1
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Turney SE, Bullock LP, Price RM, Gass JT, Brown RW. Modulation of mGlu5 reduces rewarding associative properties of nicotine via changes in mesolimbic plasticity: Relevance to comorbid cigarette smoking in psychosis. Pharmacol Biochem Behav 2024; 239:173752. [PMID: 38521210 PMCID: PMC11088493 DOI: 10.1016/j.pbb.2024.173752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
RATIONALE Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Seth E Turney
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Luke P Bullock
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Robert M Price
- Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America.
| |
Collapse
|
2
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
3
|
Kim JS, Kim OH, Ryu IS, Kim YH, Jeon KO, Lim LN, Kim TW, Sohn S, Kim S, Seo JW, Choe ES, Jang EY. Challenge exposure to whole cigarette smoke condensate upregulates locomotor sensitization by stimulating α4β2 nicotinic acetylcholine receptors in the nucleus accumbens of rats. Pharmacol Biochem Behav 2022; 220:173469. [PMID: 36183870 DOI: 10.1016/j.pbb.2022.173469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Nicotine, the primary addictive substance in tobacco, produces the psychomotor, rewarding, and reinforcing effects of tobacco dependence by stimulating nicotinic acetylcholine receptors (nAChRs) in the brain. The present study determined that α4β2 nAChRs regulate locomotor sensitization by altering dopamine concentration in the nucleus accumbens (NAc) after systemic challenge exposure to whole cigarette smoke condensate (WCSC). Rats were administered subcutaneous injection of WCSC (0.2 mg/kg nicotine/day) for 7 consecutive days and then re-exposed to WCSC after 3 days of withdrawal. Challenge exposure to WCSC significantly increased locomotor activity. This increase was decreased by the subcutaneous injection of the α4β2 nAChR antagonist, DHβE (3 mg/kg), but not by the intraperitoneal injection of the α7 nAChR antagonist, MLA (5 mg/kg). In parallel with a decrease in locomotor activity, blockade of α4β2 nAChRs with DHβE decreased dopamine concentration in the NAc which was elevated by challenge exposure to WCSC. These findings suggest that challenge WCSC leads to the expression of locomotor sensitization by elevating dopamine concentration via stimulation of α4β2 nAChRs expressed in neurons of the NAc in rats.
Collapse
Affiliation(s)
- Ji Sun Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - In Soo Ryu
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Yong-Hyun Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea; Department of Environment & Energy, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental and Resources-Energy Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kyung Oh Jeon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Li-Na Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Tae Wan Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sumin Sohn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Sunghyun Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
4
|
Li HC, Zhang JM, Xu R, Wang YH, Xu W, Chen R, Wan XM, Zhang HL, Wang L, Wang XJ, Jiang LH, Liu B, Zhao Y, Chen YY, Dai YP, Li M, Zhang HQ, Yang Z, Bai L, Zhang J, Wang HB, Tian JW, Zhao YL, Cen XB. mTOR regulates cocaine-induced behavioural sensitization through the SynDIG1-GluA2 interaction in the nucleus accumbens. Acta Pharmacol Sin 2022; 43:295-306. [PMID: 34522005 PMCID: PMC8792044 DOI: 10.1038/s41401-021-00760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/08/2021] [Indexed: 02/05/2023] Open
Abstract
Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.
Collapse
Affiliation(s)
- Hong-chun Li
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jia-mei Zhang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Rui Xu
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yong-hai Wang
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Wei Xu
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Rong Chen
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xue-mei Wan
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hao-luo Zhang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Liang Wang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiao-jie Wang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lin-hong Jiang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bin Liu
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Ying Zhao
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuan-yuan Chen
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yan-ping Dai
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Min Li
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hua-qin Zhang
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhen Yang
- grid.13291.380000 0001 0807 1581Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lin Bai
- grid.13291.380000 0001 0807 1581Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- grid.13291.380000 0001 0807 1581Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hong-bo Wang
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Jing-wei Tian
- grid.440761.00000 0000 9030 0162Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Ying-lan Zhao
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Xiao-bo Cen
- grid.13291.380000 0001 0807 1581National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
5
|
Incomplete reminder cues trigger memory reconsolidation and sustain learned immune responses. Brain Behav Immun 2021; 95:115-121. [PMID: 33691148 DOI: 10.1016/j.bbi.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral immune responses can be modulated by taste-immune associative learning where the presentation of a sweet taste as conditioned stimulus (CS) is paired with the injection of an immunosuppressive substance as unconditioned stimulus (US). Previous findings demonstrate conditioned immunopharmacological properties of the mechanistic target of rapamycin (mTOR)-inhibitor rapamycin, a drug used to ameliorate neurological diseases and for the prevention of graft rejection. However, conditioned responses gradually weaken over time and eventually disappear following repeated exposure to the CS in the absence of the US. Thus, in order to employ learning paradigms in clinical conditions as supportive immunopharmacological therapy it is important to understand the central and peripheral mechanisms of how learned immune responses can be protected from extinction. Against this background, the present study used a taste-immune learning paradigm with rapamycin as US (5 mg/kg). By applying only 10% (0.5 mg/kg) of the therapeutic dose rapamycin together with the CS (taste stimulus) during eight retrieval trials, conditioned animals still displayed suppressed interleukin-10 production and T cell proliferation in splenocytes as well as diminished activity of the mTOR target protein p70s6k in amygdala tissue samples. Together, these findings indicate that reminder cues in form of only 10% (0.5 mg/kg) of the therapeutic dose rapamycin together with the CS (taste stimulus) at retrieval preserved the memory of conditioned properties of rapamycin, characterizing this approach as a potential supportive tool in peripheral and central pharmacotherapy with the aim to maximize the therapeutic outcome for the patient's benefit.
Collapse
|
6
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
7
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
8
|
Ucha M, Coria SM, Núñez AE, Santos-Toscano R, Roura-Martínez D, Fernández-Ruiz J, Higuera-Matas A, Ambrosio E. Morphine self-administration alters the expression of translational machinery genes in the amygdala of male Lewis rats. J Psychopharmacol 2019; 33:882-893. [PMID: 30887859 DOI: 10.1177/0269881119836206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Addiction is a chronic disorder with a high risk of relapse. The neural mechanisms mediating addictions require protein synthesis, which could be relevant for the development of more effective treatments. The mTOR signaling pathway regulates protein synthesis processes that have recently been linked to the development of drug addiction. AIMS To assess the effects of morphine self-administration and its subsequent extinction on the expression of several genes that act in this pathway, and on the levels of specific phosphoproteins (Akt, Gsk3α/β, mTOR, PDK1 and p70 S6 kinase) in the amygdala, nucleus accumbens, and the prefrontal cortex. METHODS Male Lewis rats underwent morphine self-administration (1 mg/kg) for 19 days. They subsequently were submitted to extinction training for 15 days. Rats were killed either after self-administration or extinction, their brains extracted, and gene expression or phosphoprotein levels were assessed. RESULTS We found an increase in Raptor and Eif4ebp2 expression in the amygdala of rats that self-administered morphine, even after extinction. The expression of Insr in the amygdala of control animals decreased over time while the opposite effect was seen in the rats that self-administered morphine. CONCLUSIONS Our results suggest that morphine self-administration affects the gene expression of some elements of the translational machinery in the amygdala.
Collapse
Affiliation(s)
- Marcos Ucha
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Santiago M Coria
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Adrián E Núñez
- 2 Laboratorio de Neuropsicología de las Adicciones, Universidad de Guadalajara, Zapopan, México
| | - Raquel Santos-Toscano
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
- 3 School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | | | - Javier Fernández-Ruiz
- 4 Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- 5 CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Emilio Ambrosio
- 1 Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| |
Collapse
|
9
|
Li S, Guan S, Wang Y, Cheng L, Yang Q, Tian Z, Zhao M, Wang X, Feng B. Nicotine inhibits rapamycin-induced pain through activating mTORC1/S6K/IRS-1-related feedback inhibition loop. Brain Res Bull 2019; 149:75-85. [PMID: 31005665 DOI: 10.1016/j.brainresbull.2019.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) inhibitors increase the incidence of pain in patients, and this finding has been replicated in animal models. However, reports on possible analgesics for this condition are scant. Accumulating evidence finds that nicotinic acetylcholine receptors (nAChRs) are involved in mediating pain. However, whether nicotine, a full agonist of nAChRs, alleviates mTORC1 inhibition-induced pain and its underlying mechanisms remain unknown. In this study, pain was induced in naïve male C57BL/6J mice by intraperitoneally injecting rapamycin acutely or repeatedly. Subsequently, pain thresholds, including mechanical and thermal pain, were measured. The involving signaling pathway was tested using western blot analysis and immunofluorescent assay. Changes in neuronal excitability caused by different treatments were also analyzed using whole-cell recording. Microinjection into the anterior cingulate cortex (ACC) was used to test the role of nAChRs containing the α4β2 or α7 subtype in this brain region in pain modulation. Our results showed that nicotine significantly reduced hyperalgesia in mice that received acute or repeated rapamycin injections, and reversed the effects of rapamycin on the phosphorylation of S6K, 4E-BP1, insulin receptor substrate-1 (IRS-1) at Ser636/639, AKT at Ser473, and ERK at Thr202/Tyr204. Whole-cell recording results showed that nicotine reduced the firing rates of pyramidal neurons in the ACC, and a pharmacological blockade of nAChRs containing the α4β2 or α7 subtype in ACC inhibited the antinociceptive effects of nicotine in mice with rapamycin-induced pain. Our findings indicate that analgesics targeting nAChRs can be developed to help patients with rapamycin-induced pain.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shaoyu Guan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yurong Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lifei Cheng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiaojuan Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Sharp BM. Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans. Eur J Neurosci 2018; 50:2247-2254. [PMID: 29802666 DOI: 10.1111/ejn.13970] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
The amygdala is involved in processing incoming information about rewarding stimuli and emotions that denote danger such as anxiety and fear. Bi-directional neural connections between basolateral amygdala (BLA) and brain regions such as nucleus accumbens, prefrontal cortex, hippocampus, and hindbrain regions regulate motivation, cognition, and responses to stress. Altered local regulation of BLA excitability is pivotal to the behavioral disturbances characteristic of posttraumatic stress disorder, and relapse to drug use induced by stress. Herein, we review the physiological regulation of BLA by cholinergic inputs, emphasizing the role of BLA nicotinic receptors. We review BLA-dependent effects of nicotine on cognition, motivated behaviors, and emotional states, including memory, taking and seeking drugs, and anxiety and fear in humans and animal models. The alterations in BLA activity observed in animal studies inform human behavioral and brain imaging research by enabling a more exact understanding of altered BLA function. Converging evidence indicates that cholinergic signaling from basal forebrain projections to local nicotinic receptors is an important physiological regulator of BLA and that nicotine alters BLA function. In essence, BLA is necessary for behavioral responses to stimuli that evoke anxiety and fear; reinstatement of cue-induced drug seeking; responding to second-order cues conditioned to abused drugs; reacquisition of amplified nicotine self-administration due to chronic stress during abstinence; and to promote responding for natural reward.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
11
|
Hadamitzky M, Herring A, Kirchhof J, Bendix I, Haight MJ, Keyvani K, Lückemann L, Unteroberdörster M, Schedlowski M. Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. Int J Neuropsychopharmacol 2018; 21:592-602. [PMID: 29462337 PMCID: PMC6007742 DOI: 10.1093/ijnp/pyy017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical data indicate that therapy with small-molecule immunosuppressive drugs is frequently accompanied by an incidence rate of neuropsychiatric symptoms. In the current approach, we investigated in rats whether repeated administration of rapamycin, reflecting clinical conditions of patients undergoing therapy with this mammalian target of rapamycin inhibitor, precipitates changes in neurobehavioral functioning. METHODS Male adult Dark Agouti rats were daily treated with i.p. injections of rapamycin (1, 3 mg/kg) or vehicle for 8 days. On days 6 and 7, respectively, behavioral performance in the Elevated Plus-Maze and the Open-Field Test was evaluated. One day later, amygdala tissue and blood samples were taken to analyze protein expression ex vivo. RESULTS The results show that animals treated with rapamycin displayed alterations in Elevated Plus-Maze performance with more pronounced effects in the higher dose group. Besides, an increase in glucocorticoid receptor density in the amygdala was seen in both treatment groups even though p-p70 ribosomal S6 kinase alpha, a marker for mammalian target of rapamycin functioning, was not affected. Protein level of the neuronal activity marker c-Fos was again only elevated in the higher dose group. Importantly, effects occurred in the absence of acute peripheral neuroendocrine changes. CONCLUSIONS Our findings indicate that anxiety-related behavior following rapamycin treatment was not directly attributed to mTOR-dependent mechanisms or stress but rather due to hyperexcitability of the amygdala together with glucocorticoid receptor-regulated mechanism(s) in this brain region. Together, the present results support the contention that subchronic treatment with rapamycin may induce neurobehavioral alterations in healthy, naive subjects. We here provide novel insights in central effects of systemic rapamycin in otherwise healthy subjects but also raise the question whether therapy with this drug may have detrimental effects on patients' neuropsychological functioning during immune therapy.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Correspondence: Martin Hadamitzky, PhD, Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ()
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia Kirchhof
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Haight
- Department of Anesthesia, School of Medicine, University of San Francisco, San Francisco CA
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry 2017; 7:e1194. [PMID: 28786979 PMCID: PMC5611728 DOI: 10.1038/tp.2017.161] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.
Collapse
Affiliation(s)
- B M Sharp
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
13
|
Mijakowska Z, Łukasiewicz K, Ziółkowska M, Lipiński M, Trąbczyńska A, Matuszek Ż, Łęski S, Radwanska K. Autophosphorylation of alpha isoform of calcium/calmodulin-dependent kinase II regulates alcohol addiction-related behaviors. Addict Biol 2017; 22:331-341. [PMID: 26572936 DOI: 10.1111/adb.12327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/03/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022]
Abstract
The development of addiction is associated with a dysregulation of glutamatergic transmission in the brain reward circuit. α isoform of calcium/calmodulin-dependent kinase II (αCaMKII) is one of the key proteins that regulates structural and functional plasticity of glutamatergic synapses. αCaMKII activity can be controlled by the autophosphorylation of threonine 286. The role of this autophosphorylation in the regulation of addiction-related behaviors has been proposed but is still poorly understood. Here, using αCaMKII autophosphorylation-deficient mutant mice (T286A), we show that, in comparison with wild-type animals, they are less resistant to high doses of alcohol and do not show psychostimulant response neither to alcohol injections nor during voluntary alcohol drinking. T286A mutants are also less prone to develop alcohol addiction-related behaviors including an increased motivation for alcohol, persistent alcohol seeking during withdrawal and alcohol consumption on relapse. Finally, we demonstrate that αCaMKII autophosphorylation regulates also alcohol-induced remodeling of glutamatergic synapses in the hippocampus and amygdala. In conclusion, our data suggest that αCaMKII autophosphorylation-dependent remodeling of glutamatergic synapses is a plausible mechanism for the regulation of the alcohol addiction-related behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Szymon Łęski
- Nencki Institute of Experimental Biology; Poland
| | | |
Collapse
|
14
|
Rahman S, Engleman EA, Bell RL. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:183-201. [PMID: 26810002 PMCID: PMC4754113 DOI: 10.1016/bs.pmbts.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA.
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|