1
|
Bruzzone SEP, Nasser A, Aripaka SS, Spies M, Ozenne B, Jensen PS, Knudsen GM, Frokjaer VG, Fisher PM. Genetic contributions to brain serotonin transporter levels in healthy adults. Sci Rep 2023; 13:16426. [PMID: 37777558 PMCID: PMC10542378 DOI: 10.1038/s41598-023-43690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
The serotonin transporter (5-HTT) critically shapes serotonin neurotransmission by regulating extracellular brain serotonin levels; it remains unclear to what extent 5-HTT levels in the human brain are genetically determined. Here we applied [11C]DASB positron emission tomography to image brain 5-HTT levels and evaluated associations with five common serotonin-related genetic variants that might indirectly regulate 5-HTT levels (BDNF rs6265, SLC6A4 5-HTTLPR, HTR1A rs6295, HTR2A rs7333412, and MAOA rs1137070) in 140 healthy volunteers. In addition, we explored whether these variants could predict in vivo 5-HTT levels using a five-fold cross-validation random forest framework. MAOA rs1137070 T-carriers showed significantly higher brain 5-HTT levels compared to C-homozygotes (2-11% across caudate, putamen, midbrain, thalamus, hippocampus, amygdala and neocortex). We did not observe significant associations for the HTR1A rs6295 and HTR2A rs7333412 genotypes. Our previously observed lower subcortical 5-HTT availability for rs6265 met-carriers remained in the presence of these additional variants. Despite this significant association, our prediction models showed that genotype moderately improved prediction of 5-HTT in caudate, but effects were not statistically significant after adjustment for multiple comparisons. Our observations provide additional evidence that serotonin-related genetic variants modulate adult human brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Silvia Elisabetta Portis Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sagar Sanjay Aripaka
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Bricker B, Voshavar C, Onyameh EK, Gonela UM, Lin X, Swanson TL, Kozell LB, Schmachtenberg JL, Bloom SH, Janowsky AJ, Ablordeppey SY. Enantiomeric Separation, Absolute Configuration by X-ray Crystallographic Analysis, and Functional Evaluation of Enantiomers of the Dual Ligand, SYA0340 at 5-HT 1A and 5-HT 7A Receptors. ACS OMEGA 2023; 8:21736-21744. [PMID: 37360419 PMCID: PMC10285950 DOI: 10.1021/acsomega.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
We have previously identified 5-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1H-inden-1-one (SYA0340) as a dual 5-HT1A and 5-HT7 receptor ligand, and we posited such ligands might find utility in the treatment of various CNS related illnesses including cognitive and anxiolytic impairments. However, SYA0340 has a chiral center and its enantiomers may confound the readouts for their functional characteristics. Thus, in this study, we resynthesized SYA0340, separated the enantiomers, identified the absolute configurations, and evaluated their binding affinities and functional characteristics at both the 5-HT1A and 5-HT7A receptors. The results of this study show that the (+)-SYA0340-P1 [specific rotation [α] = +18.4 (deg.mL)/(g.dm)] has a binding affinity constant, Ki = 1.73 ± 0.55 nM at 5-HT1AR and Ki = 2.20 ± 0.33 nM at 5-HT7AR and (-)-SYA0340-P2 [specific rotation [α] = -18.2 (deg.mL)/(g.dm)] has Ki = 1.06 ± 0.32 nM (5-HT1AR) and 4.7 ± 1.1 nM (5-HT7AR). Using X-ray crystallographic techniques, the absolute configuration of the P2 isomer was identified as the S-enantiomer and, therefore, the P1 isomer as the R-enantiomer. Functionally, both SYA0340-P1 (EC50 = 1.12 ± 0.41 nM; Emax = 94.6 ± 3.1%) and SYA0340-P2 (EC50 = 2.21 ± 0.59 nM; Emax = 96.8 ± 5.1%) display similar agonist properties at the 5-HT1AR while both enantiomers display antagonist properties at the 5-HT7AR with P1 (IC50 = 32.1 ± 9.2 nM) displaying over 8 times greater potency as P2 (IC50 = 277 ± 46 nM). Thus, based on the functional evaluation results, SYA0340-P1 is considered as the eutomer of the pair of enantiomers of SYA0340. It is expected that these enantiomers will serve as new pharmacological probes for the 5-HT1A and 5-HT7A receptors.
Collapse
Affiliation(s)
- Barbara
A. Bricker
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Institute of Public Health, Florida
A&M University, Tallahassee, Florida 32307, United States
| | - Chandrashekhar Voshavar
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Institute of Public Health, Florida
A&M University, Tallahassee, Florida 32307, United States
| | - Edem K. Onyameh
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Institute of Public Health, Florida
A&M University, Tallahassee, Florida 32307, United States
| | - Uma M. Gonela
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Institute of Public Health, Florida
A&M University, Tallahassee, Florida 32307, United States
| | - Xinsong Lin
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan Way Room 118 DLC, Tallahassee, Florida 32306-4390, United States
| | - Tracy L. Swanson
- Research
Service, VA Portland Health Care System, and Department of Psychiatry, Oregon Health and Science University, Portland Oregon 97239, United States
| | - Laura B. Kozell
- Research
Service, VA Portland Health Care System, and Department of Psychiatry, Oregon Health and Science University, Portland Oregon 97239, United States
| | - Jennifer L. Schmachtenberg
- Research
Service, VA Portland Health Care System, and Department of Psychiatry, Oregon Health and Science University, Portland Oregon 97239, United States
| | - Shelley H. Bloom
- Research
Service, VA Portland Health Care System, and Department of Psychiatry, Oregon Health and Science University, Portland Oregon 97239, United States
| | - Aaron J. Janowsky
- Research
Service, VA Portland Health Care System, and Department of Psychiatry, Oregon Health and Science University, Portland Oregon 97239, United States
| | - Seth Y. Ablordeppey
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Institute of Public Health, Florida
A&M University, Tallahassee, Florida 32307, United States
| |
Collapse
|
3
|
Khani P, Ansari Dezfouli M, Nasri F, Rahemi M, Ahmadloo S, Afkhami H, Saeidi F, Tereshchenko S, Bigdeli MR, Modarressi MH. Genetic and epigenetic effects on couple adjustment in context of romantic relationship: A scoping systematic review. Front Genet 2023; 14:1002048. [PMID: 36816018 PMCID: PMC9937082 DOI: 10.3389/fgene.2023.1002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Couples' relationships defined by a complex interaction between the two partners and their intrapersonal traits. Romantic; relationships and love are associated with marital satisfaction and stability, as well as couples' happiness and health. Personality traits influence romantic relationships and, personality influenced by genetical and non-genetically factors. The roles of non-genetically factors such as socioeconomic position and external appearance have revealed in determining the quality of romantic relationships. Methods: We; performed a scoping systematic review to assess the association between genetics and epigenetic factors and romantic relationship. Relevant articles were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo searching between inception and 4 June 2022. Results: Different studies evaluated the associated polymorphisms in 15 different genes or chromosomal regions. In the first step; we classified them into four groups: (1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-M55). Then, we evaluated and extracted significant polymorphisms that affect couple adjustment and romantic relationships. Discussion: Overall, the findings suggest that genetic and epigenetics variants play a key role in marital adjustment and romantic relationships over time.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahemi
- Department of stem cell technology and tissue regeneration, Faculty of Science, Tehran University, Tehran, Iran
| | - Salma Ahmadloo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Tereshchenko
- Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, Russia
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Ragini, Sakshi, Saini A, Mani I. Endocytosis and signaling of 5-HT1A receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:113-123. [PMID: 36813354 DOI: 10.1016/bs.pmbts.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neurotransmitter serotonin (also known as 5-hydroxytryptamine, 5-HT) regulates many important physiological as well as pathological functions in the body like psychoemotional, sensation, blood circulation, food intake, autonomic, memory, sleep, pain, etc. 5-HT binds to its receptor 5-HT1A to initiate GTP exchange at the Gi/o protein, which activates the receptor G protein complex. G protein subunits attach to different effectors and generate various responses, such as inhibition of adenyl cyclase enzyme and regulates the opening of Ca++ and K+ ion channels. Activated signalling cascades activate protein kinase C (PKC) (a second messenger), which further induces the detachment of Gβγ-dependent receptor signaling and leads to 5-HT1A internalization. After internalization, 5-HT1A receptor attaches to the Ras-ERK1/2 pathway. The receptor further trafficks to the lysosome for degradation. Receptor skips the trafficking to the lysosomal compartments and undergoes dephosphorylation. Dephosphorylated receptors now recycled back to the cell membrane. In this chapter, we have discussed the internalization, trafficking and signaling of the 5-HT1A receptor.
Collapse
Affiliation(s)
- Ragini
- Department of Biotechnology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sakshi
- Department of Biotechnology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
5
|
Kis J, Rózsa L, Husvéth F, Zsolnai A, Anton I. Role of genes related to performance and reproduction of Thoroughbreds in training and breeding - A review. Acta Vet Hung 2021; 69:315-323. [PMID: 34739392 DOI: 10.1556/004.2021.00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Thoroughbreds have been selected for speed and stamina since the 1700s. This selection resulted in structural and functional system-wide adaptations that enhanced physiological characteristics for outstanding speed of 61-71 kph (38-44 mph) between 1,000 and 3,200 m (5 furlongs - 2 miles). At present, horseracing is still an economically important industrial sector, therefore intensive research is underway to explore genes that allow the utilisation of genetic abilities and are significant in breeding and training. This study aims to provide an overview of genetic research and its applicability related to Thoroughbreds.
Collapse
Affiliation(s)
- Judit Kis
- 1Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor u. 40, H-7400 Kaposvár, Hungary
| | - László Rózsa
- 1Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor u. 40, H-7400 Kaposvár, Hungary
| | - Ferenc Husvéth
- 2Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Hungary
| | - Attila Zsolnai
- 1Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor u. 40, H-7400 Kaposvár, Hungary
| | - István Anton
- 1Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor u. 40, H-7400 Kaposvár, Hungary
| |
Collapse
|
6
|
Erkoreka L, Zumarraga M, Arrue A, Zamalloa MI, Arnaiz A, Olivas O, Moreno-Calle T, Saez E, Garcia J, Marin E, Varela N, Gonzalez-Pinto A, Basterreche N. Genetics of adult attachment: An updated review of the literature. World J Psychiatry 2021; 11:530-542. [PMID: 34631458 PMCID: PMC8474999 DOI: 10.5498/wjp.v11.i9.530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Attachment style, which has been theorized to be rooted in childhood bonding experiences, influences adult cognitive, emotional and interpersonal functioning. Despite its relationship with early experiences, research indicates that the continuity of attachment style across childhood and adulthood is only partial, being a malleable tendency that is shaped throughout development, with an increasing influence of genetics, as it occurs in other cognitive and behavioral phenotypes. Genetic research indicates that up to 45% of the variability in anxious and 39% in avoidant adult attachment style could be explained by genetic causes, but the precise mechanisms remain unclear. A narrative review is conducted analyzing the existing literature regarding the implication of candidate genes related to oxytocin, dopaminergic pathways, serotonergic pathways and brain-derived neurotrophic factor in adult attachment, with both vulnerability and differential susceptibility approaches, yielding mixed results. We highlight the lack of genome-wide studies and the scarcity of epigenetic investigation. Based on the existing data, we conclude that the genetics of adult attachment is an area that requires further research to clarify its etiological role and that it should be preferably approached as an interaction between nature and nurture.
Collapse
Affiliation(s)
- Leire Erkoreka
- Department of Psychiatry, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao 48960, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Mercedes Zumarraga
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurochemical Research, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Barakaldo 48903, Spain
| | - Aurora Arrue
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurochemical Research, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Barakaldo 48903, Spain
| | - M Isabel Zamalloa
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurochemical Research, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Barakaldo 48903, Spain
| | - Ainara Arnaiz
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Erandio Mental Health Center, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Erandio 48950, Spain
| | - Olga Olivas
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Zaldibar Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zaldibar 48250, Spain
| | - Teresa Moreno-Calle
- Department of Psychiatry, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao 48960, Spain
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Estela Saez
- Department of Psychiatry, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao 48960, Spain
| | - Jon Garcia
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zamudio 48170, Spain
| | - Elena Marin
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Bermeo Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Bermeo 48370, Spain
| | - Noemi Varela
- Grupo Red de Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zamudio 48170, Spain
| | - Ana Gonzalez-Pinto
- Department of Psychiatry, BioAraba Research Institute, Araba University Hospital, University of the Basque Country (UPV/EHU), CIBERSAM, Vitoria-Gasteiz 01004, Spain
| | - Nieves Basterreche
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza Basque Health Service, Zamudio 48170, Spain
- Grupo de investigación integradora en Salud Mental, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| |
Collapse
|
7
|
The effect of negative life events on college students’ depression: the mediating role of internet addiction and the moderating role of 5-HTT1A gene rs6449693 polymorphism. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Terock J, Weihs A, Teumer A, Klinger-König J, Janowitz D, Grabe HJ. Associations and interactions of the serotonin receptor genes 5-HT1A, 5-HT2A, and childhood trauma with alexithymia in two independent general-population samples. Psychiatry Res 2021; 298:113783. [PMID: 33567384 DOI: 10.1016/j.psychres.2021.113783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
Previous studies suggested that childhood trauma and a disturbed serotonergic neurotransmission are involved in the pathogenesis of alexithymia. Specifically, genetic polymorphisms of the serotonin receptors 5-HT1A and 5-HT2A were found to be associated with alexithymia. However, it is unclear whether these factors show main or interaction effects with childhood trauma on alexithymia. Data from two independent general-population cohorts of the Study of Health in Pomerania (SHIP-Trend: N=3,706, Age: range=20-83, 51.6% female, SHIP-LEGEND: N=2,162, Age: range=20-80, 52.5% female) were used. The Toronto Alexithymia Scale-20 (TAS-20) and the Childhood Trauma Questionnaire (CTQ) were applied. Genotypes of rs6295 of 5-HT1A and rs6311 of 5-HT2A were determined. Ordinary least-squared regression models with robust standard errors were applied to investigate associations of the main and interaction effects of childhood maltreatment and the polymorphisms with alexithymia. Childhood trauma, but none of the investigated polymorphisms showed main effects on alexithymia. However, childhood trauma showed significant CTQ sum score x rs6295 interactions in male subjects in both samples such that the presence of the G-allele diminished the CTQ associated increase in the TAS-20 sum scores. Our results support a strong role of early life stress and interactions with rs6295 on alexithymic personality features at least in male subjects.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany.
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany
| |
Collapse
|
9
|
Avram M, Rogg H, Korda A, Andreou C, Müller F, Borgwardt S. Bridging the Gap? Altered Thalamocortical Connectivity in Psychotic and Psychedelic States. Front Psychiatry 2021; 12:706017. [PMID: 34721097 PMCID: PMC8548726 DOI: 10.3389/fpsyt.2021.706017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Psychiatry has a well-established tradition of comparing drug-induced experiences to psychotic symptoms, based on shared phenomena such as altered perceptions. The present review focuses on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations). Herein we refer to such experiences as psychedelic states. Psychosis is a clinical syndrome defined by impaired reality testing, also characterized by impaired neurocognitive processes (e.g., hallucinations and delusions). In this review we refer to acute phases of psychotic disorders as psychotic states. Neuropharmacological investigations have begun to characterize the neurobiological mechanisms underpinning the shared and distinct neurophysiological changes observed in psychedelic and psychotic states. Mounting evidence indicates changes in thalamic filtering, along with disturbances in cortico-striato-pallido-thalamo-cortical (CSPTC)-circuitry, in both altered states. Notably, alterations in thalamocortical functional connectivity were reported by functional magnetic resonance imaging (fMRI) studies. Thalamocortical dysconnectivity and its clinical relevance are well-characterized in psychotic states, particularly in schizophrenia research. Specifically, studies report hyperconnectivity between the thalamus and sensorimotor cortices and hypoconnectivity between the thalamus and prefrontal cortices, associated with patients' psychotic symptoms and cognitive disturbances, respectively. Intriguingly, studies also report hyperconnectivity between the thalamus and sensorimotor cortices in psychedelic states, correlating with altered visual and auditory perceptions. Taken together, the two altered states appear to share clinically and functionally relevant dysconnectivity patterns. In this review we discuss recent findings of thalamocortical dysconnectivity, its putative extension to CSPTC circuitry, along with its clinical implications and future directions.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Helena Rogg
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|
11
|
McGowan OO. Pharmacogenetics of anxiety disorders. Neurosci Lett 2020; 726:134443. [PMID: 31442515 DOI: 10.1016/j.neulet.2019.134443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are common and disabling conditions the treatment of which remains a challenge. While different groups of medication are available for their treatment, a substantial proportion of patients remain refractory to pharmacotherapy. The reason for this variation in the individual response to treatment has yet to be understood; however genetic factors have been shown to play an important role. Up to now there have been limited publications about pharmacogenetics of anxiety disorders, compared to studies in depression. Published studies are focused on pharmacogenetics of antidepressants rather than being disease specific. This review summarizes pharmacogenetic findings related to the anxiolytic treatment response and their possible functional mechanisms. This inevitably focuses on genes involved in the pharmacodynamics of the medications used, along with some genes implicated in the disease process, as well as briefly mentioning genetic factors associated with psychotherapeutic response.
Collapse
Affiliation(s)
- O O McGowan
- Leverndale Hospital, 510 Crookston Road, Glasgow G53 7TU, UK.
| |
Collapse
|
12
|
Yoshikawa A, Li J, Meltzer HY. A functional HTR1A polymorphism, rs6295, predicts short-term response to lurasidone: confirmation with meta-analysis of other antipsychotic drugs. THE PHARMACOGENOMICS JOURNAL 2019; 20:260-270. [PMID: 31636356 DOI: 10.1038/s41397-019-0101-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Stimulation of the serotonin (5-HT)1A receptor (HTR1A) has been shown to contribute to the mechanism of action of some atypical antipsychotic drugs (APDs), including clozapine and lurasidone. A meta-analysis of rs6295, a functional polymorphism located at the promoter region of HTR1A, showed association with clinical response in schizophrenic patients treated with atypical APD. We have now tested whether other SNPs related to rs6295 predict response to lurasidone. We first evaluated whether rs358532 and rs6449693, tag SNPs for rs6295, predicted response to lurasidone, using data from two clinical trials of acutely psychotic schizophrenia patients with European (EUR, n = 171) or African (AFR, n = 131) ancestry; we then determined if those findings could be replicated in a third trial of lurasidone of similar design. Weekly changes (up to 6 weeks) in the Positive and Negative Syndrome Scale (PANSS) Total score and its five subscales were used to assess response. In EUR, a significant association, or trends for association, were observed for PANSS Total (p = 0.035), positive (p = 0.039), negative (p = 0.004), and disorganization (p = 0.0087) subscales, at week 1-6. There was a trend for replication with PANNS Total (p = 0.036) in the third trial. No significant association was observed in AFR or the placebo group. Meta-analysis of five studies, including the three with lurasidone, showed that rs6295 was associated with improvement in positive (p = 0.023) and negative (p ≤ 0.0001) symptoms in EUR patients with schizophrenia. This is the first study to show a significant association between functional HTR1A polymorphisms and treatment response to lurasidone. The meta-analysis provides additional evidence that rs6295 could be a race-dependent biomarker for predicting treatment response to APDs in schizophrenic patients with European Ancestry.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, 60611, USA.,Schizophrenia Project, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, 156-8506, Japan
| | - Jiang Li
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Cunningham AM, Santos TL, Gutzeit VA, Hamilton H, Hen R, Donaldson ZR. Functional Interrogation of a Depression-Related Serotonergic Single Nucleotide Polymorphism, rs6295, Using a Humanized Mouse Model. ACS Chem Neurosci 2019; 10:3197-3206. [PMID: 30694044 DOI: 10.1021/acschemneuro.8b00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The serotonin 1A receptor (5-HT1A) system has been extensively implicated in modulating mood and behavior. Notably, 5-HT1A levels in humans display remarkable variation, and differences in receptor levels have been linked with a variety of psychiatric disorders. Further, reduction of receptor levels by 30-50% in mice suggests that changes in receptor levels that model existing human variation are sufficient to drive behavioral alterations. As a result, genetic mechanisms that modulate human 5-HT1A levels may be important for explaining individual differences in mood and behavior, representing a potential source of psychiatric disease risk. One common genetic variant implicated in differential 5-HT1A levels is the G/C single nucleotide polymorphism (SNP) rs6295, located upstream of the human 5-HT1A gene. This SNP differentially binds the transcription factor, NUDR/Deaf1, leading to cell-type specific effects on transcription in vitro. To investigate the direct effects of this SNP in the heterogeneous cellular context of the brain, we generated humanized transgenic mice using a design that maximized the local transcriptional landscape of the human HTR1A gene while also controlling for effects of genomic insertion location. We integrated a 180 kb human bacteria artificial chromosome (BAC) transgene containing G- and C-alleles of rs6295 flanked by FRT or loxP sites. Subsequent deletion of each allele by Cre- or Flp-recombinase resulted in rs6295G and C alleles in the same genomic location. These alleles were bred onto a 5-HT1A null mouse such that the human BAC was the sole source of 5-HT1A in these mice. We generated three separate lines, two of which had detectable human 5-HT1A levels in the brain, although none displayed expression in the raphe. Of these, one line exhibited rs6295-dependent differences in 5-HT1A levels and differences in behavior, even though the overall levels were considerably lower than native expression levels. The line-dependent effect of rs6295 on protein levels and behavior may depend upon differences in background genetic factors or different insertion sites across each line. This work confirms that relatively subtle differences in 5-HT1A levels can contribute to differences in behavior and highlights the challenges of modeling human noncoding genetic variation in mice.
Collapse
Affiliation(s)
- Ashley M. Cunningham
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
- Departments of Molecular, Cellular, and Developmental Biology and Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Tabia L. Santos
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
| | - Vanessa A. Gutzeit
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
| | - Heather Hamilton
- Departments of Molecular, Cellular, and Developmental Biology and Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - René Hen
- Division of Integrative Neuroscience, New York State Psychiatric Institute and Columbia University, New York, New York 10032, United States
| | - Zoe R. Donaldson
- Departments of Molecular, Cellular, and Developmental Biology and Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Besagar S, Radabaugh HL, Bleimeister IH, Meyer EA, Niesman PJ, Cheng JP, Bondi CO, Kline AE. Aripiprazole and environmental enrichment independently improve functional outcome after cortical impact injury in adult male rats, but their combination does not yield additional benefits. Exp Neurol 2019; 314:67-73. [PMID: 30659800 DOI: 10.1016/j.expneurol.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
Typical antipsychotic drugs (APDs) with D2antagonistic properties impede functional outcome after experimental traumatic brain injury (TBI) and reduce the effectiveness of environmental enrichment (EE). Here we test the hypothesis that aripiprazole (ARIP), an atypical APD with partial D2and 5-HT1Areceptor agonist activities will improve recovery after TBI and when combined with EE will further enhance the benefits. Anesthetized adult male rats received either a controlled cortical impact of moderate severity or sham injury and then were randomly assigned to EE or standard (STD) housing and once daily intraperitoneal injections of ARIP (0.1 mg/kg) or vehicle (VEH; 1.0 mL/kg) beginning 24 h after injury for 19 days. Motor (beam-walking time and beam-walk score) and cognitive (acquisition of spatial learning and memory) outcomes were assessed on post-operative days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 21. There were no statistical differences among the sham groups, regardless of housing or treatment, so the data were pooled. The SHAM group performed better than all TBI groups on motor and spatial learning (p < 0.05) but did not differ from either EE group on memory retention. Regarding TBI, both EE groups improved motor and cognitive outcomes vs. the VEH-treated STD group (p < 0.05) but did not differ from one another (p > 0.05). The ARIP-treated STD group performed better than the VEH-treated STD group on beam-walk score and spatial learning (p < 0.05), but not beam-walking time or memory retention (p > 0.05). Cortical lesion volume was smaller in all treated groups compared to the TBI + STD + VEH group (p < 0.05). The data replicate previous work and extend the findings by demonstrating that 1) ARIP promotes recovery after TBI, but combining treatments does not yield additional benefits, which is contrary to the hypothesis, and 2) unlike APDs that exhibit D2 receptor antagonism, ARIP does not impede rehabilitation (i.e., EE).
Collapse
Affiliation(s)
- Sonya Besagar
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Isabel H Bleimeister
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Elizabeth A Meyer
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Peter J Niesman
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
15
|
Abstract
BACKGROUND While extensive literature on the role of the serotonin receptor 1A (5-HT1A-R) in cognition exists, the findings are largely from animal studies. There has been little research conducted into 5-HT1A-R genotypes and cognitive function in humans. This article evaluates the role of 5-HT1A-R genotypes on the profile of cognitive function in patients with major depressive disorder (MDD). METHODS The study sample was 455 MDD patients aged between 18 and 55 years. They had enrolled into a clinical trial and were tested prior to dosing on the baseline study day using the CDR System, an integrated set of 3 attention tests, 2 working memory tests, and 4 episodic memory tests. 5-HT1A-R genotyping for (SNP ID rs6295) had been conducted during the study screening period. RESULTS Validated factor scores were derived from the 9 tests. It was found that patients with the C/C genotype for the C(1019)G polymorphism of the 5-HT1A-R were significantly superior in retaining and retrieving information, in both working and episodic memory, than those with either the C/G or the G/G genotypes. No differences were found in measures of attention or in the speed of retrieval of information from memory. CONCLUSIONS This is, to our knowledge, the first relationship found between objective tests of cognitive function and 5-HT1A-R genotypes in MDD.
Collapse
|
16
|
Abstract
The study of pharmacogenomics is rapidly growing, particularly in the field of mental health. Understanding pharmacogenomic principles can be a challenge for many clinicians. Most mental health genomic data concentrates on variability (response, side effects) with antidepressants and atypical antipsychotics. Current pharmacogenomic practice and research primarily focuses on two areas: pharmacodynamics and pharmacokinetics. Based on the current literature, genetic polymorphisms of pharmacodynamics and pharmacokinetics parameters likely influence medication efficacy, therefore affecting the therapeutic benefit. Additionally, certain pharmacodynamic and pharmacokinetic polymorphisms have been linked to an elevated risk of side effects and adverse events with these medications. In this review, specific pharmacodynamic and pharmacokinetic polymorphisms related to antidepressants and atypical antipsychotics will be discussed, as well as the potential clinical effect these genomic abnormalities have within psychiatric care.
Collapse
Affiliation(s)
- Jonathan F Lister
- PGY2 Psychiatric Pharmacy Resident, Veterans Affairs Tennessee Valley Healthcare System, Murfreesboro, Tennessee,
| |
Collapse
|
17
|
Dong ZQ, Li XR, He L, He G, Yu T, Sun XL. 5-HTR1A and 5-HTR2A genetic polymorphisms and SSRI antidepressant response in depressive Chinese patients. Neuropsychiatr Dis Treat 2016; 12:1623-9. [PMID: 27445478 PMCID: PMC4938133 DOI: 10.2147/ndt.s93562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Genetic variabilities within the serotoninergic system may predict response or remission to antidepressant drugs. Several serotonin receptor (5-HTR) gene polymorphisms have been associated with susceptibility to psychiatric diseases. In this study, we analyzed the correlation between 5-HTR1A and 5-HTR2A polymorphisms and response or remission to selective serotonin reuptake inhibitors (SSRIs) drugs. METHODS Two hundred and ninety patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for major depressive disorder were involved in this study. SSRIs (fluoxetine, paroxetine, citalopram, or sertraline) were selected randomly for treatment. The Hamilton Rating Scale for Depression was used to evaluate the antidepressant effect. To assess 5-HTR gene variabilities, two single-nucleotide polymorphisms in 5-HTR1A (rs1364043 and rs10042486) and three in 5-HTR2A (rs6311, rs6313, and rs17289304) were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the Sequenom MassARRAY Analyzer 4 system. RESULTS There were 220 responders and 70 nonresponders (120 remissioners and 170 nonremissioners) after 6 weeks of treatment. We found no association between any of the five 5-HTR1A and 5-HTR2A gene polymorphisms and antidepressant drug response or remission (P>0.05). It is worth mentioning that TT genotype frequency of rs10042486 was significantly different from the CT genotype frequency between responders and nonresponders, although the significance was not maintained after correcting for multiple testing. CONCLUSION Thus, 5-HTR1A and 5-HTR2A gene polymorphisms may not play an important role in antidepressant drug response or remission.
Collapse
Affiliation(s)
- Zai-Quan Dong
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Xi-Rong Li
- Mental Health Center, First Affiliated Hospital, Chongqing Medical University, Chongqing
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xue-Li Sun
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan
| |
Collapse
|
18
|
Hori Y, Tozaki T, Nambo Y, Sato F, Ishimaru M, Inoue-Murayama M, Fujita K. Evidence for the effect of serotonin receptor 1A gene (HTR1A
) polymorphism on tractability in Thoroughbred horses. Anim Genet 2015; 47:62-7. [DOI: 10.1111/age.12384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Hori
- Department of Psychology; Graduate School of Letters; Kyoto University; Yoshida-honmachi Sakyo Kyoto 606-8501 Japan
- Japan Society for the Promotion of Science; Kojimachi Business Center Building; 5-3-1 Kojimachi Chiyoda-ku Tokyo 102-0083 Japan
| | - T. Tozaki
- Genetic Analysis Department; Laboratory of Racing Chemistry; 1731-2 Tsurutamachi Utsunomiya Tochigi 320-0851 Japan
| | - Y. Nambo
- Department of Clinical Veterinary Science; Obihiro University of Agriculture and Veterinary Medicine; 2-11 Inada-cho Obihiro Hokkaido 080-8555 Japan
| | - F. Sato
- Hidaka Training and Research Center; Japan Racing Association; 535-13 Nishicha Urakawa Hokkaido 057-0171 Japan
| | - M. Ishimaru
- Hidaka Training and Research Center; Japan Racing Association; 535-13 Nishicha Urakawa Hokkaido 057-0171 Japan
| | - M. Inoue-Murayama
- Wildlife Research Center; Kyoto University; 2-24 Tanaka-Sekiden-cho Sakyo Kyoto 606-8203 Japan
- Wildlife Genome Collaborative Research Group; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - K. Fujita
- Department of Psychology; Graduate School of Letters; Kyoto University; Yoshida-honmachi Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
19
|
Genetic Variations in the Serotonergic System Mediate a Combined, Weakened Response to SSRI Treatment: A Proposed Model. eNeuro 2015; 2:eN-TNC-0032-14. [PMID: 26464988 PMCID: PMC4586934 DOI: 10.1523/eneuro.0032-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022] Open
Abstract
Individuals with the short (S) allele in the promoter region of the serotonin transporter gene (5-HTTLPR) show a less favorable response to selective serotonin reuptake inhibitor (SSRI) treatment than individuals with the long (L) allele. Similarly, individuals with the C(-1019)G allele for the mutation found in the promoter region of the serotonin 1A receptor gene (5-HTR1A) have shown blunted responses to SSRI treatment when compared with individuals lacking this polymorphism. While these findings have been replicated across multiple studies, only two studies to date have reported data for a gene-gene interaction associated with response to SSRI treatment. Both of these studies reported a combined effect for these genotypes, with individuals homozygous for the L allele and the C allele (5-HTT(L/L)-1A(C/C)) reporting the most favorable response to SSRI treatment, and individuals homozygous for the S allele and the G allele (5-HTT(S/S)-1A(G/G)) reporting the least favorable response to SSRI treatment. Additionally, no neural mechanisms have been proposed to explain why this gene-gene interaction has been observed. To that end, this article provides a review of the relevant literature associated with these polymorphisms and proposes a feasible model that describes a genotype-dependent modulation of postsynaptic serotonin signaling associated with the 5-HTT and 5-HTR1A genes.
Collapse
|
20
|
Bosia M, Lorenzi C, Pirovano A, Guglielmino C, Cocchi F, Spangaro M, Bramanti P, Smeraldi E, Cavallaro R. COMT Val158Met and 5-HT1A-R -1019 C/G polymorphisms: effects on the negative symptom response to clozapine. Pharmacogenomics 2015; 16:35-44. [DOI: 10.2217/pgs.14.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Clozapine is still considered the gold standard for treatment-resistant schizophrenia patients; however, up to 40% of patients do not respond adequately. Identifying potential predictors of clinical response to this last-line antipsychotic could represent an important goal for treatment. Among these, functional polymorphisms involved in dopamine system modulation, known to be disrupted in schizophrenia, may play a role. We examined the COMT Val158Met polymorphism, which plays a key role in dopamine regulation at the prefrontal level, and the 5-HT1A-R -1019 C/G polymorphism, a target of clozapine activity involved in the interaction between the serotonin and dopamine systems. Materials & methods: 107 neuroleptic-refractory, biologically unrelated Italian patients (70 males and 37 females) with a DSM-IV diagnosis of schizophrenia who were being treated with clozapine were recruited. Psychopathology was assessed by the Positive and Negative Symptoms Scale (PANSS) at the beginning of treatment, and at weeks 8 and 12. Genomic DNA was extracted from venous blood samples. COMT rs4680 (Val158Met) and 5-HT1A-R rs6295 (-1019 C/G) polymorphisms were analyzed by PCR-based restriction fragment length and direct sequencing, respectively. Results: We found a significant effect of COMT and 5-HT1A-R on the PANSS Negative Subscale variation, with greater improvement among COMT Val/Val and 5-HT1A-R G/G subjects. Conclusion: The findings support the hypothesis that COMT rs4680 and 5-HT1A-R rs6295 polymorphisms could influence the negative symptom response to clozapine, probably through modulation of the dopaminergic system. Original submitted 26 February 2014; Revision submitted 15 October 2014
Collapse
Affiliation(s)
- Marta Bosia
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
- Center for Neurolinguistics & Theoretical Syntax (NeTS), Institute for Advanced Study, (IUSS), Pavia, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| | | | - Carmelo Guglielmino
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Enrico Smeraldi
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, I.R.C.C.S. San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77:654-72. [PMID: 24354796 DOI: 10.1111/bcp.12312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/18/2013] [Indexed: 12/15/2022] Open
Abstract
The treatment of severe mental illness, and of psychiatric disorders in general, is limited in its efficacy and tolerability. There appear to be substantial interindividual differences in response to psychiatric drug treatments that are generally far greater than the differences between individual drugs; likewise, the occurrence of adverse effects also varies profoundly between individuals. These differences are thought to reflect, at least in part, genetic variability. The action of psychiatric drugs primarily involves effects on synaptic neurotransmission; the genes for neurotransmitter receptors and transporters have provided strong candidates in pharmacogenetic research in psychiatry. This paper reviews some aspects of the pharmacogenetics of neurotransmitter receptors and transporters in the treatment of psychiatric disorders. A focus on serotonin, catecholamines and amino acid transmitter systems reflects the direction of research efforts, while relevant results from some genome-wide association studies are also presented. There are many inconsistencies, particularly between candidate gene and genome-wide association studies. However, some consistency is seen in candidate gene studies supporting established pharmacological mechanisms of antipsychotic and antidepressant response with associations of functional genetic polymorphisms in, respectively, the dopamine D2 receptor and serotonin transporter and receptors. More recently identified effects of genes related to amino acid neurotransmission on the outcome of treatment of schizophrenia, bipolar illness or depression reflect the growing understanding of the roles of glutamate and γ-aminobutyric acid dysfunction in severe mental illness. A complete understanding of psychiatric pharmacogenomics will also need to take into account epigenetic factors, such as DNA methylation, that influence individual responses to drugs.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | |
Collapse
|
22
|
Gong P, Liu J, Li S, Zhou X. Serotonin receptor gene (5-HT1A) modulates alexithymic characteristics and attachment orientation. Psychoneuroendocrinology 2014; 50:274-9. [PMID: 25247748 DOI: 10.1016/j.psyneuen.2014.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/06/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022]
Abstract
Previous studies have indicated that alexithymia is associated with the availability of serotonin in the brain and with the insecure attachment orientation. Inspired by the finding that the receptor 5-HT1A modulates the level of serotonin in the brain, this study investigated to what extent a polymorphism (C-1019G, rs6295) of 5-HT1A gene modulates individuals' alexithymic characteristics and attachment orientation in 504 Chinese Han people. Results showed significantly higher total scores on the 20-item Toronto Alexithymia Scale (TAS-20) for individuals carrying the CG/GG genotype than for individuals carrying the CC genotype. Specifically, individuals with the CG/GG genotype reported greater difficulty in identifying own feelings than individuals with the CC genotype. Results also showed that individuals carrying the CG/GG genotype seemed to be less comfortable with having close relationships to others than individuals with the CC genotype. These findings provide the first evidence for the link between 5-HT1A and the development of alexithymic characteristics and attachment orientation.
Collapse
Affiliation(s)
- Pingyuan Gong
- Center for Brain and Cognitive Sciences and Department of Psychology, Peking University, Beijing 100871, China; Laboratory of Medical Molecular Biology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jinting Liu
- Center for Brain and Cognitive Sciences and Department of Psychology, Peking University, Beijing 100871, China
| | - She Li
- Laboratory of Medical Molecular Biology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaolin Zhou
- Center for Brain and Cognitive Sciences and Department of Psychology, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Olivier JDA, Vinkers CH, Olivier B. The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Front Pharmacol 2013; 4:74. [PMID: 23781201 PMCID: PMC3677985 DOI: 10.3389/fphar.2013.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence that genetic factors play an important role in anxiety disorders. In support, human genome-wide association studies have implicated several novel candidate genes. However, illumination of such genetic factors involved in anxiety disorders has not resulted in novel drugs over the past decades. A complicating factor is the heterogeneous classification of anxiety disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) and diverging operationalization of anxiety used in preclinical and clinical studies. Currently, there is an increasing focus on the gene × environment (G × E) interaction in anxiety as genes do not operate in isolation and environmental factors have been found to significantly contribute to the development of anxiety disorders in at-risk individuals. Nevertheless, extensive research on G × E mechanisms in anxiety has not resulted in major breakthroughs in drug discovery. Modification of individual genes in rodent models has enabled the specific study of anxiety in preclinical studies. In this context, two extensively studied neurotransmitters involved in anxiety are the gamma-aminobutyric acid (GABA) and 5-HT (5-hydroxytryptamine) system. In this review, we illustrate the complex interplay between genes and environment in anxiety processes by reviewing preclinical and clinical studies on the serotonin transporter (5-HTT), 5-HT1A receptor, 5-HT2 receptor, and GABAA receptor. Even though targets from the serotonin and GABA system have yielded drugs with known anxiolytic efficacy, the relation between the genetic background of these targets and anxiety symptoms and development of anxiety disorders is largely unknown. The aim of this review is to show the vast complexity of genetic and environmental factors in anxiety disorders. In light of the difficulty with which common genetic variants are identified in anxiety disorders, animal models with translational validity may aid in elucidating the neurobiological background of these genes and their possible role in anxiety. We argue that, in addition to human genetic studies, translational models are essential to map anxiety-related genes and to enhance our understanding of anxiety disorders in order to develop potentially novel treatment strategies.
Collapse
Affiliation(s)
- Jocelien D A Olivier
- Department of, Women's and Children's Health, Uppsala University Uppsala, Sweden ; Center for Gender Medicine, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Kumar JSD, Parsey RV, Kassir SA, Majo VJ, Milak MS, Prabhakaran J, Simpson NR, Underwood MD, Mann JJ, Arango V. Autoradiographic evaluation of [3H]CUMI-101, a novel, selective 5-HT1AR ligand in human and baboon brain. Brain Res 2013; 1507:11-8. [PMID: 23454434 DOI: 10.1016/j.brainres.2013.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 01/01/2023]
Abstract
[11C]CUMI-101 is the first selective serotonin receptor (5-HT1AR) partial agonist radiotracer for positron emission tomography (PET) tested in vivo in nonhuman primates and humans. We evaluated specific binding of [3H]CUMI-101 by quantitative autoradiography studies in postmortem baboon and human brain sections using the 5-HT1AR antagonist WAY-100635 as a displacer. The regional and laminar distributions of [3H]CUMI-101 binding in baboon and human brain sections matched the known distribution of [3H]8-OH-DPAT and [3H]WAY-100635. Prazosin did not measurably displace [3H]CUMI-101 binding in baboon or human brain sections, thereby ruling out [3H]CUMI-101 binding to α1-adrenergic receptors. This study demonstrates that [11C]CUMI-101 is a selective 5-HT1AR ligand for in vivo and in vitro studies in baboon and human brain.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
26
|
Williams SK, Lauder JM, Johns JM. Prenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure. Curr Neuropharmacol 2011; 9:478-511. [PMID: 22379462 PMCID: PMC3151602 DOI: 10.2174/157015911796557957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 02/06/2023] Open
Abstract
Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin system unclear. In order to understand the role of the serotonin transporter in cocaine's effect on the serotonergic system, we compare reports concerning PC and prenatal antidepressant exposure and conclude that PC exposure affects many facets of serotonergic signaling (serotonin levels, receptors, transporters) and that these effects differ significantly from what is observed following prenatal SSRI exposure. Alterations in serotonergic signaling are dependent on timing of exposure, test regimens, and sex. Following PC exposure, behavioral disturbances are observed in attention, emotional behavior and stress response, aggression, social behavior, communication, and like changes in serotonergic signaling, these effects depend on sex, age and developmental exposure. Vulnerability to the effects of PC exposure can be mediated by several factors, including allelic variance in serotonergic signaling genes, being male (although fewer studies have investigated female offspring), and experiencing the adverse early environments that are commonly coincident with maternal drug use. Early environmental stress results in disruptions in serotonergic signaling analogous to those observed with PC exposure and these may interact to produce greater behavioral effects observed in children of drug-abusing mothers. We conclude that based on past evidence, future studies should put a greater emphasis on including females and monitoring environmental factors when studying the impact of PC exposure.
Collapse
Affiliation(s)
- Sarah K Williams
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jean M Lauder
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josephine M Johns
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Beste C, Domschke K, Radenz B, Falkenstein M, Konrad C. The functional 5-HT1A receptor polymorphism affects response inhibition processes in a context-dependent manner. Neuropsychologia 2011; 49:2664-72. [DOI: 10.1016/j.neuropsychologia.2011.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/02/2011] [Accepted: 05/19/2011] [Indexed: 11/16/2022]
|
28
|
Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A. Pharmacogenetics of antidepressants. Front Pharmacol 2011; 2:6. [PMID: 21687501 PMCID: PMC3108562 DOI: 10.3389/fphar.2011.00006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/04/2011] [Indexed: 12/28/2022] Open
Abstract
Up to 60% of depressed patients do not respond completely to antidepressants (ADs) and up to 30% do not respond at all. Genetic factors contribute for about 50% of the AD response. During the recent years the possible influence of a set of candidate genes as genetic predictors of AD response efficacy was investigated by us and others. They include the cytochrome P450 superfamily, the P-glycoprotein (ABCB1), the tryptophan hydroxylase, the catechol-O-methyltransferase, the monoamine oxidase A, the serotonin transporter (5-HTTLPR), the norepinephrine transporter, the dopamine transporter, variants in the 5-hydroxytryptamine receptors (5-HT1A, 5-HT2A, 5-HT3A, 5-HT3B, and 5-HT6), adrenoreceptor beta-1 and alpha-2, the dopamine receptors (D2), the G protein beta 3 subunit, the corticotropin releasing hormone receptors (CRHR1 and CRHR2), the glucocorticoid receptors, the c-AMP response-element binding, and the brain-derived neurotrophic factor. Marginal associations were reported for angiotensin I converting enzyme, circadian locomotor output cycles kaput protein, glutamatergic system, nitric oxide synthase, and interleukin 1-beta gene. In conclusion, gene variants seem to influence human behavior, liability to disorders and treatment response. Nonetheless, gene × environment interactions have been hypothesized to modulate several of these effects.
Collapse
|
29
|
Brezo J, Bureau A, Mérette C, Jomphe V, Barker ED, Vitaro F, Hébert M, Carbonneau R, Tremblay RE, Turecki G. Differences and similarities in the serotonergic diathesis for suicide attempts and mood disorders: a 22-year longitudinal gene-environment study. Mol Psychiatry 2010; 15:831-43. [PMID: 19381154 DOI: 10.1038/mp.2009.19] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate similarities and differences in the serotonergic diathesis for mood disorders and suicide attempts, we conducted a study in a cohort followed longitudinally for 22 years. A total of 1255 members of this cohort, which is representative of the French-speaking population of Quebec, were investigated. Main outcome measures included (1) mood disorders (bipolar disorder and major depression) and suicide attempts by early adulthood; (2) odds ratios and probabilities associated with 143 single nucleotide polymorphisms in 11 serotonergic genes, acting directly or as moderators in gene-environment interactions with childhood sexual or childhood physical abuse (CPA), and in gene-gene interactions; (3) regression coefficients for putative endophenotypes for mood disorders (childhood anxiousness) and suicide attempts (childhood disruptiveness). Five genes showed significant adjusted effects (HTR2A, TPH1, HTR5A, SLC6A4 and HTR1A). Of these, HTR2A variation influenced both suicide attempts and mood disorders, although through different mechanisms. In suicide attempts, HTR2A variants (rs6561333, rs7997012 and rs1885884) were involved through interactions with histories of sexual and physical abuse whereas in mood disorders through one main effect (rs9316235). In terms of phenotype-specific contributions, TPH1 variation (rs10488683) was relevant only in the diathesis for suicide attempts. Three genes contributed exclusively to mood disorders, one through a main effect (HTR5A (rs1657268)) and two through gene-environment interactions with CPA (HTR1A (rs878567) and SLC6A4 (rs3794808)). Childhood anxiousness did not mediate the effects of HTR2A and HTR5A on mood disorders, nor did childhood disruptiveness mediate the effects of TPH1 on suicide attempts. Of the serotonergic genes implicated in mood disorders and suicidal behaviors, four exhibited phenotype-specific effects, suggesting that despite their high concordance and common genetic determinants, suicide attempts and mood disorders may also have partially independent etiological pathways. To identify where these pathways diverge, we need to understand the differential, phenotype-specific gene-environment interactions such as the ones observed in the present study, using suitably powered samples.
Collapse
Affiliation(s)
- J Brezo
- The McGill Group for Suicide Studies, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Choi WS, Lee BH, Yang JC, Kim YK. Association Study between 5-HT1A Receptor Gene C(-1019)G Polymorphism and Panic Disorder in a Korean Population. Psychiatry Investig 2010; 7:141-6. [PMID: 20577624 PMCID: PMC2890869 DOI: 10.4306/pi.2010.7.2.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Serotonergic dysfunction is quite evident in panic disorder. We investigated whether the C(-1019)G polymorphism of 5-HT1A receptor gene may play a role in the pathogenesis of panic disorder in a Korean population. METHODS The 5-HT1A receptor genotype for the single nucleotide polymorphism (SNP) C(-1019)G was analyzed in 94 patients and 111 healthy controls. The severity of the patients' symptoms was examined using the Spielberger State-Trait Anxiety Inventory (STAI), Panic Disorder Severity Scale (PDSS), Anxiety sensitivity index (ASI), Acute Panic Inventory (API) and Hamilton's Rating Scale for Anxiety (HAM-A). RESULTS The distribution of the genotypes of the C/G polymorphism did not differ significantly from those predicted by Hardy-Weinberg equilibrium in patients as well as the controls. No association between the C(-1019)G polymorphism and panic disorder was detected in either the allele frequency or genotype distribution. There was no significant association with genotype distribution in the panic disorder with agoraphobia. However, there was a significant difference of symptom severity between C/C, C/G, and G/G genotype or between C and G allele in panic disorder patients without agoraphobia. PDSS scores were significantly higher in subjects with the G/G genotype or with G allele in patients without agoraphobia, not in total patients or patients with agoraphobia. CONCLUSION Although there were no significant differences in the genotype and allele distributions, we found a significant association between panic symptom severity and the serotonin 1A receptor gene. This result suggests that the serotonin 1A receptor and serotonin may play a role in the pathogenesis of panic disorder.
Collapse
Affiliation(s)
- Won-Seok Choi
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Korea
| | - Bun-Hee Lee
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, College of Medicine, Chonbuk National University, Jeonju, Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Korea
- Division of Brain Korea 21 Biomedical Science, Korea University, Seoul, Korea
| |
Collapse
|
31
|
Sumiyoshi T, Tsunoda M, Higuchi Y, Itoh T, Seo T, Itoh H, Suzuki M, Kurachi M. Serotonin-1A receptor gene polymorphism and the ability of antipsychotic drugs to improve attention in schizophrenia. Adv Ther 2010; 27:307-13. [PMID: 20533011 DOI: 10.1007/s12325-010-0035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The purpose of this study was to determine if the functional single nucleotide polymorphisms of rs6259 C(-1019)G in the promoter region, which regulates serotonin 5-HT(1A) receptor transcription, affects the ability of antipsychotic drugs to improve attention in patients with schizophrenia. METHODS Subjects were neuroleptic-free and meeting DSM-IV-TR criteria for schizophrenia. Psychopathology and attention were evaluated with the Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS) at baseline and 3 months after treatment with atypical antipsychotic drugs (AAPDs). DNA was extracted from peripheral blood following standard procedures. Genotyping was performed with HS-Taq assay (LaboPass). RESULTS Data were available from 30 subjects (male/female=19/11), in which 17 had the CC genotype, three had the GG genotype, and 10 were heterozygous. The 3-month treatment with AAPDs was associated with significant improvements in positive and negative symptoms, but not attention as measured by SANS-Attention subscale in the entire subject group. There were no significant differences in the degree of improvements of SAPS and SANS scores between the CC genotype group and the (C/G plus G/G) combined group. On the other hand, improvement of attention was significantly greater for the former group compared to the latter group (P<0.016), suggesting a detrimental influence of the G-allele. CONCLUSION These results provide additional support to the role of 5-HT(1A) receptors in some of the cognitive disturbances of schizophrenia. Further studies with a larger number of subjects are warranted.
Collapse
Affiliation(s)
- Tomiki Sumiyoshi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 2010; 15:473-500. [PMID: 18982004 DOI: 10.1038/mp.2008.116] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This systematic review summarizes pharmacogenetic studies on antidepressant response and side effects. Out of the 17 genes we reviewed, 8 genes were entered into the meta-analysis (SLC6A4, HTR1A, HTR2A, TPH1, gene encoding the beta-3 subunit, brain-derived neurotrophic factor (BDNF), HTR3A and HTR3B). TPH1 218C/C genotype (7 studies, 754 subjects) was significantly associated with a better response (odds ratio, OR=1.62; P=0.005) with no heterogeneity between ethnicities. A better response was also observed in subjects with the Met variant within the BDNF 66Val/Met polymorphism (4 studies, 490 subjects; OR=1.63, P=0.02). Variable number of tandem repeats polymorphism within intron 2 (STin2) 12/12 genotype showed a trend toward a better response in Asians (STin2: 5 studies, 686 subjects; OR=3.89, P=0.03). As for side effects, pooled ORs of serotonin transporter gene promoter polymorphism (5-HTTLPR) l (9 studies, 2642 subjects) and HTR2A -1438G/G (7 studies, 801 subjects) were associated with a significant risk modulation (OR=0.64, P=0.0005) and (OR=1.91, P=0.0006), respectively. Interestingly, this significance became more robust when analyzed with side effect induced by selective serotonin reuptake inhibitors only (5-HTTLPR: P=0.0001, HTR2A: P<0.0001). No significant result could be observed for the other variants. These results were not corrected for multiple testing in each variant, phenotype and subcategory. This would have required a Bonferroni significance level of P<0.0023. Although some heterogeneity was present across studies, our finding suggests that 5-HTTLPR, STin2, HTR1A, HTR2A, TPH1 and BDNF may modulate antidepressant response.
Collapse
|
33
|
Willeit M, Praschak-Rieder N. Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: A review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. Neuroimage 2010; 53:878-92. [PMID: 20399868 DOI: 10.1016/j.neuroimage.2010.04.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 12/16/2022] Open
Abstract
Imaging genetics is a research field that describes the impact of genetic risk variants on brain structure and function. While magnetic resonance based imaging techniques are able to provide complex information on a system level, positron emission tomography (PET) and single photon emission computer tomography (SPECT) allow for determination of distribution and density of single receptor molecules in the human brain. Major psychiatric disorders are highly heritable, and have been associated with a dysregulation in brain dopamine and serotonin systems. Understanding the role of genetic polymorphisms within these neurotransmitter systems on brain phenotype is essential. This review tries to cover the literature on the impact of gene variants implicated in psychiatric disorders on serotonin, dopamine, and MAO-A radioligand binding in living humans. The majority of PET and SPECT studies investigated the role of polymorphisms within genes coding for the serotonin and dopamine transporters, the serotonin 1A receptor, and the dopamine D2 receptor on G protein coupled receptors or transporter proteins critically involved in serotonin or dopamine neurotransmission. Other studies investigated the impact of variants in genes for monoamine oxidase-A (MAO-A) or brain derived neurotrophic factor on monoamine transporters, receptors, or MAO-A activity. Two main findings in healthy subjects emerge from the current literature: one is an increased binding of the selective ligand [(11)C]DASB to serotonin transporters in subjects homozygous for the triallelic 5-HTTLPR LA allele. The other one is decreased binding of the radioligand [(11)C]raclopride to dopamine D2 receptors in D2 Taq1 A1 allele carriers. Other findings reported are highly interesting but require independent replication.
Collapse
Affiliation(s)
- Matthäus Willeit
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | | |
Collapse
|
34
|
Beste C, Domschke K, Falkenstein M, Konrad C. Differential modulations of response control processes by 5-HT1A gene variation. Neuroimage 2010; 50:764-71. [DOI: 10.1016/j.neuroimage.2009.11.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022] Open
|
35
|
Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C. Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum Brain Mapp 2010; 31:621-30. [PMID: 19780043 PMCID: PMC6870701 DOI: 10.1002/hbm.20892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/06/2009] [Accepted: 07/27/2009] [Indexed: 11/11/2022] Open
Abstract
Our study investigates the dependence of response monitoring and error detection on genetic influences modulating the serotonergic system. This was done using the event-related potentials (ERPs) after error (Ne/ERN) and correct trials (Nc/CRN). To induce a sufficient amount of errors, a standard flanker task was used. The subjects (N = 94) were genotyped for the functional 5-HT1A C(-1019)G polymorphism. The results show that the 5-HT1A C(-1019)G polymorphism specifically modulates error detection. Neurophysiological modulations on error detection were paralleled by a similar modulation of response slowing after an error, reflecting the behavioral adaptation. The 5-HT1A -1019 CC genotype group showed a larger Ne and stronger posterror slowing than the CG and GG genotype groups. More general processes of performance monitoring, as reflected in the Nc/CRN, were not affected. The finding that error-specific processes, but not general response monitoring processes, are modulated by the 5-HT1A C(-1019)G polymorphism is underlined by a wavelet analysis. In summary, the results suggest a specific effect of the 5-HT1A C(-1019)G polymorphism on error monitoring, as reflected in the Ne, and suggest a neurobiological dissociation between processes of error monitoring and general response monitoring at the level of the serotonin 1A receptor system.
Collapse
Affiliation(s)
- Christian Beste
- Department of Biopsychology, Institute for Cognitive Neuroscience, Ruhr‐Universität Bochum, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Vasil Kolev
- Bulgarian Academy of Science, Sofia, Bulgaria
| | | | - Anna Baffa
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | | | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| |
Collapse
|
36
|
Piva F, Giulietti M, Nardi B, Bellantuono C, Principato G. An improved in silico selection of phenotype affecting polymorphisms in SLC6A4, HTR1A and HTR2A genes. Hum Psychopharmacol 2010; 25:153-61. [PMID: 20196180 DOI: 10.1002/hup.1100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Among the experimentally assessed DNA variations in serotonin related genes, some influence physiological expression of personality and mental disorders, others alter the responses to pharmacological and/or psychotherapeutic treatments. Because of the huge number of polymorphisms lying in genes and of the great length of time necessary to perform association studies, a selection of the variations being studied is a necessary and crucial step. METHODS In this work we used the most updated and assessed bioinformatic tools to predict the phenotype affecting polymorphisms of the human HTR1A, HTR2A and SLC6A4 serotonin related genes. Moreover, we carried out a literature search to collect information about the recent association studies to compare it versus our prediction data. RESULTS Gene polymorphism analysis indicated the variations that are worth considering in the association studies in the field of psychiatry, psychology and pharmacogenomics. The literature revision allowed to show both the few well and the most not enough investigated polymorphisms. CONCLUSIONS Our data can be useful to select polymorphisms for new association studies, especially those not yet investigated that can be related to behaviour, mental disorders and individual treatment response.
Collapse
Affiliation(s)
- Francesco Piva
- Department of Biochemistry, Biology and Genetics, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | |
Collapse
|
37
|
Lowry CA, Hale MW. Serotonin and the Neurobiology of Anxious States. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70091-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Drago A, De Ronchi D, Serretti A. Pharmacogenetics of antidepressant response: an update. Hum Genomics 2009; 3:257-74. [PMID: 19403460 PMCID: PMC3500192 DOI: 10.1186/1479-7364-3-3-257] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 02/04/2023] Open
Abstract
The past few decades have witnessed much progress in the field of pharmacogenetics. The identification of the genetic background that regulates the antidepressant response has benefited from these advances. This review focuses on the pharmacogenetics of the antidepressant response through the analysis and discussion of the most compelling evidence in this line of research. Online databases (Medline and PsycINFO) have been searched and the most replicated association findings relating to the genetics of the antidepressant response have been reported and discussed. Some replicated findings in the literature have suggested the serotonin transporter promoter (5-HTTLPR), serotonin receptor 1A (HTR1A), serotonin receptor 2A (HTR2A), brain derived neurotrophic factor (BDNF), corticotropin releasing hormone receptor 1 (CRHR1) and FK506 binding protein 5 (FKBP5) as putative regulators of the antidepressant response. A high rate of failure of replication has also been reported. Pharmacogenetics will hopefully provide the basis for personalised antidepressant treatment that is able to maximise the probability of a good response and to minimise side effects; however, this goal is not achievable at the moment. The extent of the validity of the replicated findings and the reasons for the poor results obtained from studies of the pharmacogenetics of the antidepressant response are discussed.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | - Diana De Ronchi
- Institute of Psychiatry, University of Bologna, Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | - Alessandro Serretti
- Institute of Psychiatry, University of Bologna, Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| |
Collapse
|
39
|
Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 2009; 88:17-31. [PMID: 19428959 DOI: 10.1016/j.pneurobio.2009.01.009] [Citation(s) in RCA: 415] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 12/22/2008] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Dysfunction of the serotonin 1A receptor (5-HT(1A)) may play a role in the genesis of major depressive disorder (MDD). Here we review the pharmacological, post-mortem, positron emission tomography (PET), and genetic evidence in support of this statement. We also touch briefly on two MDD-associated phenotypes, cognitive impairment and somatic pain. The results of pharmacological challenge studies with 5-HT(1A) receptor agonists are indicative of blunted endocrine responses in depressed patients. Lithium, valproate, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and other treatment, such as electroconvulsive shock therapy (ECT), all increase post-synaptic 5-HT(1A) receptor signaling through either direct or indirect effects. Reduced somatodendritic and postsynaptic 5-HT(1A) receptor numbers or affinity have been reported in some post-mortem studies of suicide victims, a result consistent with well-replicated PET analyses demonstrating reduced 5-HT(1A) receptor binding potential in diverse regions such as the dorsal raphe, medial prefrontal cortex (mPFC), amygdala and hippocampus. 5-HT(1A) receptor knockout (KO) mice display increased anxiety-related behavior, which, unlike in their wild-type counterparts, cannot be rescued with antidepressant drug (AD) treatment. In humans, the G allele of a single nucleotide polymorphism (SNP) in the 5-HT(1A) receptor gene (HTR1A; rs6295), which abrogates a transcription factor binding site for deformed epidermal autoregulatory factor-1 (Deaf-1) and Hes5, has been reported to be over-represented in MDD cases. Conversely, the C allele has been associated with better response to AD drugs. We raise the possibility that 5-HT(1A) receptor dysfunction represents one potential mechanism underpinning MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Jonathan Savitz
- Section on Neuroimaging in Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD 20892, United States.
| | | | | |
Collapse
|
40
|
Fakra E, Hyde LW, Gorka A, Fisher PM, Muñoz KE, Kimak M, Halder I, Ferrell RE, Manuck SB, Hariri AR. Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. ACTA ACUST UNITED AC 2009; 66:33-40. [PMID: 19124686 DOI: 10.1001/archpsyc.66.1.33] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Serotonin 1A (5-hydroxytryptamine 1A [5-HT(1A)]) autoreceptors mediate negative feedback inhibition of serotonergic neurons and play a critical role in regulating serotonin signaling involved in shaping the functional response of major forebrain targets, such as the amygdala, supporting complex behavioral processes. A common functional variation (C[-1019]G) in the human 5-HT(1A) gene (HTR1A) represents 1 potential source of such interindividual variability. Both in vitro and in vivo, -1019G blocks transcriptional repression, leading to increased autoreceptor expression. Thus, -1019G may contribute to relatively decreased serotonin signaling at postsynaptic forebrain target sites via increased negative feedback. OBJECTIVES To evaluate the effects of HTR1A C(-1019)G on amygdala reactivity and to use path analyses to explore the impact of HTR1A-mediated variability in amygdala reactivity on individual differences in trait anxiety. We hypothesized that -1019G, which potentially results in decreased serotonin signaling, would be associated with relatively decreased amygdala reactivity and related trait anxiety. DESIGN Imaging genetics in participants from an archival database. PARTICIPANTS Eighty-nine healthy adults. RESULTS Consistent with prior findings, -1019G was associated with significantly decreased threat-related amygdala reactivity. Importantly, this effect was independent of that associated with another common functional polymorphism that affects serotonin signaling, 5-HTTLPR. While there were no direct genotype effects on trait anxiety, HTR1A C(-1019)G indirectly predicted 9.2% of interindividual variability in trait anxiety through its effects on amygdala reactivity. CONCLUSIONS Our findings further implicate relatively increased serotonin signaling, associated with a genetic variation that mediates increased 5-HT(1A) autoreceptors, in driving amygdala reactivity and trait anxiety. Moreover, they provide empirical documentation of the basic premise that genetic variation indirectly affects emergent behavioral processes related to psychiatric disease risk by biasing the response of underlying neural circuitries.
Collapse
Affiliation(s)
- Eric Fakra
- Hôpital de laTimone, ServiceHospitalo-Universitaire dePsychiatrie, Hôpital SteMarguerite, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Serotonin1A receptors in the pathophysiology of schizophrenia: development of novel cognition-enhancing therapeutics. Adv Ther 2008; 25:1037-56. [PMID: 18839076 DOI: 10.1007/s12325-008-0102-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serotonin (5-HT) receptors have been suggested to play key roles in psychosis, cognition, and mood via influence on neurotransmitters, synaptic integrity, and neural plasticity. Specifically, genetic evidence indicates that 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor single-nucleotide polymorphisms (SNPs) are related to psychotic symptoms, cognitive disturbances, and treatment response in schizophrenia. Data from animal research suggest the role of 5-HT in cognition via its influence on dopaminergic, cholinergic, glutamatergic, and GABAergic function. This article provides up-to-date findings on the role of 5-HT receptors in endophenotypic variations in schizophrenia and the development of newer cognition-enhancing medications, based on basic science and clinical evidence. Imaging genetics studies on associations of polymorphisms of several 5-HT receptor subtypes with brain structure, function, and metabolism suggest a role for the prefrontal cortex and the parahippocampal gyrus in cognitive impairments of schizophrenia. Data from animal experiments to determine the effect of agonists/antagonists at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors on behavioral performance in animal models of schizophrenia based on the glutamatergic hypothesis provide useful information. For this purpose, standard as well as novel cognitive tasks provide a measure of memory/information processing and social interaction. In order to scrutinize mixed evidence for the ability of 5-HT(1A) agonists/antagonists to improve cognition, behavioral data in various paradigms from transgenic mice overexpressing 5-HT(1A) receptors provide valuable insights. Clinical trials reporting the advantage of 5-HT(1A) partial agonists add to efforts to shape pharmacologic perspectives concerning cognitive enhancement in schizophrenia by developing novel compounds acting on 5-HT receptors. Overall, these lines of evidence from translational research will facilitate the development of newer pharmacologic strategies for the treatment of cognitive disturbances of schizophrenia.
Collapse
|
42
|
Serretti A, Mandelli L. The genetics of bipolar disorder: genome 'hot regions,' genes, new potential candidates and future directions. Mol Psychiatry 2008; 13:742-71. [PMID: 18332878 DOI: 10.1038/mp.2008.29] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome 'hot regions' for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. A number of promising genes, which received independent confirmations, and genes that have to be further investigated in BP, have been also systematically listed. In conclusion, the combination of linkage and association approaches provided a number of liability genes. Nevertheless, other approaches are required to disentangle conflicting findings, such as gene interaction analyses, interaction with psychosocial and environmental factors and, finally, endophenotype investigations.
Collapse
Affiliation(s)
- A Serretti
- Institute of Psychiatry, University of Bologna, Bologna, Italy.
| | | |
Collapse
|