/jpepsy/jsaa038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 11/14/2022] Open
Abstract
Objective Attention difficulties are commonly reported by caregivers in school-aged children born moderate-to-late preterm (MLPT; 32–36 weeks’ gestation). We aimed to assess distinct aspects of attentional functioning (i.e. orienting, alerting and executive attention, processing speed and behavioral components) in children born MLPT and full term (FT), profiles of attentional functioning, and associated risk factors such as preterm birth. Methods Participants were 170 (87 MLPT and 83 FT) children, evaluated on cognitive and behavioral attention aspects at 6 years of age. We used a variable-centered approach to compare attentional functioning of children born MLPT and FT at group level, and a person-centered approach to identify profiles of attentional functioning. Neonatal and demographic characteristics of these profiles were compared. Results The variable-centered approach showed that at group level children born MLPT had poorer orienting attention and processing speed, and behavioral attention than children born FT. The person-centered approach revealed four profiles: (a) normal attentional functioning, (b) overall poorer attention, (c) poorer cognitive attention, and (d) behavioral attention problems. Children born MLPT were overrepresented in each of the suboptimal attention profiles, and were more dispersed across profiles than children born FT. Conclusions Children born MLPT are at increased risk of difficulties in some attention aspects, but at group level differences with children born FT are small. However, children born MLPT show considerable variation in the nature of attention difficulties and are twice as likely to show a suboptimal attention profile, indicating a cumulation of poorer attention scores.
Collapse
|
10
|
Wheelock MD, Lean RE, Bora S, Melzer TR, Eggebrecht AT, Smyser CD, Woodward LJ. Functional Connectivity Network Disruption Underlies Domain-Specific Impairments in Attention for Children Born Very Preterm. Cereb Cortex 2021; 31:1383-1394. [PMID: 33067997 PMCID: PMC8179512 DOI: 10.1093/cercor/bhaa303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 01/17/2023] Open
Abstract
Attention problems are common in school-age children born very preterm (VPT; < 32 weeks gestational age), but the contribution of aberrant functional brain connectivity to these problems is not known. As part of a prospective longitudinal study, brain functional connectivity (fc) was assessed alongside behavioral measures of selective, sustained, and executive attention in 58 VPT and 65 full-term (FT) born children at corrected-age 12 years. VPT children had poorer sustained, shifting, and divided attention than FT children. Within the VPT group, poorer attention scores were associated with between-network connectivity in ventral attention, visual, and subcortical networks, whereas between-network connectivity in the frontoparietal, cingulo-opercular, dorsal attention, salience and motor networks was associated with attention functioning in FT children. Network-level differences were also evident between VPT and FT children in specific attention domains. Findings contribute to our understanding of fc networks that potentially underlie typical attention development and suggest an alternative network architecture may help support attention in VPT children.
Collapse
Affiliation(s)
- M D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - R E Lean
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - S Bora
- Mothers, Babies, and Women’s Health Program, Mater Research Institute, University of Queensland, South Brisbane, Australia
| | - T R Melzer
- Department of Medicine, University of Otago, New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - A T Eggebrecht
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - C D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - L J Woodward
- School of Health Sciences and Child Wellbeing Research Institute, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
11
|
Schnider B, Disselhoff V, Held U, Latal B, Hagmann CF, Wehrle FM. Executive function deficits mediate the association between very preterm birth and behavioral problems at school-age. Early Hum Dev 2020; 146:105076. [PMID: 32470766 DOI: 10.1016/j.earlhumdev.2020.105076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Children and adolescents born very preterm are at increased risk to develop executive function deficits and to suffer from social, emotional and attentional problems. This study investigated whether executive function deficits contribute to behavioral problems in children and adolescents born very preterm at school-age. STUDY DESIGN Thirty-eight children and adolescents born very preterm and 41 age-matched term-born peers were assessed at a mean age of 12.9 (±1.8) years with a comprehensive battery of executive function tests, including working memory, planning, cognitive flexibility, and verbal fluency. A composite score was calculated to reflect overall executive function abilities. To assess behavioral problems, parents completed the Strengths and Difficulties Questionnaire (SDQ). Mediation analysis was applied to quantify the effect of preterm birth on behavioral problems with executive function abilities as a mediating variable. RESULTS Executive function abilities were poorer in the very preterm compared to the term-born group (d = 0.62, p = .005) and the parents of very preterm children reported more behavioral problems on the SDQ Total Difficulties Score (d = 0.54, p = .01). The effect of birth status on behavioral problems was significantly mediated by executive function abilities while adjusting for age at assessment, sex, and socioeconomic status (F(2, 76) = 6.42, p = .002, R2 = 0.14). CONCLUSION Results from this study suggest that the increase in behavioral symptoms in very preterm children at school-age compared to term-born peers may partly be explained by their executive function deficits. These findings highlight the importance of continuously monitoring the development of children born very preterm to provide optimal care as they grow up.
Collapse
Affiliation(s)
- Barbara Schnider
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland
| | - Vera Disselhoff
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland
| | - Ulrike Held
- University of Zurich, Epidemiology, Biostatistics and Prevention Institute, Zurich, Switzerland
| | - Beatrice Latal
- University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Switzerland
| | - Cornelia F Hagmann
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland
| | - Flavia M Wehrle
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Switzerland.
| |
Collapse
|
12
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
13
|
Bogičević L, Verhoeven M, van Baar AL. Toddler skills predict moderate-to-late preterm born children's cognition and behaviour at 6 years of age. PLoS One 2019; 14:e0223690. [PMID: 31693682 PMCID: PMC6834277 DOI: 10.1371/journal.pone.0223690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To compare moderate-to-late preterm born (32-36 weeks' gestation) to full term born (≥37 weeks' gestation) children in cognitive and behavioural functioning at the age of 6 years and assess which toddler skills predict later cognitive and behavioural functioning. DESIGN A prospective longitudinal study with a cohort of 88 moderate-to-late preterm and 83 full term born Dutch children, followed from 18 months to 6 years of age. Orienting, alerting and executive attention skills were assessed at 18 months (corrected for prematurity), and cognitive, motor and language skills (Bayley-III-NL) at 24 months (corrected for prematurity). At 6 years (corrected for prematurity), cognitive (indices of IQ; WPPSI-III-NL) and behavioural functioning (CBCL/6-18) were assessed. Group differences and potential predictors were examined with MANCOVAs and hierarchical regression analyses. RESULTS At 6 years, moderate-to-late preterm born children performed poorer than full term born children on cognitive processing speed, and they showed more behavioural attention problems. Attention problems at 6 years were predicted by poorer orienting attention skills at 18 months, while lower performance IQ was predicted by poorer alerting attention skills at 18 months. Full Scale IQ and Verbal IQ at 6 years were predicted by language skills at 24 months. Moderate-to-late preterm and full term born children showed some differing correlational patterns in the associations between early skills and later functioning, although in further analyses predictors appeared the same for both groups. CONCLUSIONS Moderate-to-late preterm born children show specific vulnerabilities at primary school-age, particularly in cognitive processing speed and behavioural attention problems. Cognitive and behavioural functioning at 6 years can be predicted by differentiated attention skills at 18 months and language skills at 24 months.
Collapse
Affiliation(s)
- Lilly Bogičević
- Child and Adolescent Studies, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|
14
|
Miguel PM, Pereira LO, Barth B, de Mendonça Filho EJ, Pokhvisneva I, Nguyen TTT, Garg E, Razzolini BR, Koh DXP, Gallant H, Sassi RB, Hall GBC, O'Donnell KJ, Meaney MJ, Silveira PP. Prefrontal Cortex Dopamine Transporter Gene Network Moderates the Effect of Perinatal Hypoxic-Ischemic Conditions on Cognitive Flexibility and Brain Gray Matter Density in Children. Biol Psychiatry 2019; 86:621-630. [PMID: 31142432 DOI: 10.1016/j.biopsych.2019.03.983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genetic polymorphisms of the dopamine transporter gene (DAT1) and perinatal complications associated with poor oxygenation are risk factors for attentional problems in childhood and may show interactive effects. METHODS We created a novel expression-based polygenic risk score (ePRS) reflecting variations in the function of the DAT1 gene network (ePRS-DAT1) in the prefrontal cortex and explored the effects of its interaction with perinatal hypoxic-ischemic-associated conditions on cognitive flexibility and brain gray matter density in healthy children from two birth cohorts-MAVAN from Canada (n = 139 boys and girls) and GUSTO from Singapore (n = 312 boys and girls). RESULTS A history of exposure to several perinatal hypoxic-ischemic-associated conditions was associated with impaired cognitive flexibility only in the high-ePRS group, suggesting that variation in the prefrontal cortex expression of genes involved in dopamine reuptake is associated with differences in this behavior. Interestingly, this result was observed in both ethnically distinct birth cohorts. Additionally, parallel independent component analysis (MAVAN cohort, n = 40 children) demonstrated relationships between single nucleotide polymorphism-based ePRS and gray matter density in areas involved in executive (cortical regions) and integrative (bilateral thalamus and putamen) functions, and these relationships differ in children from high and low exposure to hypoxic-ischemic-associated conditions. CONCLUSIONS These findings reveal that the impact of conditions associated with hypoxia-ischemia on brain development and executive functions is moderated by genotypes associated with dopamine signaling in the prefrontal cortex. We discuss the potential impact of innovative genomic and environmental measures for the identification of children at high risk for impaired executive functions.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Euclides José de Mendonça Filho
- Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Thao T T Nguyen
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Elika Garg
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - Bruna Regis Razzolini
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Dawn Xin Ping Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Heather Gallant
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Kieran John O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Patrícia Pelufo Silveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montréal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
15
|
Stolp HB, Fleiss B, Arai Y, Supramaniam V, Vontell R, Birtles S, Yates AG, Baburamani AA, Thornton C, Rutherford M, Edwards AD, Gressens P. Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Front Physiol 2019; 10:955. [PMID: 31417418 PMCID: PMC6683859 DOI: 10.3389/fphys.2019.00955] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Preterm brain injury, occurring in approximately 30% of infants born <32 weeks gestational age, is associated with an increased risk of neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The mechanism of gray matter injury in preterm born children is unclear and likely to be multifactorial; however, inflammation, a high predictor of poor outcome in preterm infants, has been associated with disrupted interneuron maturation in a number of animal models. Interneurons are important for regulating normal brain development, and disruption in interneuron development, and the downstream effects of this, has been implicated in the etiology of neurodevelopmental disorders. Here, we utilize postmortem tissue from human preterm cases with or without diffuse white matter injury (WMI; PMA range: 23+2 to 28+1 for non-WMI group, 26+6 to 30+0 for WMI group, p = 0.002) and a model of inflammation-induced preterm diffuse white matter injury (i.p. IL-1β, b.d., 10 μg/kg/injection in male CD1 mice from P1–5). Data from human preterm infants show deficits in interneuron numbers in the cortex and delayed growth of neuronal arbors at this early stage of development. In the mouse, significant reduction in the number of parvalbumin-positive interneurons was observed from postnatal day (P) 10. This decrease in parvalbumin neuron number was largely rectified by P40, though there was a significantly smaller number of parvalbumin positive cells associated with perineuronal nets in the upper cortical layers. Together, these data suggest that inflammation in the preterm brain may be a contributor to injury of specific interneuron in the cortical gray matter. This may represent a potential target for postnatal therapy to reduce the incidence and/or severity of neurodevelopmental disorders in preterm infants.
Collapse
Affiliation(s)
- Helen B Stolp
- Department for Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Bobbi Fleiss
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Université de Paris, NeuroDiderot, Inserm, Paris, France.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Yoko Arai
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Veena Supramaniam
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Regina Vontell
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Sebastian Birtles
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Abi G Yates
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ana A Baburamani
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Claire Thornton
- Department for Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Mary Rutherford
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - A David Edwards
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Pierre Gressens
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
16
|
Shang J, Fisher P, Bäuml JG, Daamen M, Baumann N, Zimmer C, Bartmann P, Boecker H, Wolke D, Sorg C, Koutsouleris N, Dwyer DB. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp 2019; 40:4239-4252. [PMID: 31228329 DOI: 10.1002/hbm.24698] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Imaging studies have characterized functional and structural brain abnormalities in adults after premature birth, but these investigations have mostly used univariate methods that do not account for hypothesized interdependencies between brain regions or quantify accuracy in identifying individuals. To overcome these limitations, we used multivariate machine learning to identify gray matter volume (GMV) and amplitude of low frequency fluctuations (ALFF) brain patterns that best classify young adults born very preterm/very low birth weight (VP/VLBW; n = 94) from those born full-term (FT; n = 92). We then compared the spatial maps of the structural and functional brain signatures and validated them by assessing associations with clinical birth history and basic cognitive variables. Premature birth could be predicted with a balanced accuracy of 80.7% using GMV and 77.4% using ALFF. GMV predictions were mediated by a pattern of subcortical and middle temporal reductions and volumetric increases of the lateral prefrontal, medial prefrontal, and superior temporal gyrus regions. ALFF predictions were characterized by a pattern including increases in the thalamus, pre- and post-central gyri, and parietal lobes, in addition to decreases in the superior temporal gyri bilaterally. Decision scores from each classification, assessing the degree to which an individual was classified as a VP/VLBW case, were predicted by the number of days in neonatal hospitalization and birth weight. ALFF decision scores also contributed to the prediction of general IQ, which highlighted their potential clinical significance. Combined, the results clarified previous research and suggested that primary subcortical and temporal damage may be accompanied by disrupted neurodevelopment of the cortex.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,TUM-NIC Neuroimaging Center, Technische Universität München
| | - Paul Fisher
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.,Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
17
|
Pascoe MJ, Melzer TR, Horwood LJ, Woodward LJ, Darlow BA. Altered grey matter volume, perfusion and white matter integrity in very low birthweight adults. NEUROIMAGE-CLINICAL 2019; 22:101780. [PMID: 30925384 PMCID: PMC6438988 DOI: 10.1016/j.nicl.2019.101780] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
This study examined the long-term effects of being born very-low-birth-weight (VLBW, <1500 g) on adult cerebral structural development using a multi-method neuroimaging approach. The New Zealand VLBW study cohort comprised 413 individuals born VLBW in 1986. Of the 338 who survived to discharge, 229 were assessed at age 27–29 years. Of these, 150 had a 3 T MRI scan alongside 50 healthy term-born controls. The VLBW group included 53/57 participants born <28 weeks gestation. MRI analyses included: a) structural MRI to assess grey matter (GM) volume and cortical thickness; b) arterial spin labelling (ASL) to quantify GM perfusion; and c) diffusion tensor imaging (DTI) to measure white matter (WM) integrity. Compared to controls, VLBW adults had smaller GM volumes within frontal, temporal, parietal and occipital cortices, bilateral cingulate gyri and left caudate, as well as greater GM volumes in frontal, temporal and occipital areas. Thinner cortex was observed within frontal, temporal and parietal cortices. VLBW adults also had less GM perfusion within limited temporal areas, bilateral hippocampi and thalami. Finally, lower fractional anisotropy (FA) and axial diffusivity (AD) within principal WM tracts was observed in VLBW subjects. Within the VLBW group, birthweight was positively correlated with GM volume and perfusion in cortical and subcortical regions, as well as FA and AD across numerous principal WM tracts. Between group differences within temporal cortices were evident across all imaging modalities, suggesting that the temporal lobe may be particularly susceptible to disruption in development following preterm birth. Overall, findings reveal enduring and pervasive effects of preterm birth on brain structural development, with individuals born at lower birthweights having greater long-term neuropathology. Very-low-birth-weight adults had smaller GM volumes and thinner cortex than controls. VLBW adults also showed regions of larger grey matter volumes and thicker cortex. Several small regions showed lower cerebral perfusion in VLBW adults than in controls. Diffusion tensor MRI suggested poorer WM integrity in VLBW adults than in controls. Within VLBW adults, all MRI measures showed positive associations with birthweight.
Collapse
Affiliation(s)
- Maddie J Pascoe
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand.
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand; Department of Medicine, University of Otago, Christchurch 8011, New Zealand.
| | - L John Horwood
- Department of Psychological Medicine, University of Otago, Christchurch 8011, New Zealand.
| | - Lianne J Woodward
- School of Health Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Brian A Darlow
- Department of Paediatrics, University of Otago, Christchurch 8011, New Zealand.
| |
Collapse
|
18
|
Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord 2018; 10:38. [PMID: 30541449 PMCID: PMC6291944 DOI: 10.1186/s11689-018-9253-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed, the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental impairments common in this population. Main body This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains in this clinical population, describes the patterns of aberrant structural and functional connectivity common in prematurely-born infants and children, and then reviews the increasingly established body of literature delineating the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail important, typically understudied, clinical, and social variables that may influence these relationships among preterm children, including heritability and psychosocial risks. Conclusion Future work in this domain should continue to leverage longitudinal evaluations of preterm infants which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize relationships between imaging measures and impairment, information necessary for advancing our understanding of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental trajectories in this high-risk clinical population.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA.
| | - Rachel E Lean
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Muriah D Wheelock
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA
| |
Collapse
|
19
|
Lean RE, Paul RA, Smyser TA, Smyser CD, Rogers CE. Social Adversity and Cognitive, Language, and Motor Development of Very Preterm Children from 2 to 5 Years of Age. J Pediatr 2018; 203:177-184.e1. [PMID: 30244986 PMCID: PMC6252144 DOI: 10.1016/j.jpeds.2018.07.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To assess the extent to which social and family factors explain variability in cognitive, language, and motor development among very preterm (<30 weeks of gestation) children from 2 to 5 years of age. STUDY DESIGN As part of a longitudinal study, very preterm children recruited as neonates were assessed at 2 (n = 87) and 5 (n = 83) years of age using standardized tests of cognitive, language, and motor ability alongside demographically matched full term (FT) children (n = 63). For very preterm children, developmental change scores were calculated for each domain to assess within-individual variability to 5 years of age. Multivariate regression and mixed-effect models examined social risk index, parenting stress, family functioning, and maternal intellectual ability as predictors of developmental variation among very preterm children. RESULTS Very preterm children demonstrated poorer cognitive, language, and motor abilities than FT children at 2 (P ≤ .001) and 5 (P < .002) years of age. Social adversity was associated with cognitive (P < .001) and language (P < .001) outcomes at both ages, with parenting stress also related to cognitive outcomes (P = .03). Infant medical risk was associated with motor outcome at 5 years (P=.01). Very preterm children showed considerable within-individual variation between assessments. Among very preterm children, neonatal white matter abnormalities predicted worsening cognitive (P=.04) and motor development (P = .01). Social risk index predicted worsening language development (P = .04), but this association was subsequently explained by dysfunctional maternal affective involvement (P = .01) and lower maternal intellectual ability (P = .05). CONCLUSIONS Both clinical and socioenvironmental factors are associated with cognitive, language, and motor developmental variation among very preterm children from infancy to early school age.
Collapse
Affiliation(s)
- Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO.
| | - Rachel A Paul
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Brain gray and white matter abnormalities in preterm-born adolescents: A meta-analysis of voxel-based morphometry studies. PLoS One 2018; 13:e0203498. [PMID: 30303972 PMCID: PMC6179190 DOI: 10.1371/journal.pone.0203498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 02/05/2023] Open
Abstract
Introduction Studies using voxel-based morphometry report variable and inconsistent abnormalities of gray matter volume (GMV) and white matter volume (WMV) in brains of preterm-born adolescents (PBA). In such circumstances a meta-analysis can help identify the most prominent and consistent abnormalities. Method We identified 9 eligible studies by systematic search of the literature up to October 2017. We used Seed-based d Mapping to analyze GMV and WMV alterations between PBA and healthy controls. Results In the GMV meta-analysis, PBA compared to healthy controls showed: increased GMV in left cuneus cortex, left superior frontal gyrus, and right anterior cingulate cortex; decreased GMV in bilateral inferior temporal gyrus (ITG), left superior frontal gyrus, and right caudate nucleus. In the WMV meta-analysis, PBA showed: increased WMV in right fusiform gyrus and precuneus; decreased WMV in bilateral ITG, and right inferior frontal gyrus. In meta-regression analysis, the percentage of male PBA negatively correlated with decreased GMV of bilateral ITG. Interpretation PBA show widespread GMV and WMV alterations in the default mode network, visual recognition network, and salience network. These changes may be causally relevant to socialization difficulties and cognitive impairments. The meta-regression results perhaps reveal the structural underpinning of the cognition-related sex differences in PBA.
Collapse
|
21
|
Altered functional network connectivity relates to motor development in children born very preterm. Neuroimage 2018; 183:574-583. [PMID: 30144569 DOI: 10.1016/j.neuroimage.2018.08.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Individuals born very preterm (<32 weeks gestation) are at increased risk for neuromotor impairments. The ability to characterize the structural and functional mechanisms underlying these impairments remains limited using existing neuroimaging techniques. Resting state-functional magnetic resonance imaging (rs-fMRI) holds promise for defining the functional network architecture of the developing brain in relation to typical and aberrant neurodevelopment. In 58 very preterm and 65 term-born children studied from birth to age 12 years, we examined relations between functional connectivity measures from low-motion rs-fMRI data and motor skills assessed using the Movement Assessment Battery for Children, 2nd edition. Across all subscales, motor performance was better in term than very preterm children. Examination of relations between functional connectivity and motor measures using enrichment analysis revealed between-group differences within cerebellar, frontoparietal, and default mode networks, and between basal ganglia-motor, thalamus-motor, basal ganglia-auditory, and dorsal attention-default mode networks. Specifically, very preterm children exhibited weaker associations between motor scores and thalamus-motor and basal ganglia-motor network connectivity. These findings highlight key functional brain systems underlying motor development. They also demonstrate persisting developmental effects of preterm birth on functional connectivity and motor performance in childhood, providing evidence for an alternative network architecture supporting motor function in preterm children.
Collapse
|