1
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Yin P, Ma W, Liu J, Hu T, Wei T, Chen J, Li T, Niu Q. Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Daude N, Lau A, Vanni I, Kang SG, Castle AR, Wohlgemuth S, Dorosh L, Wille H, Stepanova M, Westaway D. Prion protein with a mutant N-terminal octarepeat region undergoes cobalamin-dependent assembly into high-molecular weight complexes. J Biol Chem 2022; 298:101770. [PMID: 35271850 PMCID: PMC9010764 DOI: 10.1016/j.jbc.2022.101770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
The cellular prion protein (PrPC) has a C-terminal globular domain and a disordered N-terminal region encompassing five octarepeats (ORs). Encounters between Cu(II) ions and four OR sites produce interchangeable binding geometries; however, the significance of Cu(II) binding to ORs in different combinations is unclear. To understand the impact of specific binding geometries, OR variants were designed that interact with multiple or single Cu(II) ions in specific locked coordinations. Unexpectedly, we found that one mutant produced detergent-insoluble, protease-resistant species in cells in the absence of exposure to the infectious prion protein isoform, scrapie-associated prion protein (PrPSc). Formation of these assemblies, visible as puncta, was reversible and dependent upon medium formulation. Cobalamin (Cbl), a dietary cofactor containing a corrin ring that coordinates a Co3+ ion, was identified as a key medium component, and its effect was validated by reconstitution experiments. Although we failed to find evidence that Cbl interacts with Cu-binding OR regions, we instead noted interactions of Cbl with the PrPC C-terminal domain. We found that some interactions occurred at a binding site of planar tetrapyrrole compounds on the isolated globular domain, but others did not, and N-terminal sequences additionally had a marked effect on their presence and position. Our studies define a conditional effect of Cbl wherein a mutant OR region can act in cis to destabilize a globular domain with a wild type sequence. The unexpected intersection between the properties of PrPSc's disordered region, Cbl, and conformational remodeling events may have implications for understanding sporadic prion disease that does not involve exposure to PrPSc.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Agnes Lau
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Andrew R Castle
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Lyudmyla Dorosh
- Faculty of Engineering - Electrical & Computer Engineering Dept, University of Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada
| | - Maria Stepanova
- Faculty of Engineering - Electrical & Computer Engineering Dept, University of Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada.
| |
Collapse
|
5
|
Vodyanoy V. The Role of Endogenous Metal Nanoparticles in Biological Systems. Biomolecules 2021; 11:1574. [PMID: 34827572 PMCID: PMC8615972 DOI: 10.3390/biom11111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The blood and tissues of vertebrate animals and mammals contain small endogenous metal nanoparticles. These nanoparticles were observed to be composed of individual atoms of iron, copper, zinc, silver, gold, platinum, and other metals. Metal nanoparticles can bind proteins and produce proteinaceous particles called proteons. A small fraction of the entire pool of nanoparticles is usually linked with proteins to form proteons. These endogenous metal nanoparticles, along with engineered zinc and copper nanoparticles at subnanomolar levels, were shown to be lethal to cultured cancer cells. These nanoparticles appear to be elemental crystalline metal nanoparticles. It was discovered that zinc nanoparticles produce no odor response but increase the odor reaction if mixed with an odorant. Some other metal nanoparticles, including copper, silver, gold, and platinum nanoparticles, do not affect the responses to odorants. The sources of metal nanoparticles in animal blood and tissues may include dietary plants and gut microorganisms. The solid physiological and biochemical properties of metal nanoparticles reflect their importance in cell homeostasis and disease.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
| |
Collapse
|
6
|
EFFECT OF ORAL COPPER SUPPLEMENTATION ON SUSCEPTIBILITY IN WHITE-TAILED DEER ( ODOCOILEUS VIRGINIANUS) TO CHRONIC WASTING DISEASE. J Wildl Dis 2020; 56:568-575. [PMID: 32073993 DOI: 10.7589/2019-10-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic wasting disease (CWD) is an infectious disease, but reported associations suggest several metals-especially copper (Cu) and manganese-potentially play a role in this and other prion diseases. To assess the utility of dietary Cu supplementation in protecting white-tailed deer (Odocoileus virginianus) from CWD, we compared incidence and disease course among individuals naturally exposed to CWD while being maintained on sustained-release Cu boluses or unsupplemented (control). Oral Cu supplementation increased liver tissue Cu concentrations compared to controls but did not affect susceptibility to CWD or survival after natural exposure in the captive white-tailed deer we studied. Over the 27 mo study, 89% (8/9) of the Cu-supplemented deer and 86% (6/7) of control deer became CWD-infected. Survival to 27 mo postexposure did not differ between Cu-supplemented and control deer: model-averaged survival probabilities to 27 mo were 0.45-0.47 for all combinations of Cu treatment and PRNP gene haplotype presence. The PRNP gene haplotype influenced the probability of deer remaining biopsy negative for at least 17 mo but did not affect overall susceptibility.
Collapse
|
7
|
Kang H, Fan C, Liu G, Pu S. A new highly selective diarylethene with near-infrared fluorochrome unit for sequential detection of copper ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:322-329. [PMID: 30583162 DOI: 10.1016/j.saa.2018.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
A new-synthesized diarylethene with near-infrared fluorochrome unit exhibited excellent photochromism under the irradiation of UV light (297 nm) and visible light (λ > 500 nm). When Cu2+ was added to the diarylethene solution, a fluorescent emission band centered at 736 nm appeared, indicating that the emission peak wavelength of compound is in near-infrared region. According to data of NMR, MS and other experiments, the complex ratio of the target compound to Cu2+ was 1:1 in the CH3CN-H2O solution (v/v = 9:1) with a limit of detection (LOD) of 0.10 μM. Furthermore, a logic circuit was constructed with four input signals (ultraviolet stimulus, visible light stimulus, Cu2+ and EDTA) and one output signal (fluorescent intensity at 736 nm).
Collapse
Affiliation(s)
- Huimin Kang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
8
|
Zhang J, Zhao Z, Shang H, Liu Q, Liu F. An easy-to-synthesize multi-photoresponse smart sensor for rapidly detecting Zn2+ and quantifying Fe3+ based on the enol/keto binding mode. NEW J CHEM 2019. [DOI: 10.1039/c9nj03635k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A readily available salicylaldazine-modified fluorene Schiff base (EASA-F) exhibits fast fluorescent OFF–ON response to Zn2+ and OFF–ON–OFF behavior to Fe3+ synchronously accompanied the diverse absorption-ratiometric and colorimetric changes.
Collapse
Affiliation(s)
- Jingzhe Zhang
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Zheng Zhao
- School of Information Engineering
- China University of Geosciences
- Beijing 100083
- China
| | - Hong Shang
- School of Science
- China University of Geosciences
- Beijing 100083
- China
| | - Qingsong Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Fei Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| |
Collapse
|
9
|
Torawane P, Keshav K, Kumawat MK, Srivastava R, Anand T, Sahoo S, Borse A, Kuwar A. A novel terephthalaldehyde based turn-on fluorescent chemosensor for Cu 2+ and its application in imaging of living cells. Photochem Photobiol Sci 2018; 16:1464-1470. [PMID: 28799606 DOI: 10.1039/c7pp00182g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new terephthaldehyde-based chemosensor 1 bearing an aminophenol recognition unit has been synthesized and applied to the fluorescent sensing of metal ions. Molecular system 1 acts as a highly selective and sensitive fluorescence turn-on sensor for Cu2+. The sensing mechanism has been explored. It is proposed that Cu2+ binds with the imine and hydroxyl moiety of 1 in 1 : 2 binding stoichiometry, thereby enhancing the fluorescence at 386 nm. The detection limit and association constant (Ka) of 1 with Cu2+ were found to be 0.62 μM and 6.67 × 104 M-1, respectively. Chemosensor 1 has shown excellent specificity towards Cu2+ and has been successfully applied to the determination of Cu2+ in live L929 cells.
Collapse
Affiliation(s)
- Pritam Torawane
- School of Chemical Sciences, North Maharashtra University, Jalgaon-425001, Maharashtra, India.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nichols TA, Spraker TR, Gidlewski T, Cummings B, Hill D, Kong Q, Balachandran A, VerCauteren KC, Zabel MD. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease. Prion 2017; 10:228-50. [PMID: 27216881 PMCID: PMC4981212 DOI: 10.1080/19336896.2016.1181249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain.
Collapse
Affiliation(s)
- Tracy A Nichols
- a National Wildlife Research Center, US Department of Agriculture , Animal and Plant Health Inspection Service, Wildlife Services , Fort Collins , CO , USA
| | - Terry R Spraker
- b Colorado State University Diagnostic Laboratory, College of Veterinary Medicine, Colorado State University , Fort Collins , CO , USA;,c Department of Microbiology , Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center , Fort Collins , CO , USA
| | - Thomas Gidlewski
- a National Wildlife Research Center, US Department of Agriculture , Animal and Plant Health Inspection Service, Wildlife Services , Fort Collins , CO , USA
| | - Bruce Cummings
- b Colorado State University Diagnostic Laboratory, College of Veterinary Medicine, Colorado State University , Fort Collins , CO , USA
| | - Dana Hill
- c Department of Microbiology , Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center , Fort Collins , CO , USA
| | - Qingzhong Kong
- d Departments of Pathology and Neurology & National Center for Regenerative Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Aru Balachandran
- e National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa , Ontario , Canada
| | - Kurt C VerCauteren
- a National Wildlife Research Center, US Department of Agriculture , Animal and Plant Health Inspection Service, Wildlife Services , Fort Collins , CO , USA
| | - Mark D Zabel
- c Department of Microbiology , Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center , Fort Collins , CO , USA
| |
Collapse
|
11
|
Naskar B, Modak R, Maiti DK, Bauzá A, Frontera A, Maiti PK, Mandal S, Goswami S. A highly selective “ON–OFF” probe for colorimetric and fluorometric sensing of Cu2+in water. RSC Adv 2017. [DOI: 10.1039/c6ra27017d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new diformyl phenol based probe for selective detection of Cu2+in aqueous medium, applicable for cell imaging in Vero cells. Theoretical studies were performed to establish the underlying keto–enol tautomerism and optimization of the Cu2+complex.
Collapse
Affiliation(s)
- Barnali Naskar
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| | - Ritwik Modak
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| | - Dilip K. Maiti
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| | - Antonio Bauzá
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma de Mallorca
- Spain
| | | | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata
- India
| | - Sanchita Goswami
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| |
Collapse
|
12
|
Khrustalev VV, Khrustaleva TA, Szpotkowski K, Poboinev VV, Kakhanouskaya KY. The part of a long beta hairpin from the scrapie form of the human prion protein is reconstructed in the synthetic CC36 protein. Proteins 2016; 84:1462-79. [DOI: 10.1002/prot.25090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022]
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Laboratory of Cellular Technologies; Institute of Physiology of the National Academy of Sciences of Belarus; Academicheskaya, 28 Minsk Belarus
| | - Kamil Szpotkowski
- Department of Crystallography Center of Biocrystallographic Research; Institute of Bioorganic Chemistry, Polish Academy of Sciences; Z. Noskowskiego, 12/14 Poznan Poland
| | | | | |
Collapse
|
13
|
Chen Y, Wang X, Wang K, Zhang X. A benzo-15-crown-5-modifying ratiometric-absorption and fluorescent OFF-ON chemosensor for Cu(2.). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 161:144-149. [PMID: 26971023 DOI: 10.1016/j.saa.2016.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/15/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
One new benzo-15-crown-5-modifying fluorene Schiff base (FBC), together with the CN-linked fluorene-3,4-dimethoxybenzene (FBDMO) and fluorene-benzene (FB) references, has been designed and facilely synthesized. The binding of Cu(2+) with nitrogen atom of CN moiety in these three compounds can inhibit the photo-induced electronic transition process and induce the ratiometric-absorption and fluorescent OFF-ON response to Cu(2+). Whereas the employment of benzo-15-crown-5 moiety in FBC as additional binding platform for Cu(2+) not only amplifies the fluorescent enhancement of FBCvia preventing the isomerization of CN moiety, but also endows this compound high selectivity and rapid response towards Cu(2+) over the references FB and FBDMO. These results render FBC highly sensitive ratiometric-absorption and fluorescent OFF-ON detecting potential for Cu(2+) with the detection limit of 3.91 × 10(-6) M.
Collapse
Affiliation(s)
- Yuting Chen
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Department of Chemistry Dezhou University, Dezhou 253023, China.
| | - Xinxin Wang
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Department of Chemistry Dezhou University, Dezhou 253023, China
| | - Kaili Wang
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China.
| | - Xiuling Zhang
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Department of Chemistry Dezhou University, Dezhou 253023, China
| |
Collapse
|
14
|
Samanta S, Manna U, Ray T, Das G. An aggregation-induced emission (AIE) active probe for multiple targets: a fluorescent sensor for Zn(2+) and Al(3+) & a colorimetric sensor for Cu(2+) and F(-). Dalton Trans 2016; 44:18902-10. [PMID: 26467383 DOI: 10.1039/c5dt03186a] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rationally designed probe L, which consists of both cation and anion binding sites, is capable of displaying interesting aggregation induced emission (AIE) properties. L not only can sense Al(3+) and Zn(2+) through selective turn-on fluorescence responses in 9 : 1 methanol-HEPES buffer (5 mM, pH 7.3; 9 : 1, v/v) medium due to metal ion triggered AIE activity, but also can distinguish them through individual emission signals. L can also detect Cu(2+) in mixed buffer medium and F(-) in acetonitrile through sharp colorimetric responses. All the sensing processes are conspicuous through the naked eye. A theoretical study strongly backed the proposed sensing mechanisms.
Collapse
Affiliation(s)
- Soham Samanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Utsab Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Turjya Ray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
15
|
Abstract
Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multitransition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9-10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3-4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method that is applicable to biological samples.
Collapse
Affiliation(s)
- Brian Bennett
- Physics Department, 540 N. 15th Street, Marquette University, Milwaukee WI 53233
| | - Jason Kowalski
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha WI 53144
| |
Collapse
|
16
|
Halden RU. Epistemology of contaminants of emerging concern and literature meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:2-9. [PMID: 25294779 PMCID: PMC4253867 DOI: 10.1016/j.jhazmat.2014.08.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/23/2014] [Accepted: 08/28/2014] [Indexed: 05/03/2023]
Abstract
A meta-analysis was conducted to inform the epistemology, or theory of knowledge, of contaminants of emerging concern (CECs). The CEC terminology acknowledges the existence of harmful environmental agents whose identities, occurrences, hazards, and effects are not sufficiently understood. Here, data on publishing activity were analyzed for 12 CECs, revealing a common pattern of emergence, suitable for identifying past years of peak concern and forecasting future ones: dichlorodiphenyltrichloroethane (DDT; 1972, 2008), trichloroacetic acid (TCAA; 1972, 2009), nitrosodimethylamine (1984), methyl tert-butyl ether (2001), trichloroethylene (2005), perchlorate (2006), 1,4-dioxane (2009), prions (2009), triclocarban (2010), triclosan (2012), nanomaterials (by 2016), and microplastics (2022 ± 4). CECs were found to emerge from obscurity to the height of concern in 14.1 ± 3.6 years, and subside to a new baseline level of concern in 14.5 ± 4.5 years. CECs can emerge more than once (e.g., TCAA, DDT) and the multifactorial process of emergence may be driven by inception of novel scientific methods (e.g., ion chromatography, mass spectrometry and nanometrology), scientific paradigm shifts (discovery of infectious proteins), and the development, marketing and mass consumption of novel products (antimicrobial personal care products, microplastics and nanomaterials). Publishing activity and U.S. regulatory actions were correlated for several CECs investigated.
Collapse
Affiliation(s)
- Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Pal S, Sen B, Lohar S, Mukherjee M, Banerjee S, Chattopadhyay P. Effect of metal oxidation state on FRET: a Cu(i) silent but selectively Cu(ii) responsive fluorescent reporter and its bioimaging applications. Dalton Trans 2015; 44:1761-8. [DOI: 10.1039/c4dt03381g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new structurally characterized cell permeable rhodamine-cinnamaldehyde hybrid (HL) behaves as a Cu(ii) ions selective chemosensor through FRET process which depends on +2 state of copper ion exclusively.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Chemistry
- Burdwan University
- Burdwan 713104
- India
| | - Buddhadeb Sen
- Department of Chemistry
- Burdwan University
- Burdwan 713104
- India
| | - Somenath Lohar
- Department of Chemistry
- Burdwan University
- Burdwan 713104
- India
| | | | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
18
|
Shen C, New EJ. What has fluorescent sensing told us about copper and brain malfunction? Metallomics 2015; 7:56-65. [DOI: 10.1039/c4mt00288a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we review the development and application of fluorescent sensors for studying copper in the brain.
Collapse
Affiliation(s)
- Clara Shen
- School of Chemistry
- The University of Sydney
- , Australia
| | | |
Collapse
|
19
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
20
|
Agarwal C, Prasad E. Metal ion detection by naphthylthiourea derivatives through ‘turn-on’ excimer emission. RSC Adv 2014. [DOI: 10.1039/c3ra45510f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
The molecular mechanisms of zinc neurotoxicity and the pathogenesis of vascular type senile dementia. Int J Mol Sci 2013; 14:22067-81. [PMID: 24213606 PMCID: PMC3856052 DOI: 10.3390/ijms141122067] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 12/28/2022] Open
Abstract
Zinc (Zn) is an essential trace element that is abundantly present in the brain. Despite its importance in normal brain functions, excess Zn is neurotoxic and causes neurodegeneration following transient global ischemia and plays a crucial role in the pathogenesis of vascular-type dementia (VD). We have investigated the molecular mechanisms of Zn-induced neurotoxicity using immortalized hypothalamic neurons (GT1–7 cells) and found that carnosine (β-alanyl histidine) and histidine (His) inhibited Zn2+-induced neuronal death. A DNA microarray analysis revealed that the expression of several genes, including metal-related genes (metallothionein and Zn transporter 1), endoplasmic reticulum (ER)-stress related genes (GADD34, GADD45, and p8), and the calcium (Ca)-related gene Arc (activity-related cytoskeleton protein), were affected after Zn exposure. The co-existence of carnosine or His inhibited the expression of GADD34, p8, and Arc, although they did not influence the expression of the metal-related genes. Therefore, ER-stress and the disruption of Ca homeostasis may underlie the mechanisms of Zn-induced neurotoxicity, and carnosine might be a possible drug candidate for the treatment of VD.
Collapse
|
22
|
Xie R, Yi Y, He Y, Liu X, Liu ZX. A simple BODIPY–imidazole-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Kar C, Adhikari MD, Ramesh A, Das G. NIR- and FRET-based sensing of Cu2+ and S2- in physiological conditions and in live cells. Inorg Chem 2013; 52:743-52. [PMID: 23302031 DOI: 10.1021/ic301872q] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have synthesized a new indole functionalized rhodamine derivative L(1) which specifically binds to Cu(2+) in the presence of large excess of other competing ions with visually observable changes in their electronic and fluorescence spectral behavior. These spectral changes are significant enough in the NIR and visible region of the spectrum and thus enable naked eye detection. The receptor, L(1), could be employed as a resonance energy transfer (RET) based sensor for detection of Cu(2+) based on the process involving the donor indole and the acceptor Cu(2+) bound xanthene fragment. Studies reveal that L(1)-Cu complex is selectively and fully reversible in presence of sulfide anions. Further, fluorescence microscopic studies confirmed that the reagent L(1) could also be used as an imaging probe for detection of uptake of these ions in HeLa cells.
Collapse
Affiliation(s)
- Chirantan Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781 039, India
| | | | | | | |
Collapse
|
24
|
Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G. Highly Selective Electrochemical Strategy for Monitoring of Cerebral Cu2+ Based on a Carbon Dot-TPEA Hybridized Surface. Anal Chem 2012; 85:418-25. [DOI: 10.1021/ac303113n] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiangling Shao
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People’s Republic of
China, and
| | - Hui Gu
- Department
of Chemistry, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of
China
| | - Zhen Wang
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People’s Republic of
China, and
| | - Xiaolan Chai
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People’s Republic of
China, and
| | - Yang Tian
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People’s Republic of
China, and
| | - Guoyue Shi
- Department
of Chemistry, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of
China
| |
Collapse
|
25
|
Actis P, McDonald A, Beeler D, Vilozny B, Millhauser G, Pourmand N. Copper Sensing with a Prion Protein Modified Nanopipette. RSC Adv 2012; 2:11638-11640. [PMID: 23243499 DOI: 10.1039/c2ra21730a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein-metal interactions determine and regulate many biological functions. Nanopipettes functionalized with peptide moieties can be used as sensors for metal ions in solution.
Collapse
Affiliation(s)
- Paolo Actis
- Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
| | | | | | | | | | | |
Collapse
|
26
|
Goodman BA, Ferreira Severino J, Pirker KF. Reactions of green and black teas with Cu(II). Food Funct 2011; 3:399-409. [PMID: 22159216 DOI: 10.1039/c1fo10086f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electron paramagnetic resonance (EPR) measurements of the products of reactions between Cu(II) and samples of green and black teas showed spectral components from at least six different Cu(II) complexes with both tea types. Several of these complexes were common to both teas in spite of major differences in their polyphenol compositions. The pH range observed for complex formation, and the total signal intensity in the pH range 4-8, were greatly different from those for the reactions of Cu(II) with (-)-epigallocatechin gallate and gallic acid, the main polyphenols responsible for the free radical signals observed during oxidation of these beverages. Components with spectral parameters similar to those of Cu(II) complexes with theanine, the major amino acid in tea, may contribute to two of the spectra recorded under acidic conditions. However, the initial complexes formed at the lowest pH values investigated are still unidentified. EPR spectra with parameters consistent with Cu(II) polyphenol complexes were only observed under alkaline conditions, thus suggesting that components of tea other than polyphenols might be more important in reactions with copper, and possibly other transition metals, in solutions under physiological conditions.
Collapse
Affiliation(s)
- B A Goodman
- Health and Environment Department, Business Unit of Environmental Resources and Technologies, Austrian Institute of Technology GmbH, A-2444, Seibersdorf, Austria.
| | | | | |
Collapse
|
27
|
Tang L, Li F, Liu M, Nandhakumar R. A New Rhodamine B-coumarin Fluorochrome for Colorimetric Recognition of Cu2+and Fluorescent Recognition ofFe3+in Aqueous Media. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.9.3400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T. Visible-Near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates: Selective Detection and Fluorescence Imaging in Living Cells. Chemistry 2011; 17:11152-61. [DOI: 10.1002/chem.201101906] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 01/23/2023]
|
29
|
Kawahara M, Koyama H, Nagata T, Sadakane Y. Zinc, copper, and carnosine attenuate neurotoxicity of prion fragment PrP106-126. Metallomics 2011; 3:726-34. [PMID: 21442127 DOI: 10.1039/c1mt00015b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki. Japan.
| | | | | | | |
Collapse
|
30
|
Tang L, Li F, Liu M, Nandhakumar R. Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:1168-72. [PMID: 21242100 DOI: 10.1016/j.saa.2010.12.072] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 05/06/2023]
Abstract
The first novel rhodamine B based sensor, rhodamine B hydrazide methyl 5-formyl-1H-pyrrole-2-carboxylate Schiff base (2) capable of detecting both Cu(2+) and Hg(2+) using two different detection modes has been designed and synthesized. The metal ion induced optical changes of 2 were investigated in MeOH:H(2)O (3:1) HEPES buffered solution at pH 7.4. Sensor 2 exhibits selective colorimetric recognition of Cu(2+) and fluorogenic recognition of Hg(2+) with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the Cu(2+) and Hg(2+) recognition processes are proven to be hardly influenced by other coexisting metal ions.
Collapse
Affiliation(s)
- Lijun Tang
- College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University, Jinzhou, China.
| | | | | | | |
Collapse
|
31
|
Kowalski JM, Bennett B. Spin hamiltonian parameters for Cu(II)-prion peptide complexes from L-band electron paramagnetic resonance spectroscopy. J Am Chem Soc 2011; 133:1814-23. [PMID: 21265507 PMCID: PMC3150385 DOI: 10.1021/ja106550u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cu(II) is an essential element for life but is also associated with numerous and serious medical conditions, particularly neurodegeneration. Structural modeling of crystallization-resistant biological Cu(II) species relies on detailed spectroscopic analysis. Electron paramagnetic resonance (EPR) can, in principle, provide spin hamiltonian parameters that contain information on the geometry and ligand atom complement of Cu(II). Unfortunately, EPR spectra of Cu(II) recorded at the traditional X-band frequency are complicated by (i) strains in the region of the spectrum corresponding to the g(∥) orientation and (ii) potentially very many overlapping transitions in the g(⊥) region. The rapid progress of density functional theory computation as a means to correlate EPR and structure, and the increasing need to study Cu(II) associated with biomolecules in more biologically and biomedically relevant environments such as cells and tissue, have spurred the development of a technique for the extraction of a more complete set of spin hamiltonian parameters that is relatively straightforward and widely applicable. EPR at L-band (1-2 GHz) provides much enhanced spectral resolution and straightforward analysis via computer simulation methods. Herein, the anisotropic spin hamiltonian parameters and the nitrogen coordination numbers for two hitherto incompletely characterized Cu(II)-bound species of a prion peptide complex are determined by analysis of their L-band EPR spectra.
Collapse
Affiliation(s)
- Jason M. Kowalski
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509, United States
| | - Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509, United States
| |
Collapse
|
32
|
Maity D, Govindaraju T. Highly Selective Visible and Near-IR Sensing of Cu2+ Based on Thiourea-Salicylaldehyde Coordination in Aqueous Media. Chemistry 2011; 17:1410-4. [DOI: 10.1002/chem.201002570] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Indexed: 01/08/2023]
|
33
|
Li Y, Zhang X, Zhu B, Xue J, Zhu Z, Tan W. A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+ in aqueous media. Analyst 2011; 136:1124-8. [DOI: 10.1039/c0an00682c] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Tang L, Li F, Liu M, Nandhakumar R. A New Rhodamine B Derivative As a Colorimetric Chemosensor for Recognition of Copper(II) Ion. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.11.3212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Stefureac RI, Madampage CA, Andrievskaia O, Lee JS. Nanopore analysis of the interaction of metal ions with prion proteins and peptides. Biochem Cell Biol 2010; 88:347-58. [PMID: 20453935 DOI: 10.1139/o09-176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanopore analysis can be used to study conformational changes in individual peptide or protein molecules. Under an applied voltage there is a change in the event parameters of blockade current or time when a molecule bumps into or translocates through the pore. If a molecule undergoes a conformational change upon binding a ligand or metal ion the event parameters will be altered. The objective of this research was to demonstrate that the conformation of the prion protein (PrP) and prion peptides can be modulated by binding divalent metal ions. Peptides from the octarepeat region (Octa2, (PHGGGWGQ)2 and Octa 4, (PHGGGWGQ)4), residues 106-126 (PrP106-126), and the full-length Bovine recombinant prion (BrecPrP) were studied with an alpha-hemolysin pore. Octa2 readily translocated the pore but significant bumping events occurred on addition of Cu(II) and to a lesser extent Zn(II), demonstrating that complex formation was occurring with concomitant conformational changes. The binding of Cu(II) to Octa4 was more pronounced and at high concentrations only a small proportion of the complex could translocate. Addition of Zn(II) also caused significant changes to the event parameters but Mg(II) and Mn(II) were inert. Addition of Cu(II) to PrP106-126 caused the formation of a very tight complex, which could not translocate the pore. Small changes were observed with Zn(II), but not with Mg(II) or Mn(II). Analysis of BrecPrP showed that about 37% were translocation events, but on addition of Cu(II) or Zn(II) these disappeared and only bumping events were recorded. Suprisingly, addition of Mn(II) caused an increase in translocation events to about 64%. Thus, conformational changes to prions upon binding metal ions are readily observed by nanopore analysis.
Collapse
Affiliation(s)
- Radu I Stefureac
- Department of Biochemistry, Health Sciences Building, 107 Wiggins Road, University of Saskatchewan, SK S7N 5E5, Canada
| | | | | | | |
Collapse
|
36
|
Zhao Y, Zhang XB, Han ZX, Qiao L, Li CY, Jian LX, Shen GL, Yu RQ. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 2010; 81:7022-30. [PMID: 19634898 DOI: 10.1021/ac901127n] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The design and synthesis of a novel rhodamine spirolactam derivative and its application in fluorescent detections of Cu(2+) in aqueous solution and living cells are reported. The signal change of the chemosensor is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. It exhibits a highly sensitive "turn-on" fluorescent response toward Cu(2+) in aqueous solution with an 80-fold fluorescence intensity enhancement under 10 equiv of Cu(2+) added. This indicates that the synthesized chemosensor effectively avoided the fluorescence quenching for the paramagnetic nature of Cu(2+) via its strong binding capability toward Cu(2+). With the experimental conditions optimized, the probe exhibits a dynamic response range for Cu(2+) from 8.0 x 10(-7) to 1.0 x 10(-5) M, with a detection limit of 3.0 x 10(-7) M. The response of the chemosensor for Cu(2+) is instantaneous and reversible. Most importantly, both the color and fluorescence changes of the chemosensor are remarkably specific for Cu(2+) in the presence of other heavy and transition metal ions (even those that exist in high concentration), which meet the selective requirements for biomedical and environmental monitoring application. The proposed chemosensor has been used for direct measurement of Cu(2+) content in river water samples and imaging of Cu(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL. Copper binding extrinsic to the octarepeat region in the prion protein. Curr Protein Pept Sci 2010; 10:529-35. [PMID: 19538144 DOI: 10.2174/138920309789352056] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/12/2009] [Indexed: 11/22/2022]
Abstract
Current research suggests that the function of the prion protein (PrP) is linked to its ability to bind copper. PrP is implicated in copper regulation, copper buffering and copper-dependent signaling. Moreover, in the development of prion disease, copper may modulate the rate of protein misfolding. PrP possesses a number of copper sites, each with distinct chemical characteristics. Most studies thus far have concentrated on elucidating chemical features of the octarepeat region (residues 60-91, hamster sequence), which can take up to four equivalents of copper, depending on the ratio of Cu2+ to protein. However, other sites have been proposed, including those at histidines 96 and 111, which are adjacent to the octarepeats, and also at histidines within PrP's folded C-terminal domain. Here, we review the literature of these copper sites extrinsic to the octarepeat region and add new findings and insights from recent experiments.
Collapse
Affiliation(s)
- Eric D Walter
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Valensin D, Szyrwiel Ł, Camponeschi F, Rowińska-Zyrek M, Molteni E, Jankowska E, Szymanska A, Gaggelli E, Valensin G, Kozłowski H. Heteronuclear and homonuclear Cu2+ and Zn2+ complexes with multihistidine peptides based on zebrafish prion-like protein. Inorg Chem 2009; 48:7330-40. [PMID: 19586023 DOI: 10.1021/ic9008202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The homeostasis of metal ions, especially copper and zinc, is a major factor that may influence the prion diseases and the biological function of prion protein (PrP). The His-rich regions are basic sites for metal binding and antioxidant activity of the PrP structures. Animal prion-like proteins contain also His-rich domains, and their coordination chemistry may provide better insight into the chemistry and biology of PrP structures and related diseases. Herein, we report an equilibrium study on heteronuclear Zn(2+)-Cu(2+) complexes with zrel-PrP fragments from zebrafish. Potentiometric, spectroscopic, and mass spectrometric methods showed that the binding of copper is much more effective than the binding of zinc. At physiological pH, both metals bind to the histidine imidazole N donors of the studied peptides.
Collapse
Affiliation(s)
- Daniela Valensin
- Department of Chemistry, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Prion metal interaction: Is prion pathogenesis a cause or a consequence of metal imbalance? Chem Biol Interact 2009; 181:282-91. [PMID: 19660443 DOI: 10.1016/j.cbi.2009.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 12/14/2022]
|
40
|
Fediaevsky A, Morignat E, Ducrot C, Calavas D. A case-control study on the origin of atypical scrapie in sheep, France. Emerg Infect Dis 2009; 15:710-8. [PMID: 19402956 PMCID: PMC2687017 DOI: 10.3201/eid1505.081119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Risk factors for this disease suggest a noninfectious origin influenced by genetic and metabolic factors. A matched case–control study (95 cases and 220 controls) was designed to study risk factors for atypical scrapie in sheep in France. We analyzed contacts with animals from other flocks, lambing and feeding practices, and exposure to toxic substances. Data on the prnp genotype were collected for some case and control animals and included in a complementary analysis. Sheep dairy farms had a higher risk for scrapie (odds ratio [OR] 15.1, 95% confidence interval [CI] 3.3–69.7). Lower risk was associated with organic farms (OR 0.15, 95% CI 0.02–1.26), feeding corn silage (OR 0.16, 95% CI 0.05–0.53), and feeding vitamin and mineral supplements (OR 0.6, 95% CI 0.32–1.14). Genetic effects were quantitatively important but only marginally changed estimates of other variables. We did not find any risk factor associated with an infectious origin of scrapie. Atypical scrapie could be a spontaneous disease influenced by genetic and metabolic factors.
Collapse
|
41
|
|
42
|
Rachidi W, Chimienti F, Aouffen M, Senator A, Guiraud P, Seve M, Favier A. Prion protein protects against zinc-mediated cytotoxicity by modifying intracellular exchangeable zinc and inducing metallothionein expression. J Trace Elem Med Biol 2009; 23:214-23. [PMID: 19486831 DOI: 10.1016/j.jtemb.2009.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/30/2022]
Abstract
PrPC contains several octapeptide repeats sequences toward the N-terminus which have binding affinity for divalent metals such as copper, zinc, nickel and manganese. However, the link between PrPC expression and zinc metabolism remains elusive. Here we studied the relationship between PrPC and zinc ions intracellular homeostasis using a cell line expressing a doxycycline-inducible PrPC gene. No significant difference in 65Zn2+ uptake was observed in cells expressing PrPC when compared with control cells. However, PrPC-expressing cells were more resistant to zinc-induced toxicity, suggesting an adaptative mechanism induced by PrPC. Using zinquin-ethyl-ester, a specific fluorophore for vesicular free zinc, we observed a significant re-localization of intracellular exchangeable zinc in vesicles after PrPC expression. Finally, we demonstrated that PrPC expression induces metallothionein (MT) expression, a zinc-upregulated zinc-binding protein. Taken together, these results suggest that PrPC modifies the intracellular localization of zinc rather than the cellular content and induces MT upregulation. These findings are of major importance since zinc deregulation is implicated in several neurodegenerative disorders. It is postulated that in prion diseases the conversion of PrPC to PrPSc may deregulate zinc homeostasis mediated by metallothionein.
Collapse
Affiliation(s)
- Walid Rachidi
- INAC/SCIB/LAN, CEA de Grenoble, 17 rue des Martyrs, 38054 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Didier A, Gebert R, Dietrich R, Schweiger M, Gareis M, Märtlbauer E, Amselgruber WM. Cellular prion protein in mammary gland and milk fractions of domestic ruminants. Biochem Biophys Res Commun 2008; 369:841-4. [PMID: 18325321 DOI: 10.1016/j.bbrc.2008.02.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 01/27/2023]
Abstract
The present study shows that PrP(c) is expressed in the mammary gland and milk fractions of domestic ruminants in a species-specific manner. By applying immunohistochemistry, Western blot and ELISA, clear expression differences between bovine, ovine and caprine mammary gland, skimmed milk, acid whey and cream could be demonstrated, the highest relative PrP(c) levels being associated with the cream fraction. In the bovine gland PrP(c) was preferentially detectable at the basolateral surface of mammary gland epithelial cells, whereas in ovine and caprine samples the prion protein was more homogeneously distributed. Moreover, in ovine and caprine bovine mammary gland epithelial cells, apocrine secretory vesicles were strongly stained. Ovine and caprine milk proved to contain PrP(c) in all fractions with an additional truncated form at 12kDa in Western blot. This truncated isoform is the predominate one in caprine acid whey. These results support the hypothesis that the apocrine secretion mode of milk fat globules is a major way of PrP(c) transport into the milk.
Collapse
Affiliation(s)
- A Didier
- Chair for Hygiene and Technology of Milk, Ludwig Maximilians University, Schoenleutnerstrasse 8, 85764 Oberschleissheim, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Jones LC, Beard JL, Jones BC. Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications. Hippocampus 2008; 18:398-410. [DOI: 10.1002/hipo.20399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Walter ED, Stevens DJ, Visconte MP, Millhauser GL. The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc 2007; 129:15440-1. [PMID: 18034490 PMCID: PMC2532507 DOI: 10.1021/ja077146j] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PrP binds copper in the highly conserved, unstructured N-terminal half of the protein. The octarepeat region consists of 4 tandem repeats of PHGGGWGQ and binds four equivalents of copper at full occupancy. Adjacent to the octarepeats are two additional histidines that may also bind copper. We recently showed that when the octarepeat region is titrated with Cu2+, the copper binding mode depends on the number of equivalents of copper bound. In addition to copper, other metals have been associated with PrP, however zinc is the only metal other than copper that induces PrP endocytosis, inhibits fibril formation and promotes inter-molecular interactions. In this work we show that even large excesses of zinc (> 1mM) are unable to displace copper from either the octarepeat region or the full-length protein. However, EPR reveals that physiologically relevant levels of zinc significantly alter the distribution of copper among the available binding modes. Diethyl pyrocarbonate (DEPC) modification and Mass Spectrometry is used to identify the octarepeat region as the zinc binding site and to confirm that the affinity of PrP for zinc is ~200 μM. PrP can simultaneously bind both copper and zinc by shifting to binding modes that minimize the ratio of histidines to copper.
Collapse
Affiliation(s)
- Eric D. Walter
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Daniel J. Stevens
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Micah P. Visconte
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|