1
|
Perticarrara Ferezin L, Kayzuka C, Rondon Pereira VC, Ferreira de Andrade M, Molina CAF, Tucci S, Tanus-Santos JE, Lacchini R. The rs2682826 Polymorphism of the NOS1 Gene Is Associated with the Degree of Disability of Erectile Dysfunction. Life (Basel) 2023; 13:life13051082. [PMID: 37240727 DOI: 10.3390/life13051082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is a common male disorder, often associated with cardiovascular disease and ageing. The Sildenafil, a PDE5 inhibitor, can improve the erectile function by prolonging the nitric oxide (NO) downstream effect. NO is a molecule of pivotal importance in erection physiology and is mainly produced by neuronal nitric oxide synthase (nNOS) and endothelial NO synthase (eNOS). While it has been shown that eNOS and nNOS genetic polymorphisms could be associated with Sildenafil responsiveness in ED, no study so far has assessed whether nNOS polymorphisms and PDE5A polymorphism could be associated with increased risk to ED or with intensity of symptoms. A total of 119 ED patients and 114 controls were studied, with evaluation of the clinical disability by the International Index for Erectile Function instrument, plasma assessment of nitrite levels and genomic DNA analysis regarding the rs41279104 and rs2682826 polymorphisms of the NOS1 gene and the rs2389866, rs3733526 and rs13124532 polymorphisms of the PDE5A gene. We have found a significant association of the rs2682826 with lower IIEF scores in the clinical ED group. While this result should be confirmed in other populations, it may be helpful in establishing a genetic panel to better assess disease risk and prognosis on ED therapy.
Collapse
Affiliation(s)
- Leticia Perticarrara Ferezin
- Department of Psychiatric Nursing and Human Sciences, Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil
| | - Cezar Kayzuka
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-902, Brazil
| | - Vitória Carolina Rondon Pereira
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-902, Brazil
| | - Murilo Ferreira de Andrade
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | | | - Silvio Tucci
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| | - Jose Eduardo Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-902, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil
| |
Collapse
|
2
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
3
|
Genetic Factors of Nitric Oxide's System in Psychoneurologic Disorders. Int J Mol Sci 2020; 21:ijms21051604. [PMID: 32111088 PMCID: PMC7084194 DOI: 10.3390/ijms21051604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
According to the recent data, nitric oxide (NO) is a chemical messenger that mediates functions such as vasodilation and neurotransmission, as well as displaying antimicrobial and antitumoral activities. NO has been implicated in the neurotoxicity associated with stroke and neurodegenerative diseases; neural regulation of smooth muscle, including peristalsis; and penile erections. We searched for full-text English publications from the past 15 years in Pubmed and SNPedia databases using keywords and combined word searches (nitric oxide, single nucleotide variants, single nucleotide polymorphisms, genes). In addition, earlier publications of historical interest were included in the review. In our review, we have summarized information regarding all NOS1, NOS2, NOS3, and NOS1AP single nucleotide variants (SNVs) involved in the development of mental disorders and neurological diseases/conditions. The results of the studies we have discussed in this review are contradictory, which might be due to different designs of the studies, small sample sizes in some of them, and different social and geographical characteristics. However, the contribution of genetic and environmental factors has been understudied, which makes this issue increasingly important for researchers as the understanding of these mechanisms can support a search for new approaches to pathogenetic and disease-modifying treatment.
Collapse
|
4
|
Roth NJ, Zipperich S, Kopf J, Deckert J, Reif A. Influence of two functional polymorphisms in NOS1 on baseline cortisol and working memory in healthy subjects. Nitric Oxide 2019; 88:45-49. [PMID: 31002875 DOI: 10.1016/j.niox.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The neuronal isoform of the nitric oxide synthase (NOS-I) encoded by NOS1 is the main source of nitric oxide (NO) in the brain. Reduced NO signaling in the prefrontal cortex has been linked to schizophrenia and cognitive processes while reduced striatal NOS1 expression has been associated with impulsive behavior. METHODS To evaluate the effect of two functional polymorphisms in alternative first exons of NOS1, ex1f-VNTR and ex1c-SNP rs41279104, on the HPA stress axis and neurocognitive abilities, 280 healthy subjects were genotyped, had their salivary cortisol levels measured and were assessed in verbal memory, verbal fluency, working memory and verbal IQ by using the California Verbal Learning Test (CVLT), the Regensburger test of verbal fluency (RWT), a n-back task and subscales of the Wechsler Adult Intelligence Scale III (WAIS-III). RESULTS Schizophrenia risk (A)-allele carriers of NOS1 ex1c-SNP rs41279104 displayed significantly lower baseline cortisol levels (p = 0.004). NOS1 ex1f-VNTR genotype carriers showed differences in working memory performance (p = 0.05) in a gene-dose effect manner, with homozygous carriers of the short impulsivity-risk allele committing most commission errors. Finally, A-allele carriers of the NOS1 ex1c-SNP rs41279104 tended to react faster during the working memory task (p = 0.065). CONCLUSION For the first time, we demonstrated an influence of the NOS1 ex1c-SNP rs41279104 on salivary cortisol levels and additionally implicate the A-allele in an enhanced reaction time during a working memory task. Regarding the NOS1 ex1f-VNTR our study supports the previously reported influence on impulsivity, lending further support to the hypothesis that this genetic variant underlies impulsive behavior.
Collapse
Affiliation(s)
- N J Roth
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - S Zipperich
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Kopf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Rovný R, Marko M, Katina S, Murínová J, Roháriková V, Cimrová B, Repiská G, Minárik G, Riečanský I. Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide 2018; 80:32-36. [PMID: 30096361 DOI: 10.1016/j.niox.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022]
Abstract
Research increasingly suggests that nitric oxide (NO) plays a role in the pathogenesis of schizophrenia. One important line of evidence comes from genetic studies, which have repeatedly detected an association between the neuronal isoform of nitric oxide synthase (nNOS or NOS1) and schizophrenia. However, the pathogenetic pathways linking nNOS, NO, and the disorder remain poorly understood. A deficit in sensorimotor gating is considered to importantly contribute to core schizophrenia symptoms such as psychotic disorganization and thought disturbance. We selected three candidate nNOS polymorphisms (Ex1f-VNTR, rs6490121 and rs41279104), associated with schizophrenia and cognition in previous studies, and tested their association with the efficiency of sensorimotor gating in healthy human adults. We found that risk variants of Ex1f-VNTR and rs6490121 (but not rs41279104) were associated with a weaker prepulse inhibition (PPI) of the acoustic startle reflex, a standard measure of sensorimotor gating. Furthermore, the effect of presence of risk variants in Ex1f-VNTR and rs6490121 was additive: PPI linearly decreased with increasing number of risk alleles, being highest in participants with no risk allele, while lowest in individuals who carry three risk alleles. Our findings indicate that NO is involved in the regulation of sensorimotor gating, and highlight one possible pathogenetic mechanism for NO playing a role in the development of schizophrenia psychosis.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Katina
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Murínová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Roháriková
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Chang X, Lima LDA, Liu Y, Li J, Li Q, Sleiman PMA, Hakonarson H. Common and Rare Genetic Risk Factors Converge in Protein Interaction Networks Underlying Schizophrenia. Front Genet 2018; 9:434. [PMID: 30323833 PMCID: PMC6172705 DOI: 10.3389/fgene.2018.00434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022] Open
Abstract
Hundreds of genomic loci have been identified with the recent advances of schizophrenia in genome-wide association studies (GWAS) and sequencing studies. However, the functional interactions among those genes remain largely unknown. We developed a network-based approach to integrate multiple genetic risk factors, which lead to the discovery of new susceptibility genes and causal sub-networks, or pathways in schizophrenia. We identified significantly and consistently over-represented pathways in the largest schizophrenia GWA studies, which are highly relevant to synaptic plasticity, neural development and signaling transduction, such as long-term potentiation, neurotrophin signaling pathway, and the ERBB signaling pathway. We also demonstrated that genes targeted by common SNPs are more likely to interact with genes harboring de novo mutations (DNMs) in the protein-protein interaction (PPI) network, suggesting a mutual interplay of both common and rare variants in schizophrenia. We further developed an edge-based search algorithm to identify the top-ranked gene modules associated with schizophrenia risk. Our results suggest that the N-methyl-D-aspartate receptor (NMDAR) interactome may play a leading role in the pathology of schizophrenia, as it is highly targeted by multiple types of genetic risk factors.
Collapse
Affiliation(s)
- Xiao Chang
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Leandro de Araujo Lima
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yichuan Liu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Qingqin Li
- Janssen Research & Development, LLC, Titusville, NJ, United States
| | - Patrick M A Sleiman
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
7
|
Dadgostar M, Setarehdan SK, Shahzadi S, Akin A. CLASSIFICATION OF SCHIZOPHRENIA USING SVM VIA fNIRS. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2018. [DOI: 10.4015/s1016237218500084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, a classification of functional near-infrared spectroscopy (fNIRS) based on support vector machine (SVM) is presented. It is a non-invasive method monitoring human brain function by evaluating the concentration variation of oxy-hemoglobin and deoxy-hemoglobin. fNIRS is a functional optical imaging technology that measures the neural activities and hemodynamic responses in brain. The data were gathered from 11 healthy volunteers and 16 schizophrenia of the same average age by a 16-channel fNIRS (NIROXCOPE 301 system developed at the Neuro-Optical Imaging Laboratory, continuous-wave dual wavelength). Schizophrenia is a mental disorder that is characterized by mental processing collapse and weak emotional responses. This mental disorder is usually accompanied by a serious disturbance in social and occupational activities. The signals were initially preprocessed by DWT to remove any systemic physiological impediment. A preliminary examination by the genetic algorithm (GA) suggested that some channels of the recreated fNIRS signals required further investigation. The energy of these recreated channel signals was computed and utilized for signal arrangement. We used SVM-based classifier to determine the cases of schizophrenia. The result of six channels is higher than 16 channels. The results demonstrated a classification precision of about 87% in the discovery of schizophrenia in the healthy subjects.
Collapse
Affiliation(s)
- Mehrdad Dadgostar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Sohrab Shahzadi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ata Akin
- Department of Medical Engineering, Acibadem University, Istanbul, Turkey
| |
Collapse
|
8
|
Thomas EH, Bozaoglu K, Rossell SL, Gurvich C. The influence of the glutamatergic system on cognition in schizophrenia: A systematic review. Neurosci Biobehav Rev 2017; 77:369-387. [DOI: 10.1016/j.neubiorev.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
9
|
MAP1B and NOS1 genes are associated with working memory in youths with attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci 2016; 266:359-66. [PMID: 26233433 DOI: 10.1007/s00406-015-0626-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022]
Abstract
Diverse efforts have been done to improve the etiologic understanding of mental disorders, such as attention-deficit/hyperactivity disorder (ADHD). It becomes clear that research in mental disorders needs to move beyond descriptive syndromes. Several studies support recent theoretical models implicating working memory (WM) deficits in ADHD complex neuropsychology. The aim of this study was to examine the association between rs2199161 and rs478597 polymorphisms at MAP1B and NOS1 genes with verbal working memory in children and adolescents with ADHD. A total of 253 unrelated ADHD children/adolescents were included. The sample was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders-4th edition criteria. Digit Span from the Wechsler Intelligence Scale for Children-Third Edition was used to assess verbal WM. The raw scores from both forward and backward conditions of Digit Span were summed and converted into scaled scores according to age. The means of scaled Digit Span were compared according to genotypes by ANOVA. Significant differences in Digit Span scores between MAP1B genotype groups (rs2199161: F = 5.676; p = 0.018) and NOS1 (rs478597: F = 6.833; p = 0.009) genes were detected. For both polymorphisms, the CC genotype carriers showed a worse performance in WM task. Our findings suggest possible roles of NOS1 and MAP1B genes in WM performance in ADHD patients, replicating previous results with NOS1 gene in this cognitive domain in ADHD children.
Collapse
|
10
|
Lacchini R, Tanus-Santos JE. Pharmacogenetics of erectile dysfunction: navigating into uncharted waters. Pharmacogenomics 2015; 15:1519-38. [PMID: 25303302 DOI: 10.2217/pgs.14.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sildenafil and other PDE-5 inhibitors have revolutionized erectile dysfunction (ED) treatment. However, a significant number of patients do not respond or present adverse reactions to these drugs. While genetic polymorphisms may underlie this phenomenon, very little research has been undertaken in this research field. Most of the current knowledge is based on sildenafil, thus almost completely ignoring other important pharmacological therapies. Currently, the most promising genes with pharmacogenetic implications in ED are related to the nitric oxide and cGMP pathway, although other genes are likely to affect the responsiveness to treatment of ED. Nevertheless, the small number of studies available opens the possibility of further exploring other genes and phenotypes related to ED. This article provides a comprehensive overview of the genes being tested for their pharmacogenetic relevance in the therapy of ED.
Collapse
Affiliation(s)
- Riccardo Lacchini
- Department of Psychiatric Nursing & Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
11
|
Freudenberg F, Alttoa A, Reif A. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2015; 14:46-63. [PMID: 25612209 DOI: 10.1111/gbb.12193] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is a gaseous transmitter produced by nitric oxide synthases (NOSs). The neuronal isoform (NOS-I, encoded by NOS1) is the main source of NO in the central nervous system (CNS). Animal studies suggest that nitrinergic dysregulation may lead to behavioral abnormalities. Unfortunately, the large number of animal studies is not adequately reflected by publications concerning humans. These include post-mortem studies, determination of biomarkers, and genetic association studies. Here, we review the evidence for the role of NO in psychiatric disorders by focusing on the human NOS1 gene as well as biomarker studies. Owing to the complex regulation of NOS1 and the varying function of NOS-I in different brain regions, no simple, unidirectional association is expected. Rather, the 'where, when and how much' of NO formation is decisive. Present data, although still preliminary and partially conflicting, suggest that genetically driven reduced NO signaling in the prefrontal cortex is associated with schizophrenia and cognition. Both NOS1 and its interaction partner NOS1AP have a role therein. Also, reduced NOS1 expression in the striatum determined by a length polymorphism in a NOS1 promoter (NOS1 ex1f-VNTR) goes along with a variety of impulsive behaviors. An association of NOS1 with mood disorders, suggested by animal models, is less clear on the genetic level; however, NO metabolites in blood may serve as biomarkers for major depression and bipolar disorder. As the nitrinergic system comprises a relevant target for pharmacological interventions, further studies are warranted not only to elucidate the pathophysiology of mental disorders, but also to evaluate NO function as a biomarker.
Collapse
Affiliation(s)
- F Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
12
|
Nasyrova RF, Ivashchenko DV, Ivanov MV, Neznanov NG. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol 2015; 6:139. [PMID: 26029110 PMCID: PMC4426711 DOI: 10.3389/fphys.2015.00139] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/18/2015] [Indexed: 12/14/2022] Open
Abstract
Currently, schizophrenia is considered a multifactorial disease. Over the past 50 years, many investigators have considered the role of toxic free radicals in the etiology of schizophrenia. This is an area of active research which is still evolving. Here, we review the recent data and current concepts on the roles of nitric oxide (NO) and related molecules in the pathogenesis of schizophrenia. NO is involved in storage, uptake and release of mediators and neurotransmitters, including glutamate, acetylcholine, noradrenaline, GABA, taurine and glycine. In addition, NO diffuses across cell membranes and activates its own extrasynaptic receptors. Further, NO is involved in peroxidation and reactive oxidative stress. Investigations reveal significant disturbances in NO levels in the brain structures (cerebellum, hypothalamus, hippocampus, striatum) and fluids of subjects with schizophrenia. Given the roles of NO in central nervous system development, these changes may result in neurodevelopmental changes associated with schizophrenia. We describe here the recent literature on NOS gene polymorphisms on schizophrenia, which all point to consistent results. We also discuss how NO may be a new target for the therapy of mental disorders. Currently there have been 2 randomized double-blind placebo-controlled trials of L-lysine as an NOS inhibitor in the CNS.
Collapse
Affiliation(s)
- Regina F Nasyrova
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Dmitriy V Ivashchenko
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Mikhail V Ivanov
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Nikolay G Neznanov
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| |
Collapse
|
13
|
Lacchini R, Muniz JJ, Nobre YTDA, Cologna AJ, Martins ACP, Tanus-Santos JE. nNOS polymorphisms are associated with responsiveness to sildenafil in clinical and postoperative erectile dysfunction. Pharmacogenomics 2015; 15:775-84. [PMID: 24897285 DOI: 10.2217/pgs.14.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Sildenafil potentiates the nitric oxide (NO) signaling pathway. Since neuronal NOS is very important in the penis, we assessed whether NOS1 polymorphisms are associated with altered responsiveness to sildenafil in erectile dysfunction (ED). MATERIALS & METHODS Patients (n = 137) were divided as clinical ED or postoperative ED. They were subdivided as good responders or poor responders to sildenafil, and genotypes for rs41279104 and rs2682826 NOS1 polymorphisms were determined. RESULTS We found that the rs41279104 CT genotype was associated with good responders in postoperative ED patients, while rs2682826 CT genotype was associated with good responders in postoperative ED, and the TT genotype associated with good responders in both groups. Finally, the CT haplotype was associated with good responders in postoperative ED. CONCLUSION NOS1 polymorphisms are associated with responsiveness to sildenafil in ED. Original submitted 20 November 2013; Revision submitted 31 January 2014.
Collapse
Affiliation(s)
- Riccardo Lacchini
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Ehlis AC, Schneider S, Dresler T, Fallgatter AJ. Application of functional near-infrared spectroscopy in psychiatry. Neuroimage 2014; 85 Pt 1:478-88. [DOI: 10.1016/j.neuroimage.2013.03.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/14/2022] Open
|
15
|
Dan H, Dan I, Sano T, Kyutoku Y, Oguro K, Yokota H, Tsuzuki D, Watanabe E. Language-specific cortical activation patterns for verbal fluency tasks in Japanese as assessed by multichannel functional near-infrared spectroscopy. BRAIN AND LANGUAGE 2013; 126:208-16. [PMID: 23800710 DOI: 10.1016/j.bandl.2013.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 05/16/2023]
Abstract
In Japan, verbal fluency tasks are commonly utilized as a standard paradigm for neuropsychological testing of cognitive and linguistic abilities. The Japanese "letter fluency task" is a mora/letter fluency task based on the phonological and orthographical characteristics of the Japanese language. Whether there are similar activation patterns across languages or a Japanese-specific mora/letter fluency pattern is not certain. We investigated the neural correlates of overt mora/letter and category fluency tasks in healthy Japanese. The category fluency task activated the bilateral fronto-temporal language-related regions with left-superior lateralization, while the mora/letter fluency task led to wider activation including the inferior parietal regions (left and right supramarginal gyrus). Specific bilateral supramarginal activation during the mora/letter fluency task in Japanese was distinct from that of similar letter fluency tasks in syllable-alphabet-based languages: this might be due to the requirement of additional phonological processing and working memory, or due to increased cognitive load in general.
Collapse
Affiliation(s)
- Haruka Dan
- Applied Cognitive Neuroscience Laboratory, Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Finnerty NJ, Bolger FB, Pålsson E, Lowry JP. An investigation of hypofrontality in an animal model of schizophrenia using real-time microelectrochemical sensors for glucose, oxygen, and nitric oxide. ACS Chem Neurosci 2013; 4:825-31. [PMID: 23578219 DOI: 10.1021/cn4000567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose, O2, and nitric oxide (NO) were monitored in real time in the prefrontal cortex of freely moving animals using microelectrochemical sensors following phencyclidine (PCP) administration. Injection of saline controls produced a decrease in glucose and increases in both O2 and NO. These changes were short-lived and typical of injection stress, lasting ca. 30 s for glucose and between 2 and 6 min for O2 and NO, respectively. Subchronic PCP (10 mg/kg) resulted in increased motor activity and increases in all three analytes lasting several hours: O2 and glucose were uncoupled with O2 increasing rapidly following injection reaching a maximum of 70% (ca. 62 μM) after ca. 15 min and then slowly returning to baseline over a period of ca. 3 h. The time course of changes in glucose and NO were similar; both signals increased gradually over the first hour post injection reaching maxima of 55% (ca. 982 μM) and 8% (ca. 31 nM), respectively, and remaining elevated to within 1 h of returning to baseline levels (after ca. 5 and 7 h, respectively). While supporting increased utilization of glucose and O2 and suggesting overcompensating supply mechanisms, this neurochemical data indicates a hyperfrontal effect following acute PCP administration which is potentially mediated by NO. It also confirms that long-term in vivo electrochemical sensors and data offer a real-time biochemical perspective of the underlying mechanisms.
Collapse
Affiliation(s)
- Niall J. Finnerty
- Department
of Chemistry, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Fiachra B. Bolger
- Department
of Chemistry, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience
and Physiology, The Sahlgrenska Academy at University of Gothenburg, PO Box 431, 405 30 Gothenburg, Sweden
| | - John P. Lowry
- Department
of Chemistry, National University of Ireland Maynooth, Co. Kildare, Ireland
| |
Collapse
|
17
|
Functional abnormalities in the left ventrolateral prefrontal cortex during a semantic fluency task, and their association with thought disorder in patients with schizophrenia. Neuroimage 2013; 85 Pt 1:518-26. [PMID: 23624170 DOI: 10.1016/j.neuroimage.2013.04.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022] Open
Abstract
Thought disorder is one of the primary symptoms in schizophrenia, yet the neural correlates and related semantic processing abnormalities remain unclear. We aimed to investigate the relationship between functional prefrontal abnormalities and thought disorder in schizophrenia using 2 types of verbal fluency tasks: the letter fluency task (LFT) and the category fluency task (CFT). Fifty-six adult patients with schizophrenia and 56 healthy controls matched for age, gender, and IQ participated in the study. During completion of the 2 types of verbal fluency tasks, we measured oxy- and deoxy-hemoglobin concentration ([oxy-Hb] and [deoxy-Hb]) signal changes over a wide area of the bilateral prefrontal cortex, using a 52-channel near-infrared spectroscopy (NIRS) system. Thought disorder scores were evaluated using the positive and negative syndrome scale. CFT performance was significantly higher than LFT performance in both groups, while there was no significant difference in any prefrontal NIRS signal changes between the 2 tasks in either group. In both versions of verbal fluency task, healthy controls exhibited a significantly greater NIRS signal change than did patients with schizophrenia. On the CFT only, left ventrolateral prefrontal NIRS [deoxy-Hb] signals were significantly associated with thought disorder scores in patients with schizophrenia. Our results suggest that left ventrolateral prefrontal abnormalities in category fluency might be related to thought disorder in schizophrenia. This could lead to an improved understanding of the neural mechanisms within the left ventrolateral prefrontal cortex involved in mediating semantic processing, as well as the relationship between semantic processing abnormalities and thought disorder in schizophrenia.
Collapse
|
18
|
Common polymorphisms in nitric oxide synthase (NOS) genes influence quality of aging and longevity in humans. Biogerontology 2013; 14:177-86. [PMID: 23572278 DOI: 10.1007/s10522-013-9421-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) triggers multiple signal transduction pathways and contributes to the control of numerous cellular functions. Previous studies have shown in model organisms that the alteration of NO production has important effects on aging and lifespan. We studied in a large sample (763 subjects, age range 19-107 years) the variability of the three human genes (NOS1, -2, -3) coding for the three isoforms of the NADPH-dependent enzymes named NO synthases (NOS) which are responsible of NO synthesis. We have then verified if the variability of these genes is associated with longevity, and with a number of geriatric parameters. We found that gene variation of NOS1 and NOS2 was associated with longevity. In addition NOS1 rs1879417 was also found to be associated with a lower cognitive performance, while NOS2 rs2297518 polymorphism showed to be associated with physical performance. Moreover, SNPs in the NOS1 and NOS3 genes were respectively associated with the presence of depression symptoms and disability, two of the main factors affecting quality of life in older individuals. On the whole, our study shows that genetic variability of NOS genes has an effect on common age related phenotypes and longevity in humans as well as previously reported for model organisms.
Collapse
|
19
|
Anderson G, Maes M, Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:101-14. [PMID: 22930036 DOI: 10.1016/j.pnpbp.2012.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 02/08/2023]
Abstract
Schizophrenia and depression are two common and debilitating psychiatric conditions. Up to 61% of schizophrenic patients have comorbid clinical depression, often undiagnosed. Both share significant overlaps in underlying biological processes, which are relevant to the course and treatment of both conditions. Shared processes include changes in cell-mediated immune and inflammatory pathways, e.g. increased levels of pro-inflammatory cytokines and a Th1 response; activation of oxidative and nitrosative stress (O&NS) pathways, e.g. increased lipid peroxidation, damage to proteins and DNA; decreased antioxidant levels, e.g. lowered coenzyme Q10, vitamin E, glutathione and melatonin levels; autoimmune responses; and activation of the tryptophan catabolite (TRYCAT) pathway through induction of indoleamine-2,3-dioxygenase. Both show cognitive and neurostructural evidence of a neuroprogressive process. Here we review the interlinked nature of these biological processes, suggesting that schizophrenia is immunologically primed for an increased expression of depression. Such a conceptualization explains, and incorporates, many of the current perspectives on the nature of schizophrenia and depression, and has implications for the nature of classification and treatment of both disorders. An early developmental etiology to schizophrenia, driven by maternal infection, with subsequent impact on offspring immuno-inflammatory responses, creates alterations in the immune pathways, which although priming for depression, also differentiates the two disorders.
Collapse
|
20
|
Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:5-19. [PMID: 22800757 DOI: 10.1016/j.pnpbp.2012.06.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023]
Abstract
In 1995, the macrophage-T lymphocyte theory of schizophrenia (Smith and Maes, 1995) considered that activated immuno-inflammatory pathways may account for the higher neurodevelopmental pathology linked with gestational infections through the detrimental effects of activated microglia, oxidative and nitrosative stress (O&NS), cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway and consequent modulation of the N-methyl d-aspartate receptor (NMDAr) and glutamate production. The aim of the present paper is to review the current state-of-the art regarding the role of the above pathways in schizophrenia. Accumulating data suggest a powerful role for prenatal infection, both viral and microbial, in driving an early developmental etiology to schizophrenia. Models of prenatal rodent infection show maintained activation of immuno-inflammatory pathways coupled to increased microglia activation. The ensuing activation of immuno-inflammatory pathways in schizophrenia may activate the TRYCAT pathway, including increased kynurenic acid (KA) and neurotoxic TRYCATs. Increased KA, via the inhibition of the α7 nicotinic acetylcholine receptor, lowers gamma-amino-butyric-acid (GABA)ergic post-synaptic current, contributing to dysregulated glutamatergic activity. Hypofunctioning of the NMDAr on GABAergic interneurons will contribute to glutamatergic dysregulation. Many susceptibility genes for schizophrenia are predominantly expressed in early development and will interact with these early developmental driven changes in the immuno-inflammatory and TRYCAT pathways. Maternal infection and subsequent immuno-inflammatory responses are additionally associated with O&NS, including lowered antioxidants such as glutathione. This will contribute to alterations in neurogenesis and myelination. In such a scenario a) a genetic or epigenetic potentiation of immuno-inflammatory pathways may constitute a double hit on their own, stimulating wider immuno-inflammatory responses and thus potentiating the TRYCAT pathway and subsequent NMDAr dysfunction and neuroprogression; and b) antipsychotic-induced changes in immuno-inflammatory, TRYCAT and O&NS pathways would modulate the CNS glia-neuronal interactions that determine synaptic plasticity as well as myelin generation and maintenance.
Collapse
|
21
|
Koike S, Nishimura Y, Takizawa R, Yahata N, Kasai K. Near-infrared spectroscopy in schizophrenia: a possible biomarker for predicting clinical outcome and treatment response. Front Psychiatry 2013; 4:145. [PMID: 24294205 PMCID: PMC3827961 DOI: 10.3389/fpsyt.2013.00145] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/25/2013] [Indexed: 12/14/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a relatively new technique that can measure hemoglobin changes in brain tissues, and its use in psychiatry has been progressing rapidly. Although it has several disadvantages (e.g., relatively low spatial resolution and the possibility of shallow coverage in the depth of brain regions) compared with other functional neuroimaging techniques (e.g., functional magnetic resonance imaging and positron emission tomography), fNIRS may be a candidate instrument for clinical use in psychiatry, as it can measure brain activity in naturalistic position easily and non-invasively. fNIRS instruments are also small and work silently, and can be moved almost everywhere including schools and care units. Previous fNIRS studies have shown that patients with schizophrenia have impaired activity and characteristic waveform patterns in the prefrontal cortex during the letter version of the verbal fluency task, and part of these results have been approved as one of the Advanced Medical Technologies as an aid for the differential diagnosis of depressive symptoms by the Ministry of Health, Labor and Welfare of Japan in 2009, which was the first such approval in the field of psychiatry. Moreover, previous studies suggest that the activity in the frontopolar prefrontal cortex is associated with their functions in chronic schizophrenia and is its next candidate biomarker. Future studies aimed at exploring fNIRS differences in various clinical stages, longitudinal changes, drug effects, and variations during different task paradigms will be needed to develop more accurate biomarkers that can be used to aid differential diagnosis, the comprehension of the present condition, the prediction of outcome, and the decision regarding treatment options in schizophrenia. Future fNIRS researches will require standardized measurement procedures, probe settings, analytical methods and tools, manuscript description, and database systems in an fNIRS community.
Collapse
Affiliation(s)
- Shinsuke Koike
- Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo , Tokyo , Japan ; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | | | | | | | | |
Collapse
|
22
|
Schwartz TL, Sachdeva S, Stahl SM. Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front Pharmacol 2012. [PMID: 23189055 PMCID: PMC3505861 DOI: 10.3389/fphar.2012.00195] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Dopamine Hypothesis of Schizophrenia is actively being challenged by the NMDA Receptor Hypofunctioning Hypothesis of Schizophrenia. The latter hypothesis may actually be the starting point in neuronal pathways that ultimately modifies dopamine pathways involved in generating both positive and negative symptoms of schizophrenia postulated by the former hypothesis. The authors suggest that even this latter, NMDA receptor-based, hypothesis is likely too narrow and offer a review of typical glutamate and dopamine-based neurocircuitry, propose genetic vulnerabilities impacting glutamate neurocircuitry, and provide a broad interpretation of a possible etiology of schizophrenia. In conclusion, there is a brief review of potential schizophrenia treatments that rely on the etiologic theory provided in the body of the paper.
Collapse
Affiliation(s)
- Thomas L Schwartz
- Department of Psychiatry, State University of New York Upstate Medical University Syracuse, NY, USA
| | | | | |
Collapse
|
23
|
Tamura R, Kitamura H, Endo T, Abe R, Someya T. Decreased leftward bias of prefrontal activity in autism spectrum disorder revealed by functional near-infrared spectroscopy. Psychiatry Res 2012; 203:237-40. [PMID: 22947311 DOI: 10.1016/j.pscychresns.2011.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 11/29/2011] [Accepted: 12/18/2011] [Indexed: 11/30/2022]
Abstract
Hemodynamic responses in rostral prefrontal cortex (RoPFC) were measured by functional near-infrared spectroscopy. Although performance level was equal, autistic patients showed a decrease in leftward bias of the balance between right and left RoPFC activity when compared with typically developing children when anatomical imitation was contrasted with mirror-image imitation.
Collapse
Affiliation(s)
- Ryu Tamura
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
24
|
Aging-related cortical reorganization of verbal fluency processing: a functional near-infrared spectroscopy study. Neurobiol Aging 2012; 34:439-50. [PMID: 22770542 DOI: 10.1016/j.neurobiolaging.2012.05.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 12/14/2022]
Abstract
While progressive neurocognitive impairments are associated with aging and Alzheimer's disease (AD), cortical reorganization might delay difficulties in effortful word retrieval, which represent one of the earliest cognitive signs of AD. Using functional near-infrared spectroscopy (fNIRS), we investigated cortical hemodynamic responses elicited by phonological and semantic verbal fluency in non-demented, healthy subjects (n = 325; age: 51-82 years). Age predicted bilaterally reduced inferior frontal junction (IFJ) and increased middle frontal and supramarginal gyri activity in both task conditions using multiple regressions. Compared with age the years of education as well as sex (IFJ activation in females > males) partly predicted opposite effects on activation, while task performance was not significant predictor. All predictors showed small effect sizes. IFJ activation was more pronounced during phonological compared with semantic fluency, and higher in the left hemisphere. Age only marginally predicted relative lateralization. Middle frontal and supramarginal gyri activity may compensate for an aging-related decrease in IFJ recruitment during verbal fluency. Longitudinal observations will further investigate these neural changes regarding an early AD prediction, while individuals are still cognitively healthy.
Collapse
|
25
|
Hahn T, Marquand AF, Plichta MM, Ehlis AC, Schecklmann MW, Dresler T, Jarczok TA, Eirich E, Leonhard C, Reif A, Lesch KP, Brammer MJ, Mourao-Miranda J, Fallgatter AJ. A novel approach to probabilistic biomarker-based classification using functional near-infrared spectroscopy. Hum Brain Mapp 2012; 34:1102-14. [PMID: 22965654 PMCID: PMC3763208 DOI: 10.1002/hbm.21497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/08/2011] [Accepted: 09/23/2011] [Indexed: 11/25/2022] Open
Abstract
Pattern recognition approaches to the analysis of neuroimaging data have brought new applications such as the classification of patients and healthy controls within reach. In our view, the reliance on expensive neuroimaging techniques which are not well tolerated by many patient groups and the inability of most current biomarker algorithms to accommodate information about prior class frequencies (such as a disorder's prevalence in the general population) are key factors limiting practical application. To overcome both limitations, we propose a probabilistic pattern recognition approach based on cheap and easy‐to‐use multi‐channel near‐infrared spectroscopy (fNIRS) measurements. We show the validity of our method by applying it to data from healthy controls (n = 14) enabling differentiation between the conditions of a visual checkerboard task. Second, we show that high‐accuracy single subject classification of patients with schizophrenia (n = 40) and healthy controls (n = 40) is possible based on temporal patterns of fNIRS data measured during a working memory task. For classification, we integrate spatial and temporal information at each channel to estimate overall classification accuracy. This yields an overall accuracy of 76% which is comparable to the highest ever achieved in biomarker‐based classification of patients with schizophrenia. In summary, the proposed algorithm in combination with fNIRS measurements enables the analysis of sub‐second, multivariate temporal patterns of BOLD responses and high‐accuracy predictions based on low‐cost, easy‐to‐use fNIRS patterns. In addition, our approach can easily compensate for variable class priors, which is highly advantageous in making predictions in a wide range of clinical neuroimaging applications. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tim Hahn
- Department of Cognitive Psychology II, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rose EJ, Greene C, Kelly S, Morris DW, Robertson IH, Fahey C, Jacobson S, O'Doherty J, Newell FN, McGrath J, Bokde A, Garavan H, Frodl T, Gill M, Corvin AP, Donohoe G. The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals. Neuroimage 2011; 60:614-22. [PMID: 22227051 DOI: 10.1016/j.neuroimage.2011.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
A common polymorphism within the nitric oxide sythanse-1 (NOS1) gene (rs6490121), initially identified as risk variant for schizophrenia, has been associated with variation in working memory and IQ. Here we investigated how this variation might be mediated at the level of brain structure and function. In healthy individuals (N=157), voxel based morphometry was used to compare grey matter (GM) volume between homozygous and heterozygous carriers of the 'G' allele (i.e. the allele associated with impaired cognition and schizophrenia risk) and homozygous carriers of the non-risk 'A' allele. Functional brain imaging data were also acquired from 48 participants during performance of a spatial working memory (SWM) task, and analysed to determine any effect of NOS1 risk status. An a priori region-of-interest analysis identified a significant reduction in ventromedial prefrontal GM volume in 'G' allele carriers. Risk carriers also exhibited altered patterns of activation in the prefrontal cortex, caudate, and superior parietal lobe, which were characteristic of abnormal increases in activation in frontoparietal working memory networks and a failure to disengage regions of the default mode network. These functional changes suggest a NOS1-mediated processing inefficiency, which may contribute to cognitive dysfunction in schizophrenia. While the mechanisms by which NOS1 may influence brain structure and/or function have not yet been well delineated, these data provide further evidence for a role of NOS1 in risk for schizophrenia via an impact upon cognitive function.
Collapse
Affiliation(s)
- Emma J Rose
- Neuropsychiatric Genetics Research Group & Institute of Molecular Medicine, Department of Psychiatry, Trinity College Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|