1
|
Filatova TS, Dzhumaniiazova I, Abramochkin DV. The metamorphosis of amphibian myocardium: moving to the heart of the matter. J Exp Biol 2024; 227:jeb247712. [PMID: 38916053 DOI: 10.1242/jeb.247712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/26/2024]
Abstract
Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| |
Collapse
|
2
|
Herrboldt MA, Wright CNC, Bonett RM. Seasonal heterochrony of reproductive development and gene expression in a polymorphic salamander. Dev Dyn 2024. [PMID: 39360498 DOI: 10.1002/dvdy.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Life cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue-specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. RESULTS We found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. CONCLUSION This study provides an example of how seasonal heterochronic shifts in tissue-specific ar gene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits.
Collapse
Affiliation(s)
| | - Claire N C Wright
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA
| | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA
| |
Collapse
|
3
|
Manthey C, Metcalf CJE, Monaghan MT, Steiner UK, Rolff J. Rapid growth and the evolution of complete metamorphosis in insects. Proc Natl Acad Sci U S A 2024; 121:e2402980121. [PMID: 39250668 PMCID: PMC11420152 DOI: 10.1073/pnas.2402980121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
More than 50% of all animal species are insects that undergo complete metamorphosis. The key innovation of these holometabolous insects is a pupal stage between the larva and adult when most structures are completely rebuilt. Why this extreme lifestyle evolved is unclear. Here, we test the hypothesis that a trade-off between growth and differentiation explains the evolution of this novelty. Using a comparative approach, we find that holometabolous insects grow much faster than hemimetabolous insects. Using a theoretical model, we then show how holometaboly evolves under a growth-differentiation trade-off and identify conditions under which such temporal decoupling of growth and differentiation is favored. Our work supports the notion that the holometabolous life history evolved to remove developmental constraints on fast growth, primarily under high mortality.
Collapse
Affiliation(s)
- Christin Manthey
- Evolutionary Biology, Institue of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08540
| | - Michael T. Monaghan
- Evolutionary Biology, Institue of Biology, Freie Universität Berlin, Berlin14195, Germany
- Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
| | - Ulrich K. Steiner
- Evolutionary Biology, Institue of Biology, Freie Universität Berlin, Berlin14195, Germany
- Evolutionary Demography, Institute of Biology, Freie Univeristät Berlin, Berlin14195, Germany
| | - Jens Rolff
- Evolutionary Biology, Institue of Biology, Freie Universität Berlin, Berlin14195, Germany
| |
Collapse
|
4
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
5
|
Lyons TA, Arbuckle K. The neoteny goldilocks zone: The evolution of neoteny in Ambystoma. Ecol Evol 2024; 14:e11240. [PMID: 38590547 PMCID: PMC10999947 DOI: 10.1002/ece3.11240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Neoteny is a developmental strategy wherein an organism reaches sexual maturity without associated adult characteristics. In salamanders, neoteny takes the form of individuals retaining aquatic larval characteristics such as external gills upon maturation. Mole salamanders (Ambystoma) occupy a wide range of habitats and areas across the North American continent, and display examples of non-neotenic, facultatively neotenic and obligate neotenic species, providing high variation for investigating the factors influencing the evolution of neoteny. Here, we use phylogenetic comparative methods to test existing hypotheses that neoteny is associated with elevational and latitudinal distribution, cave-associated isolation, and hybridisation-related polyploidy. We also test if neoteny influences the diversity of habitats a species can occupy, since the restriction to an aquatic life should constrain the availability of different niches. We find that neoteny tends to occur in a narrow latitudinal band between 20-30° North, with particularly narrow latitudinal ranges for obligate compared to facultative neotenic species (16-52° North). We also find that facultatively neotenic species occur at elevations more than twice as high as other species on average, and that species with a higher frequency of neoteny typically have lower habitat diversity. Our results suggest that evolutionary transitions between non-neotenic and facultative neoteny states occur at relatively high and approximately equal rates. Moreover, we estimate that obligate neoteny cannot evolve directly from non-neotenic species (and vice versa), such that facultative neoteny acts as an evolutionary 'stepping stone' to and from obligate neoteny. However, our transition rate estimates suggest that obligate neoteny is lost >4-times faster than it evolves, partly explaining the rarity of obligate species. These results support the hypothesis that low latitudes favour the evolution of neoteny, presumably linked to more stable (aquatic) environments due to reduced seasonality, but once evolved it may constrain the diversity of habitats.
Collapse
Affiliation(s)
- Thom A. Lyons
- Department of Biosciences, Faculty of Science and EngineeringSwansea UniversitySwanseaUK
| | - Kevin Arbuckle
- Department of Biosciences, Faculty of Science and EngineeringSwansea UniversitySwanseaUK
| |
Collapse
|
6
|
Cayuela H, Lackey ACR, Ronget V, Monod-Broca B, Whiteman HH. Polyphenism predicts actuarial senescence and lifespan in tiger salamanders. J Anim Ecol 2024; 93:333-347. [PMID: 38279640 DOI: 10.1111/1365-2656.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/08/2023] [Indexed: 01/28/2024]
Abstract
Actuarial senescence (called 'senescence' hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among-individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism-the unique sub-type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype-may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature. In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander, Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture-recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture-recapture models and Bayesian age-dependent survival models. Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age-dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late-breeding females also lived longer but showed a senescence rate similar to that of early-breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late-breeding males lived longer but, unexpectedly, had higher senescence than early-breeding males. Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.
Collapse
Affiliation(s)
- Hugo Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
- Department of Biological Sciences and Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| | - Victor Ronget
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Benjamin Monod-Broca
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Howard H Whiteman
- Department of Biological Sciences and Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| |
Collapse
|
7
|
Francois C, Schilliger L, Eberlé O, Delavenne C, Paillusseau C. GROSS AND ULTRASONOGRAPHIC ANATOMY OF THE COELOMIC ORGANS OF HEALTHY AXOLOTLS ( AMBYSTOMA MEXICANUM). J Zoo Wildl Med 2024; 54:670-680. [PMID: 38251990 DOI: 10.1638/2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 01/23/2024] Open
Abstract
The objectives of this study were to describe the gross anatomy and ultrasonographic appearance of coelomic organs in subadult and adult axolotls (Ambystoma mexicanum), to describe an ultrasound technique, and to test correlations of ultrasonographic measurement with body length, width, and weight. Necropsies of coelomic organs were conducted on 10 axolotls (females = 5; males = 5) and ultrasound on 11 (males = 5; females = 6). Animals were kept in water and maintained conscious during ultrasound. The heart, caudal vena cava, liver, gallbladder, spleen, esophagus, stomach, colon, kidneys, ovaries, and fat bodies were identified in all study subjects, although testicles were identified in only 6/7 subjects. The pancreas and adrenal glands could not be identified in any animals, either during necropsy or ultrasonography. Coelomic and pericardial effusion was present in all animals. Ultrasonographic measurements of the liver, spleen, myocardial thickness, and right and left kidney length were highly repeatable (correlation value [CV] < 5%) and the esophagus, spleen, caudal vena cava, fat bodies, gallbladder, colon thickness, right kidney height and width, and right testicle diameter were statistically repeatable (CV < 10%).
Collapse
Affiliation(s)
| | | | - Olivia Eberlé
- Diagnostic Imaging Unit, VetAgro Sup, Marcy l'Étoile 69280, France
| | | | | |
Collapse
|
8
|
Kirk MA, Reider KE, Lackey ACR, Thomas SA, Whiteman HH. The role of environmental variation in mediating fitness trade-offs for an amphibian polyphenism. J Anim Ecol 2023; 92:1815-1827. [PMID: 37353993 DOI: 10.1111/1365-2656.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Fitness trade-offs are a foundation of ecological and evolutionary theory because trade-offs can explain life history variation, phenotypic plasticity, and the existence of polyphenisms. Using a 32-year mark-recapture dataset on lifetime fitness for 1093 adult Arizona tiger salamanders (Ambystoma mavortium nebulosum) from a high elevation, polyphenic population, we evaluated the extent to which two life history morphs (aquatic paedomorphs vs. terrestrial metamorphs) exhibited fitness trade-offs in breeding and body condition with respect to environmental variation (e.g. climate) and internal state-based variables (e.g. age). Both morphs displayed a similar response to higher probabilities of breeding during years of high spring precipitation (i.e. not indicative of a morph-specific fitness trade-off). There were likely no climate-induced fitness trade-offs on breeding state for the two life history morphs because precipitation and water availability are vital to amphibian reproduction. Body condition displayed a contrasting response for the two morphs that was indicative of a climate-induced fitness trade-off. While metamorphs exhibited a positive relationship with summer snowpack conditions, paedomorphs were unaffected. Fitness trade-offs from summer snowpack are likely due to extended hydroperiods in temporary ponds, where metamorphs gain a fitness advantage during the summer growing season by exploiting resources that are unavailable to paeodomorphs. However, paedomorphs appear to have the overwintering fitness advantage because they consistently had higher body condition than metamorphs at the start of the summer growing season. Our results reveal that climate and habitat type (metamorphs as predominately terrestrial, paedomorphs as fully aquatic) interact to confer different advantages for each morph. These results advance our current understanding of fitness trade-offs in this well-studied polyphenic amphibian by integrating climate-based mechanisms. Our conclusions prompt future studies to explore how climatic variation can maintain polyphenisms and promote life history diversity, as well as the implications of climate change for polyphenisms.
Collapse
Affiliation(s)
- Mark A Kirk
- Watershed Studies Institute and Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Environmental Science and Sustainability Department, Allegheny College, Meadville, Pennsylvania, USA
| | - Kelsey E Reider
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Scott A Thomas
- Watershed Studies Institute and Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
| | - Howard H Whiteman
- Watershed Studies Institute and Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| |
Collapse
|
9
|
Brooks OL, Talbott‐Swain EN, Rimmele BN, Dugas MB. Tadpole plasticity shapes the potential benefits of egg feeding to poison frog parents. Ethology 2023. [DOI: 10.1111/eth.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Olivia L. Brooks
- School of Biological Sciences Illinois State University Normal Illinois USA
| | | | - Brianne N. Rimmele
- School of Biological Sciences Illinois State University Normal Illinois USA
| | - Matthew B. Dugas
- School of Biological Sciences Illinois State University Normal Illinois USA
| |
Collapse
|
10
|
Lisi PJ, Hogan JD, Holt G, Moody KN, Wren JLK, Kobayashi DR, Blum MJ, McIntyre PB. Stream and ocean hydrodynamics mediate partial migration strategies in an amphidromous Hawaiian goby. Ecology 2022; 103:e3800. [PMID: 35726198 PMCID: PMC9788201 DOI: 10.1002/ecy.3800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adult Awaous stamineus were freshwater residents (62% of n = 316 in 2009, 83% of n = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater-resident versus ocean-going larvae are plausible mechanisms for range-wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes in A. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.
Collapse
Affiliation(s)
- Peter J. Lisi
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA,Washington Department of Fish and WildlifeMill CreekWashingtonUSA
| | - J. Derek Hogan
- Department of Life SciencesTexas A&M University–Corpus ChristiCorpus ChristiTexasUSA
| | - Galen Holt
- Centre for Regional and Rural FuturesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Kristine N. Moody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA,Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA,Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Johanna L. K. Wren
- Department of OceanographySchool of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at MānoaHonoluluHawaiʻiUSA,Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRCHonoluluHawaiʻiUSA
| | - Donald R. Kobayashi
- Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRCHonoluluHawaiʻiUSA
| | - Michael J. Blum
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA,Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Peter B. McIntyre
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA,Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
11
|
Toli EA, Bounas A, Merilä J, Sotiropoulos K. Genetic diversity and detection of candidate loci associated with alternative morphotypes in a tailed amphibian. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Phenotypic changes in response to environmental cues allow organisms to adapt and enhance their fitness in a given habitat. Despite the significance of phenotypic plasticity in the evolution and ecology of natural populations and the ongoing development of new genomic tools, the underlying genetic basis is still largely unknown. Herein, we examined the underlying mechanisms of genetic and phenotypic divergence among alternative morphs of a natural population of the Greek smooth newt (Lissotriton graecus). The studied population consists of fully aquatic individuals exhibiting facultative paedomorphosis, the retention of larval traits such as gills, and individuals that have passed metamorphosis (paedomorphic vs. metamorphic newts). Based on the single nucleotide polymorphisms (SNPs) obtained, we observed low genetic divergence between the two alternative morphs and similar levels of gene diversity on neutral markers. Despite the observed high gene flow between the morphs, an Fst approach for outliers detected candidate loci putatively associated with the alternative morphs that mapped to four genes. These identified genes have functional roles in metabolic processes that may mediate the persistence of alternative ontogenetic trajectories.
Collapse
Affiliation(s)
- Elisavet A Toli
- Molecular Ecology and Conservation Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina , 45110 Ioannina , Greece
| | - Anastasios Bounas
- Molecular Ecology and Conservation Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina , 45110 Ioannina , Greece
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki , 00014 Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, The University of Hong Kong , Hong Kong SAR
| | - Konstantinos Sotiropoulos
- Molecular Ecology and Conservation Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina , 45110 Ioannina , Greece
| |
Collapse
|
12
|
Abstract
Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.
Collapse
|
13
|
Bohenek JR, Pintar MR, Breech TM, Resetarits WJ. A wolf in sheep's clothing: Predatory fish have convergent consumptive effects but divergent predation‐risk effects. Ecosphere 2022. [DOI: 10.1002/ecs2.4073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jason R. Bohenek
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| | - Matthew R. Pintar
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| | - Tyler M. Breech
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| | - William J. Resetarits
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| |
Collapse
|
14
|
Bonett RM, Ledbetter NM. Paedomorphic salamanders are larval in form and patterns of limb emergence inform life cycle evolution. Dev Dyn 2022; 251:934-941. [PMID: 35443096 DOI: 10.1002/dvdy.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Amphibians undergo a variety of post-embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH-based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question: "Are paedomorphs actual larvae?". To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | | |
Collapse
|
15
|
Tunnah L, Wilson JM, Wright PA. Retention of larval skin traits in adult amphibious killifishes: a cross-species investigation. J Comp Physiol B 2022; 192:473-488. [PMID: 35441298 DOI: 10.1007/s00360-022-01436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
The gills are the primary site of exchange in fishes. However, during early life-stages or in amphibious fishes, ionoregulation and gas-exchange may be primarily cutaneous. Given the similarities between larval and amphibious fishes, we hypothesized that cutaneous larval traits are continuously expressed in amphibious fishes across all life-stages to enable the skin to be a major site of exchange on land. Alternatively, we hypothesized that cutaneous larval traits disappear in juvenile stages and are re-expressed in amphibious species in later life-stages. We surveyed six species spanning a range of amphibiousness and characterized cutaneous ionocytes and neuroepithelial cells (NECs) as representative larval skin traits at up to five stages of development. We found that skin ionocyte density remained lower and constant in exclusively water-breathing, relative to amphibious species across development, whereas in amphibious species ionocyte density generally increased. Additionally, adults of the most amphibious species had the highest cutaneous ionocyte densities. Surprisingly, cutaneous NECs were only identified in the skin of one amphibious species (Kryptolebias marmoratus), suggesting that cutaneous NECs are not a ubiquitous larval or amphibious skin trait, at least among the species we studied. Our data broadly supports the continuous-expression hypothesis, as three of four amphibious experimental species expressed cutaneous ionocytes in all examined life-stages. Further, the increasing density of cutaneous ionocytes across development in amphibious species probably facilitates the prolonged occupation of terrestrial habitats.
Collapse
Affiliation(s)
- Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
16
|
Okamiya H, Sugime R, Furusawa C, Inoue Y, Kishida O. Paedomorphosis in the Ezo salamander (Hynobius retardatus) rediscovered after almost 90 years. ZOOLOGICAL LETTERS 2021; 7:14. [PMID: 34876208 PMCID: PMC8653548 DOI: 10.1186/s40851-021-00183-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Although paedomorphosis is widespread across salamander families, only two species have ever been documented to exhibit paedomorphosis in Hynobiidae. One of these two exceptional species is Hynobius retardatus in which paedomorphosis was first reported in 1924, in specimens from Lake Kuttara in Hokkaido. This population became extinct after the last observation in 1932; since then, no paedomorphs of this species have been reported anywhere. Here, we report the rediscovery of paedomorphs of this species. Three paedomorph-like male salamanders were collected from a pond in the south Hokkaido in December 2020 and April 2021; in size, these specimens were similar to metamorphosed adults but they still displayed larval features such as external gills and a well-developed caudal fin. An artificial fertilization experiment demonstrated that they were sexually compatible with metamorphosed females, thus, confirming them to be paedomorphs. Future efforts to find additional paedomorphs in this and other populations are required to assess the prevalence of paedomorphosis in H. retardatus and to improve understanding of the ecology and evolution of paedomorphisis in Urodela.
Collapse
Affiliation(s)
- Hisanori Okamiya
- Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai Japan
| | - Ryohei Sugime
- Graduate School of Environmental Science, Hokkaido University, Takaoka, Tomakomai Japan
| | - Chiharu Furusawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, N10W5 Japan
| | - Yoshihiro Inoue
- Graduate School of Environmental Science, Hokkaido University, Takaoka, Tomakomai Japan
| | - Osamu Kishida
- Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai Japan
| |
Collapse
|
17
|
Whitney MR, Pierce SE. Osteohistology of Greererpeton provides insight into the life history of an early Carboniferous tetrapod. J Anat 2021; 239:1256-1272. [PMID: 34310687 PMCID: PMC8602017 DOI: 10.1111/joa.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022] Open
Abstract
The vertebrate transition to land is one of the most consequential, yet poorly understood periods in tetrapod evolution. Despite the importance of the water-land transition in establishing modern ecosystems, we still know very little about the life histories of the earliest tetrapods. Bone histology provides an exceptional opportunity to study the biology of early tetrapods and has the potential to reveal new insights into their life histories. Here, we examine the femoral bone histology from an ontogenetic series of Greererpeton, an early tetrapod from the Middle-Late Mississippian (early Carboniferous) of North America. Thin-sections and micro-CT data show a moderately paced rate of bone deposition with significant cortical thickening through development. An interruption to regular bone deposition, as indicated by a zone of avascular tissue and growth marks, is notable at the same late juvenile stage of development throughout our sample. This suggests that an inherent aspect to the life history of juvenile Greererpeton resulted in a temporary reduction in bone deposition. We review several possible life history correlates for this bony signature including metamorphosis, an extended juvenile phase, environmental stress, and movement (migration/dispersal) between habitats. We argue that given the anatomy of Greererpeton, it is unlikely that events related to polymorphism (metamorphosis, extended juvenile phase) can explain the bony signature observed in our sample. Furthermore, the ubiquity of this signal in our sample indicates a taxon-level rather than a population-level trait, which is expected for an environmental stress. We conclude that movement via dispersal represents a likely correlate, as such events are a common life history strategy of aquatically bound vertebrates.
Collapse
Affiliation(s)
- Megan R. Whitney
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| |
Collapse
|
18
|
Oxidative Stress Parameters in Goitrogen-Exposed Crested Newt Larvae ( Triturus spp.): Arrested Metamorphosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189653. [PMID: 34574576 PMCID: PMC8464833 DOI: 10.3390/ijerph18189653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
Thiourea is an established disruptor of thyroid hormone synthesis and is frequently used as an inhibitor of metamorphosis. The changes caused by thiourea can affect processes associated with the oxidative status of individuals (metabolic rate, the HPI axis, antioxidant system). We investigated the parameters of oxidative stress in crested newt (Triturus spp.) larvae during normal development in late larval stage 62 and newly metamorphosed individuals, and during thiourea-stimulated metamorphosis arrest in individuals exposed to low (0.05%) and high (0.1%) concentrations of thiourea. Both groups of crested newts exposed to thiourea retained their larval characteristics until the end of the experiment. The low activities of antioxidant enzymes and the high lipid peroxidation level pointed to increased oxidative stress in larvae at the beginning of stage 62 as compared to fully metamorphosed individuals. The activities of catalase (CAT) and glutathione-S-transferase (GST) and the concentration of sulfhydryl (SH) groups were significantly lower in larvae reared in aqueous solutions containing thiourea than in newly metamorphosed individuals. The high thiourea concentration (0.1%) affected the antioxidative parameters to the extent that oxidative damage could not be avoided, contrary to a lower concentration. Our results provide a first insight into the physiological adaptations of crested newts during normal development and simulated metamorphosis arrest.
Collapse
|
19
|
Olejnickova V, Kolesova H, Bartos M, Sedmera D, Gregorovicova M. The Tale-Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum). Dev Dyn 2021; 251:1004-1014. [PMID: 34423892 DOI: 10.1002/dvdy.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND During amphibian metamorphosis, the crucial moment lies in the rearrangement of the heart, reflecting the changes in circulatory demands. However, little is known about the exact shifts linked with this rearrangement. Here, we demonstrate such myocardial changes in axolotl (Ambystoma mexicanum) from the morphological and physiological point of view. RESULTS Micro-CT and histological analysis showed changes in ventricular trabeculae organization, completion of the atrial septum and its connection to the atrioventricular valve. Based on Myosin Heavy Chain and Smooth Muscle Actin expression we distinguished metamorphosis-induced changes in myocardial differentiation at the ventricular trabeculae and atrioventricular canal. Using optical mapping, faster speed of conduction through the atrioventricular canal was demonstrated in metamorphic animals. No differences between the groups were observed in the heart rates, ventricular activation times, and activation patterns. CONCLUSIONS Transition from aquatic to terrestrial life-style is reflected in the heart morphology and function. Rebuilding of the axolotl heart during metamorphosis was connected with reorganization of ventricular trabeculae, completion of the atrial septum and its connection to the atrioventricular valve, and acceleration of AV conduction.
Collapse
Affiliation(s)
- Veronika Olejnickova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Hana Kolesova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Martin Bartos
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,First Faculty of Medicine, Institute of Dental Medicine, Charles University, Prague, Czech Republic
| | - David Sedmera
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Martina Gregorovicova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| |
Collapse
|
20
|
Bonett RM, Ledbetter NM, Hess AJ, Herrboldt MA, Denoël M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Dev Dyn 2021; 251:957-972. [PMID: 33991029 DOI: 10.1002/dvdy.373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | | | - Alexander J Hess
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Madison A Herrboldt
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Bohenek JR, Leary CJ, Resetarits WJ. Exposure to glucocorticoids alters life history strategies in a facultatively paedomorphic salamander. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:329-338. [PMID: 33465297 DOI: 10.1002/jez.2445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Polyphenisms, where two or more alternative, environmentally-cued phenotypes are produced from the same genotype, arise through variability in the developmental rate and timing of phenotypic traits. Many of these developmental processes are controlled or influenced by endogenous hormones, such as glucocorticoids, which are known to regulate a wide array of vertebrate ontogenetic transitions. Using the mole salamander, Ambystoma talpoideum, as a model, we investigated the role of glucocorticoids in regulating facultative paedomorphosis, an ontogenetic polyphenism where individuals may delay metamorphosis into terrestrial adults. Instead, individuals reproduce as aquatic paedomorphic adults. Paedomorphosis often occurs when aquatic conditions remain favorable, while metamorphosis typically occurs in response to deteriorating or "stressful" aquatic conditions. Since glucocorticoids are central to the vertebrate stress response and are known to play a central role in regulating obligate metamorphosis in amphibians, we hypothesized that they are key regulators of paedomorphic life history strategies. To test this hypothesis, we compared development of larvae in outdoor mesocosms exposed to Low, Medium, and High exogenous doses of corticosterone (CORT). Results revealed that body size and the proportion of paedomorphs were both inversely proportional to exogenous CORT doses and whole-body CORT content. Consistent with known effects of CORT on obligate metamorphosis in amphibians, our results link glucocorticoids to ontogenetic transitions in facultatively paedomorphic salamanders. We discuss our results in the context of theoretical models and the suite of environmental cues known to influence facultative paedomorphosis.
Collapse
Affiliation(s)
- Jason R Bohenek
- Department of Biology, The University of Mississippi University, MS, United States of America.,Centers for Water and Wetland Resources, and Biodiversity and Conservation Research, The University of Mississippi University, MS, United States of America
| | - Christopher J Leary
- Department of Biology, The University of Mississippi University, MS, United States of America
| | - William J Resetarits
- Department of Biology, The University of Mississippi University, MS, United States of America.,Centers for Water and Wetland Resources, and Biodiversity and Conservation Research, The University of Mississippi University, MS, United States of America
| |
Collapse
|
22
|
Lejeune B, Bissey L, Didaskalou EA, Sturaro N, Lepoint G, Denoël M. Progenesis as an intrinsic factor of ecological opportunity in a polyphenic amphibian. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Lejeune
- Laboratory of Ecology and Conservation of Amphibians (LECA) Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
- Laboratory of Oceanology Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| | - Lucie Bissey
- Laboratory of Ecology and Conservation of Amphibians (LECA) Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| | - Emilie Alexia Didaskalou
- Laboratory of Ecology and Conservation of Amphibians (LECA) Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| | - Nicolas Sturaro
- Laboratory of Oceanology Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| | - Gilles Lepoint
- Laboratory of Oceanology Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA) Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| |
Collapse
|
23
|
Relative size underlies alternative morph development in a salamander. Oecologia 2020; 193:879-888. [PMID: 32740730 DOI: 10.1007/s00442-020-04723-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/23/2020] [Indexed: 01/16/2023]
Abstract
Size thresholds commonly underlie the induction of alternative morphological states. However, the respective importance of absolute and relative size to such thresholds remains uncertain. If absolute size governs expression, morph frequency should differ among environments that influence absolute sizes (e.g. resources, competition), and individuals of the same morph should have similar average sizes across environments. If relative size determines expression, the frequency of each morph may not differ among environments, but morphs within each environment should differ in size relative to one another. We tested these predictions in a salamander (Ambystoma talpoideum) that develops into either a terrestrial metamorph or an aquatic paedomorph. To generate size variation within and among environments, we reared individuals in mesocosm ponds across three conspecific densities. We found that morph frequency did not differ among density treatments, and the morphs were not similarly sized within each density treatment. Instead, within each environment, relatively larger individuals became metamorphs and relatively smaller individuals became paedomorphs. Relative size therefore determined morph development, highlighting the importance of an individual's social context to size-dependent morph induction.
Collapse
|
24
|
Ten Brink H, Onstein RE, de Roos AM. Habitat deterioration promotes the evolution of direct development in metamorphosing species. Evolution 2020; 74:1826-1850. [PMID: 32524589 PMCID: PMC7496874 DOI: 10.1111/evo.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022]
Abstract
Although metamorphosis is widespread in the animal kingdom, several species have evolved life‐cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size‐structured consumer‐resource models in conjunction with the adaptive‐dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Fish Ecology & Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Renske E Onstein
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - André M de Roos
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Affiliation(s)
- Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| |
Collapse
|
26
|
Bonett RM, Hess AJ, Ledbetter NM. Facultative Transitions Have Trouble Committing, But Stable Life Cycles Predict Salamander Genome Size Evolution. Evol Biol 2020. [DOI: 10.1007/s11692-020-09497-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
A subtle threat: behavioral and phenotypic consequences of invasive mosquitofish on a native paedomorphic newt. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Schoch RR, Pogoda P, Kupfer A. The impact of metamorphosis on the cranial osteology of giant salamanders of the genus
Dicamptodon. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rainer R. Schoch
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Stuttgart Germany
| | - Peter Pogoda
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Stuttgart Germany
| | - Alexander Kupfer
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Stuttgart Germany
| |
Collapse
|
29
|
Capshaw G, Soares D, Carr CE. Bony labyrinth morphometry reveals hidden diversity in lungless salamanders (Family Plethodontidae): Structural correlates of ecology, development, and vision in the inner ear. Evolution 2019; 73:2135-2150. [PMID: 31436320 DOI: 10.1111/evo.13837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Lungless salamanders (Family Plethodontidae) form a highly speciose group that has undergone spectacular adaptive radiation to colonize a multitude of habitats. Substantial morphological variation in the otic region coupled with great ecological diversity within this clade make plethodontids an excellent model for exploring the ecomorphology of the amphibian ear. We examined the influence of habitat, development, and vision on inner ear morphology in 52 plethodontid species. We collected traditional and 3D geometric morphometric measurements to characterize variation in size and shape of the otic endocast and peripheral structures of the salamander ear. Phylogenetic comparative analyses demonstrate structural convergence in the inner ear across ecologically similar species. Species that dwell in spatially complex microhabitats exhibit robust, highly curved semicircular canals suggesting enhanced vestibular sense, whereas species with reduced visual systems demonstrate reduced canal curvature indicative of relaxed selection on the vestibulo-ocular reflex. Cave specialists show parallel enlargement of auditory-associated structures. The morphological correlates of ecology among diverse species reveal underlying evidence of habitat specialization in the inner ear and suggest that there exists physiological variation in the function of the salamander ear even in the apparent absence of selective pressures on the auditory system to support acoustic behavior.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Biology, University of Maryland, College Park, MD, 20742
| | - Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, 20742
| |
Collapse
|
30
|
Lackey ACR, Moore MP, Doyle J, Gerlanc N, Hagan A, Geile M, Eden C, Whiteman HH. Lifetime Fitness, Sex-Specific Life History, and the Maintenance of a Polyphenism. Am Nat 2019; 194:230-245. [DOI: 10.1086/704156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Denoël M, Drapeau L, Oromi N, Winandy L. The role of predation risk in metamorphosis versus behavioural avoidance: a sex-specific study in a facultative paedomorphic amphibian. Oecologia 2019; 189:637-645. [PMID: 30809707 DOI: 10.1007/s00442-019-04362-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Evolutionary theory predicts the evolution of metamorphosis over paedomorphosis (the retention of larval traits at the adult stage) in response to life in unfavourable habitats and to the benefits of dispersal. Although many organisms are canalised into obligatory complex or simple life cycles, some species of newts and salamanders can express both processes (facultative paedomorphosis). Previous research highlighted the detrimental effect of fish on both metamorphic and paedomorphic phenotypes, but it remains unknown whether predation risk could induce shifts from paedomorphosis to metamorphosis, whether behavioural avoidance could be an alternative strategy to metamorphosis and whether these responses could be sex-biased. Testing these hypotheses is important because metamorphosed paedomorphs are dispersal individuals which could favour the long-term persistence of the process by breeding subsequently in more favourable waters. Therefore, we quantified the spatial behaviour and timing of the metamorphosis of facultative paedomorphic palmate newts Lissotriton helveticus in response to predation risk. We found that fish induced both male and female paedomorphs to hide more often, but behavioural avoidance was not predictive of metamorphosis. Paedomorphs did not metamorphose more in the presence of fish, yet there was an interaction between sex and predation risk in metamorphosis timing. These results improve our understanding of the lower prevalence of paedomorphs in fish environments and of the female-biased sex ratios in natural populations of paedomorphic newts. Integrating sex-dependent payoffs of polyphenisms and dispersal across habitats is therefore essential to understand the evolution of these processes in response to environmental change.
Collapse
Affiliation(s)
- M Denoël
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium.
| | - L Drapeau
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium
| | - N Oromi
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium
| | - L Winandy
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium.,Laboratoire Evolution et Diversité Biologique, CNRS, UMR 5174, Université Paul Sabatier, Toulouse, France.,Station d'Ecologie Théorique et Expérimentale, CNRS UMR 5321, Moulis, France
| |
Collapse
|
32
|
Siegel DS, Long CL, Herrboldt M, Trauth SE. Comparative Histomorphology of Oviducts from Metamorphic and Paedomorphic Ambystoma talpoideum (Caudata: Ambystomatidae). COPEIA 2019. [DOI: 10.1643/cg-18-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Dustin S. Siegel
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri 63701; (DSS) ; and (CLL) . Send reprint requests to DSS
| | - Cody L. Long
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri 63701; (DSS) ; and (CLL) . Send reprint requests to DSS
| | - Madison Herrboldt
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma 74104;
| | - Stanley E. Trauth
- Department of Biological Sciences, Arkansas State University (Emeritus), State University, Arkansas 72467;
| |
Collapse
|
33
|
Denoël M, Ficetola GF, Sillero N, Džukić G, Kalezić ML, Vukov T, Muhovic I, Ikovic V, Lejeune B. Traditionally managed landscapes do not prevent amphibian decline and the extinction of paedomorphosis. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology Behavioural Biology Group Freshwater and Oceanic Science Unit of Research (FOCUS) University of Liège Liège Belgium
| | - G. Francesco Ficetola
- Department of Environmental Science and Policy Università degli Studi di Milano Milan Italy
- Université Grenoble‐Alpes CNRS Laboratoire d’Écologie Alpine (LECA) Grenoble France
| | - Neftali Sillero
- Centro de Investigação em Ciências Geo‐Espaciais University of Porto Porto Portugal
| | - Georg Džukić
- Department of Evolutionary Biology Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | - Miloš L. Kalezić
- Department of Evolutionary Biology Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | - Irma Muhovic
- Montenegrin Ecologists Society Podgorica Montenegro
| | - Vuk Ikovic
- Montenegrin Ecologists Society Podgorica Montenegro
| | - Benjamin Lejeune
- Laboratory of Fish and Amphibian Ethology Behavioural Biology Group Freshwater and Oceanic Science Unit of Research (FOCUS) University of Liège Liège Belgium
- Laboratory of Oceanology Freshwater and Oceanic Science Unit of Research (FOCUS) University of Liège Liège Belgium
| |
Collapse
|
34
|
Bonett RM, Phillips JG, Ledbetter NM, Martin SD, Lehman L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc Biol Sci 2019; 285:rspb.2017.2304. [PMID: 29343600 DOI: 10.1098/rspb.2017.2304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023] Open
Abstract
Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - John G Phillips
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | | | - Samuel D Martin
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Luke Lehman
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
35
|
Oromi N, Valbuena‐Ureña E, Soler‐Membrives A, Amat F, Camarasa S, Carranza S, Sanuy D, Denoël M. Genetic structure of lake and stream populations in a Pyrenean amphibian (
Calotriton asper
) reveals evolutionary significant units associated with paedomorphosis. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neus Oromi
- Departament de Ciència Animal (Fauna Silvestre) Universitat de Lleida Lleida Catalonia Spain
- Laboratory of Fish and Amphibian Ethology Behavioural Biology Group Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| | - Emilio Valbuena‐Ureña
- Unitat de Zoologia Facultat de Biociències Universitat Autònoma de Barcelona Barcelona Catalonia Spain
- Centre de Fauna Salvatge de Torreferrussa (Catalan Wildlife Service – Forestal Catalana) Finca de Torreferrusa Barcelona Catalonia Spain
| | - Anna Soler‐Membrives
- Unitat de Zoologia Facultat de Biociències Universitat Autònoma de Barcelona Barcelona Catalonia Spain
| | - Felix Amat
- Àrea d'Herpetologia Museu de Granollers Ciències Naturals Granollers Catalonia Spain
| | - Sebastià Camarasa
- Departament de Ciència Animal (Fauna Silvestre) Universitat de Lleida Lleida Catalonia Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Delfi Sanuy
- Departament de Ciència Animal (Fauna Silvestre) Universitat de Lleida Lleida Catalonia Spain
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology Behavioural Biology Group Freshwater and OCeanic science Unit of reSearch (FOCUS) University of Liège Liège Belgium
| |
Collapse
|
36
|
Camarasa S, Amat F, Sanuy D, Oromi N. The occurrence of facultative paedomorphosis in a lacustrine population of the Pyrenean newt (Calotriton asper): morphology and age structure. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1516831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sebastià Camarasa
- Departament de Ciència Animal (Fauna Silvestre), Universitat de Lleida, Lleida, Spain
| | - Fèlix Amat
- Àrea d’Herpetologia, Museu de Granollers, Ciències Naturals, Granollers, Spain
| | - Delfí Sanuy
- Departament de Ciència Animal (Fauna Silvestre), Universitat de Lleida, Lleida, Spain
| | - Neus Oromi
- Departament de Ciència Animal (Fauna Silvestre), Universitat de Lleida, Lleida, Spain
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Bohenek JR, Resetarits WJ. Are direct density cues, not resource competition, driving life history trajectories in a polyphenic salamander? Evol Ecol 2018. [DOI: 10.1007/s10682-018-9941-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Bókony V, Kövér S, Nemesházi E, Liker A, Székely T. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0325. [PMID: 28760766 DOI: 10.1098/rstb.2016.0325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Szilvia Kövér
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.,Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - András Liker
- Department of Limnology, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary.,MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
39
|
Lejeune B, Sturaro N, Lepoint G, Denoël M. Facultative paedomorphosis as a mechanism promoting intraspecific niche differentiation. OIKOS 2017. [DOI: 10.1111/oik.04714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Benjamin Lejeune
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), Univ. of Liège; BE-4020 Liège Belgium
| | - Nicolas Sturaro
- Laboratory of Oceanology, Freshwater and Oceanic Science Unit of Research (FOCUS), Univ. of Liège; Liège Belgium
| | - Gilles Lepoint
- Laboratory of Oceanology, Freshwater and Oceanic Science Unit of Research (FOCUS), Univ. of Liège; Liège Belgium
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), Univ. of Liège; BE-4020 Liège Belgium
| |
Collapse
|
40
|
Evidence for complex life cycle constraints on salamander body form diversification. Proc Natl Acad Sci U S A 2017; 114:9936-9941. [PMID: 28851828 DOI: 10.1073/pnas.1703877114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metazoans display a tremendous diversity of developmental patterns, including complex life cycles composed of morphologically disparate stages. In this regard, the evolution of life cycle complexity promotes phenotypic diversity. However, correlations between life cycle stages can constrain the evolution of some structures and functions. Despite the potential macroevolutionary consequences, few studies have tested the impacts of life cycle evolution on broad-scale patterns of trait diversification. Here we show that larval and adult salamanders with a simple, aquatic-only (paedomorphic) life cycle had an increased rate of vertebral column and body form diversification compared to lineages with a complex, aquatic-terrestrial (biphasic) life cycle. These differences in life cycle complexity explain the variations in vertebral number and adult body form better than larval ecology. In addition, we found that lineages with a simple terrestrial-only (direct developing) life cycle also had a higher rate of adult body form evolution than biphasic lineages, but still 10-fold lower than aquatic-only lineages. Our analyses demonstrate that prominent shifts in phenotypic evolution can follow long-term transitions in life cycle complexity, which may reflect underlying stage-dependent constraints.
Collapse
|
41
|
Tomašević Kolarov N, Cvijanović M, Denoël M, Ivanović A. Morphological Integration and Alternative Life History Strategies: A Case Study in a Facultatively Paedomorphic Newt. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:737-748. [DOI: 10.1002/jez.b.22758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 01/27/2023]
Affiliation(s)
| | - Milena Cvijanović
- University of Belgrade; Institute for Biological Research “Siniša Stanković”; Belgrade Serbia
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology; Behavioral Biology Unit; Freshwater and Oceanic Science Unit of Research (FOCUS); University of Liège; Liège Belgium
| | - Ana Ivanović
- University of Belgrade; Institute of Zoology; Faculty of Biology; Belgrade Serbia
| |
Collapse
|
42
|
Mathiron AGE, Lena JP, Baouch S, Denoël M. The 'male escape hypothesis': sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian. Proc Biol Sci 2017; 284:rspb.2017.0176. [PMID: 28424346 DOI: 10.1098/rspb.2017.0176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/20/2017] [Indexed: 11/12/2022] Open
Abstract
Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts (Lissotriton helveticus) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the 'male escape hypothesis') and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis.
Collapse
Affiliation(s)
- Anthony G E Mathiron
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, 4020 Liège, Belgium
| | - Jean-Paul Lena
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, University of Lyon 1, 69622 Villeurbanne, France
| | - Sarah Baouch
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, 4020 Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, 4020 Liège, Belgium
| |
Collapse
|
43
|
Embryonic yolk removal affects neither morphology nor escape performance of larval axolotls. ZOOLOGY 2017; 122:7-15. [PMID: 28365231 DOI: 10.1016/j.zool.2017.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/02/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
Abstract
Maternal effects, the influences of maternal phenotype on the phenotypes of her offspring, mediate early ontogenetic traits through maternal investment. In amphibians, provisioning eggs with yolk is the main source of maternal investment. While larger eggs generally result in larger, higher-quality offspring, the relationship between egg size and offspring phenotype is complicated because offspring can evolve to be more or less responsive to variation in yolk provisions. Previous studies of several ambystomatid salamanders suggest that the effects of embryonic yolk reserve reduction on hatchling life history traits increase with egg size. In this study, a similar controlled experimental yolk removal technique in Ambystoma mexicanum was used to determine the effects of reduced yolk reserves on phenotypes including hatching time and stage, hatchling and larval size and performance in predation trials with fish. Surprisingly, yolk reduction revealed no effects on any traits. These findings suggest that larval morphology in A. mexicanum is highly canalized and larval phenotypes are decoupled from yolk reserve variation. This surprising lack of yolk removal effects in hatchling and larval axolotls illustrates the evolutionary flexibility of early life history traits. Traits can evolve to increase or decrease their response to resources and can even become completely unresponsive. Since we found no effects in early life history, we hypothesize that domestication of the axolotl may have altered yolk properties or allocation dynamics and that maternal investment in yolk reserves may manifest at later life stages by reducing the time to reproductive maturity or increasing fecundity.
Collapse
|
44
|
Denoël M. On the identification of paedomorphic and overwintering larval newts based on cloacal shape: review and guidelines. Curr Zool 2017; 63:165-173. [PMID: 29491974 PMCID: PMC5804162 DOI: 10.1093/cz/zow054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/15/2016] [Indexed: 11/14/2022] Open
Abstract
Paedomorphosis is an alternative process to metamorphosis in which adults retain larval traits at the adult stage. It is frequent in newts and salamanders, where larvae reach sexual maturity without losing their gills. However, in some populations, larvae overwinter in water, while remaining immature. These alternative ontogenetic processes are of particular interest in various research fields, but have different causes and consequences, as only paedomorphosis allows metamorphosis to be bypassed before maturity. It is thus relevant to efficiently identify paedomorphs versus overwintering larvae. In this context, the aim of this article was 3-fold: firstly, to perform a meta-analysis of the identification procedures carried out in the literature; secondly, to determine the effectiveness of body size to make inferences about adulthood by surveying natural newt populations of Lissotriton helveticus and Ichthyosaura alpestris, and thirdly, to propose easy guidelines for an accurate distinction between large larvae and paedomorphs based on an external sexual trait, which is essential for reproduction-the cloaca. More than half of the studies in the literature do not mention the diagnostic criteria used for determining adulthood. The criteria mentioned were the presence of mature gonads (10%), eggs laid (4%), courtship behavior (10%), and external morphological sexual traits (39%) including the cloaca (24%). Body-size thresholds should not be used as a proxy for paedomorphosis, because overwintering larvae can reach a larger size than paedomorphs within the same populations. In contrast, diagnosis based on cloacal external morphology is recommended, as it can be processed by the rapid visual assessment of all caught specimens, thus providing straightforward data at the individual level for both sexes.
Collapse
Affiliation(s)
- Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, FOCUS, University of Liège, 22 Quai van Benden, 4020 Liège, Belgium
| |
Collapse
|
45
|
Modeling the population dynamics and community impacts of Ambystoma tigrinum: A case study of phenotype plasticity. Math Biosci 2017; 288:35-45. [PMID: 28237665 DOI: 10.1016/j.mbs.2017.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes in the environment. General mathematical descriptions of the phenomenon rely on an abstract measure of "viability" that, in this study, is instantiated in the case of the Tiger Salamander, Ambystoma tigrinum. This organism has a point in its development when, upon maturing, it may take two very different forms. One is a terrestrial salamander (metamorph)that visits ponds to reproduce and eat, while the other is an aquatic form (paedomorph) that remains in the pond to breed and which consumes a variety of prey including its own offspring. A seven dimensional nonlinear system of ordinary differential equations is developed, incorporating small (Z) and large (B) invertebrates, Ambystoma young of the year (Y), juveniles (J), terrestrial metamorphs (A) and aquatic paedomorphs (P). One parameter in the model controls the proportion of juveniles maturing into A versus P. Solutions are shown to remain non-negative. Every effort was made to justify parameters biologically through studies reported in the literature. A sensitivity analysis and equilibrium analysis of model parameters demonstrate that morphological choice is critical to the overall composition of the Ambystoma population. Various population viability measures were used to select optimal percentages of juveniles maturing into metamorphs, with optimal choices differing considerably depending on the viability measure. The model suggests that the criteria for viability for this organism vary, both from location to location and also in time. Thus, optimal responses change with spatiotemporal variation, which is consistent with other phenotypically plastic systems. Two competing hypotheses for the conditions under which metamorphosis occurs are examined in light of the model and data from an Ambystoma tigrinum population at Mexican Cut, Colorado. The model clearly supports one of these over the other for this data set. There appears to be a mathematical basis to the general tenet of spatiotemporal variation being important for the maintenance of polyphenisms, and our results suggest that such variation may have cascading effects on population, community, and perhaps ecosystem dynamics because it drives the production of a keystone, cannibalistic predator.
Collapse
|
46
|
Vaissi S, Parto P, Sharifi M. Ontogenetic changes in spot configuration (numbers, circularity, size and asymmetry) and lateral line in Neurergus microspilotus
(Caudata: Salamandridae). ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Somaye Vaissi
- Department of Biology; Faculty of Science; Razi University; Baghabrisham 6714967346 Kermanshah Iran
| | - Paria Parto
- Department of Biology; Faculty of Science; Razi University; Baghabrisham 6714967346 Kermanshah Iran
| | - Mozafar Sharifi
- Department of Biology; Faculty of Science; Razi University; Baghabrisham 6714967346 Kermanshah Iran
| |
Collapse
|
47
|
|
48
|
Oromi N, Michaux J, Denoël M. High gene flow between alternative morphs and the evolutionary persistence of facultative paedomorphosis. Sci Rep 2016; 6:32046. [PMID: 27534370 PMCID: PMC4989185 DOI: 10.1038/srep32046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022] Open
Abstract
Paedomorphosis and metamorphosis are two major developmental processes that characterize the evolution of complex life cycles in many lineages. Whereas these processes were fixed in some taxa, they remained facultative in others, with alternative phenotypes expressed in the same populations. From a genetic perspective, it is still unknown whether such phenotypes form a single population or whether they show some patterns of isolation in syntopy. This has deep implications for understanding the evolution of the phenotypes, i.e. towards their persistence or their fixation and speciation. Newts and salamanders are excellent models to test this hypothesis because they exhibit both developmental processes in their populations: the aquatic paedomorphs retain gills, whereas the metamorphs are able to colonize land. Using microsatellite data of coexisting paedomorphic and metamorphic palmate newts (Lissotriton helveticus), we found that they formed a panmictic population, which evidences sexual compatibility between the two phenotypes. The high gene flow could be understood as an adaptation to unstable habitats in which phenotypic plasticity is favored over the fixation of developmental alternatives. This makes then possible the persistence of a polyphenism: only metamorphosis could be maintained in case of occasional drying whereas paedomorphosis could offer specific advantages in organisms remaining in water.
Collapse
Affiliation(s)
- Neus Oromi
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, 22 Quai van Beneden, 4020 Liège, Belgium
| | - Johan Michaux
- Conservation Genetics, University of Liège, Institute of Botany (Bat. 22), 2 Chemin de la Vallée, 4000 Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, 22 Quai van Beneden, 4020 Liège, Belgium
| |
Collapse
|
49
|
Moore MP, Whiteman HH. Natal philopatry varies with larval condition in salamanders. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2133-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Grigoryan EN. High regenerative ability of tailed amphibians (Urodela) as a result of the expression of juvenile traits by mature animals. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416020041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|