1
|
Liu X, Yan Q, Liu X, Wei W, Zou L, Zhao F, Zeng S, Yi L, Ding H, Zhao M, Chen J, Fan S. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation. J Virol 2024; 98:e0175123. [PMID: 38319105 PMCID: PMC10949426 DOI: 10.1128/jvi.01751-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guang Dong, China
| |
Collapse
|
2
|
E-2 Glycoprotein Structural Variations Analysed within the CSFV 2.2. Genogroup in a “Closed Grid” Sampling Study from Meghalaya, India. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
CSF is enzootic in most of pig-producing states, particularly in the NorthEastern (NE) region of India. In this study, a total of 249 sera and 190 tissue samples were collected from different parts of Meghalaya. Samples were processed by ELISA and RT-PCR for serological and molecular diagnosis. Representative positive samples from the Khasi Hills region were selected for sequencing and “close grid” phylogenetic relationship using partial genomic regions of 5′UTR and E2. High seroprevalence (74.7%) of CSFV was recorded. Detection of the CSFV genome in serologically positive serum samples and tissue samples was 61.29% and 18.94%, respectively. BLAST and phylogenetic analyses indicate the clustering of all the field samples in subgroup 2.2, with high identity with EF014334 from China. Molecular structural modelling of the E2 partial sequence using representative sequences MG563797 from Meghalaya and EF014334 from China indicate potential changes in the protein motif and its conformation, which may explain the emergence of subgroup 2.2 CSFV replacing the predominant subgroup 1.1 viruses in NorthEast India. The epidemiological information presented in this study may be helpful for determination of disease incidence in this region, whereas the virus profile may be useful for framing disease control programs.
Collapse
|
3
|
A Novel Blocking Enzyme-Linked Immunosorbent Assay Based on a Biotinylated Nanobody for the Rapid and Sensitive Clinical Detection of Classical Swine Fever Virus Antibodies. Microbiol Spectr 2023; 11:e0299622. [PMID: 36688674 PMCID: PMC9927282 DOI: 10.1128/spectrum.02996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoclonal and polyclonal antibodies are mostly used for the development of traditional enzyme-linked immunosorbent assays (ELISAs), but the use of certain conventional antibodies may be limited by their low yield, the difficulty of their isolation, and their high cost. Heavy-chain antibodies derived from camelids with naturally missing light chains can overcome these deficiencies and are an excellent alternative to conventional antibodies. In this study, a nanobody (Nb)-AviTag fusion protein was constructed, and the feasibility of its use as a high-sensitivity probe in a blocking ELISA (bELISA) for classical swine fever virus (CSFV) was investigated. The CSFV E2 recombinant protein expressed by the CHO expression system exhibited good reactogenicity and immunogenicity and induced the production of high CSFV antibody levels in rabbits. Three different clones of Nbs were successfully isolated using a phage display system in alpaca, and an Nb1-AviTag fusion protein was successfully expressed using an Escherichia coli expression system. The purified Nb1-AviTag fusion protein was then biotinylated in vitro to obtain Nb1-biotin. A novel bELISA was developed for the detection of CSFV antibodies in clinical serum using Nb1-biotin as a probe. The cutoff value of bELISA was 32.18%, the sensitivity of bELISA was higher than that of the bELISA kit with IDEXX antibody, and the coincidence rate was 94.7%. A rapid, low-cost, highly sensitive and highly specific CSFV E2 antibody-based bELISA method was successfully established and can be used for the serological evaluation of CSFV E2 subunit vaccines and the ELISA-based diagnosis of CSFV infection. IMPORTANCE Currently, the epidemic situation of classical swine fever (CSF) is sporadic, and cases of atypical swine fever are on the rise in China. Therefore, it is necessary to accurately eliminate suspected cases by using highly sensitive and specific diagnostic techniques. In our study, a rapid, low-cost, highly sensitivity, highly reliable and reproducible, and highly specific classical swine fever virus (CSFV) E2 antibody-based blocking ELISA method was successfully established by using the phage display system and the Nb1-AviTag fusion expression platform. It provides a new technique for serological evaluation of CSFV vaccines and ELISA-based diagnosis of CSFV infection.
Collapse
|
4
|
Sereda AD, Kazakova AS, Dmitrenko VV, Kolbasov DV. Search for additional tests for immunobiological evaluation of the candidate vaccines against African swine fever. PLoS One 2022; 17:e0265819. [PMID: 35551531 PMCID: PMC9098040 DOI: 10.1371/journal.pone.0265819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The spread of African swine fever (ASF) in Eurasia has forced a return to the development of live vaccines based on naturally or experimentally attenuated strains of the virus including those resulting from genetic manipulations. This process includes evaluation of the immunomodulating properties of the vaccines. In this report we provide our assessment of two tests for immunobiological evaluation of a candidate live vaccine against ASF from the attenuated ASF virus (ASFV) strain KK-202: (i) investigation of the effect of the attenuated ASFV strain KK-202 on the protectiveness of the vaccine ASFV strain FK-32/135 and a vaccine against classical swine fever (CSF) from the strain LK-VNIIVViM; (ii) determination of the phagocytic activity of blood neutrophils in pigs inoculated with ASFV strains differing in virulence. A simultaneous or sequential inoculation of attenuated strain KK-202 (seroimmunotype II) and vaccine strain FK-32/135 (seroimmunotype IV) into pigs resulted in the loss of protection against the virulent strain France-32 (seroimmunotype IV). Following the simultaneous or sequential inoculations of the ASFV strain KK-202 and the CSF virus (CSFV) vaccine produced from the strain LK-VNIIVViM, the neutralizing antibody titers against the CSFV observed in the experimental groups (after vaccination and after the challenge infection with the virulent CSFV strain Shimen) were not different from those found in animals of the control group. The phagocytic activity of blood neutrophils was shown to increase from 30% in the norm to 50%-94% depending on the virulence of the ASFV strains inoculated into pigs. The results of this work demonstrate the ability of the attenuated ASFV strains to modulate the development of the cellular link of protective immunity without negative impact on the humoral immune response. The informative value of the described immunobiological tests in vivo and in vitro seems to be a more preferable alternative in comparison to the commonly used in vitro tests, which do not always correlate with the development of protection against ASF.
Collapse
Affiliation(s)
- Alexey D. Sereda
- Federal Research Center for Virology and Microbiology (FRCVM), Volginsky, Vladimir Region, Russia
| | - Anna S. Kazakova
- Federal Research Center for Virology and Microbiology (FRCVM), Volginsky, Vladimir Region, Russia
| | - Viktor V. Dmitrenko
- Federal Research Center for Virology and Microbiology (FRCVM), Volginsky, Vladimir Region, Russia
| | - Denis V. Kolbasov
- Federal Research Center for Virology and Microbiology (FRCVM), Volginsky, Vladimir Region, Russia
| |
Collapse
|
5
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
6
|
Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J, Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. MICROBIOME 2021; 9:18. [PMID: 33478588 PMCID: PMC7818139 DOI: 10.1186/s40168-020-00965-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND As the largest group of mammalian species, which are also widely distributed all over the world, rodents are the natural reservoirs for many diverse zoonotic viruses. A comprehensive understanding of the core virome of diverse rodents should therefore assist in efforts to reduce the risk of future emergence or re-emergence of rodent-borne zoonotic pathogens. RESULTS This study aimed to describe the viral range that could be detected in the lungs of rodents from Mainland Southeast Asia. Lung samples were collected from 3284 rodents and insectivores of the orders Rodentia, Scandentia, and Eulipotyphla in eighteen provinces of Thailand, Lao PDR, and Cambodia throughout 2006-2018. Meta-transcriptomic analysis was used to outline the unique spectral characteristics of the mammalian viruses within these lungs and the ecological and genetic imprints of the novel viruses. Many mammalian- or arthropod-related viruses from distinct evolutionary lineages were reported for the first time in these species, and viruses related to known pathogens were characterized for their genomic and evolutionary characteristics, host species, and locations. CONCLUSIONS These results expand our understanding of the core viromes of rodents and insectivores from Mainland Southeast Asia and suggest that a high diversity of viruses remains to be found in rodent species of this area. These findings, combined with our previous virome data from China, increase our knowledge of the viral community in wildlife and arthropod vectors in emerging disease hotspots of East and Southeast Asia. Video abstract.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | - Alice Latinne
- EcoHealth Alliance, New York, NY, USA
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Vietnam
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lilin Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Mingxing Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | | | | | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jinyong Jiang
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Xiang Xu
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Serge Morand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
7
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Wang L, Madera R, Li Y, McVey DS, Drolet BS, Shi J. Recent Advances in the Diagnosis of Classical Swine Fever and Future Perspectives. Pathogens 2020; 9:pathogens9080658. [PMID: 32824178 PMCID: PMC7460108 DOI: 10.3390/pathogens9080658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious viral disease of pigs, including wild boar. It is regarded as one of the major problems in the pig industry as it is still endemic in many regions of the world and has the potential to cause devastating epidemics, particularly in countries free of the disease. Rapid and reliable diagnosis is of utmost importance in the control of CSF. Since clinical presentations of CSF are highly variable and may be confused with other viral diseases in pigs, laboratory diagnosis is indispensable for an unambiguous diagnosis. On an international level, well-established diagnostic tests of CSF such as virus isolation, fluorescent antibody test (FAT), antigen capture antibody enzyme-linked immunosorbent assay (ELISA), reverse-transcription polymerase chain reaction (RT-PCR), virus neutralization test (VNT), and antibody ELISA have been described in detail in the OIE Terrestrial Manual. However, improved CSF diagnostic methods or alternatives based on modern technologies have been developed in recent years. This review thus presents recent advances in the diagnosis of CSF and future perspectives.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-785-532-4397 (L.W.); +1-785-532-4506 (J.S.)
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - David Scott McVey
- United States Department of Agriculture, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA; (D.S.M.); (B.S.D.)
| | - Barbara S. Drolet
- United States Department of Agriculture, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA; (D.S.M.); (B.S.D.)
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
- Correspondence: (L.W.); (J.S.); Tel.: +1-785-532-4397 (L.W.); +1-785-532-4506 (J.S.)
| |
Collapse
|
9
|
Izzati UZ, Hoa NT, Lan NT, Diep NV, Fuke N, Hirai T, Yamaguchi R. Pathology of the outbreak of subgenotype 2.5 classical swine fever virus in northern Vietnam. Vet Med Sci 2020; 7:164-174. [PMID: 32781492 PMCID: PMC7840204 DOI: 10.1002/vms3.339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 11/06/2022] Open
Abstract
Classical swine fever (CSF) is an endemic disease in southeastern Asia and is one of the most important swine diseases in Vietnam. This study was conducted to characterize the pathology of natural cases of CSF in northern Vietnam in 2018 and their genetic prevalence. A total of 10 representative pigs were collected from four provinces (Hung Yen, Ha Noi, Quang Ninh and Thai Binh) during five outbreaks and examined pathologically. The gross and histopathological findings showed the disease was expressed as the acute or the subacute to chronic form of CSF, depending on the age of the animals. The most consistently observed lesions associated with infection by the classical swine fever virus (CSFV) included lymphoid depletions in tonsils, lymph node and spleen; histiocytic hyperplasia in spleen; cerebral haemorrhage; perivascular cuffing in the brain; renal erythrodiapedesis; urothelial vacuolation and degeneration and interstitial pneumonia. The immunohistochemical findings showed a ubiquitous CSFV antigen mainly in the monocytes/macrophages and in the epithelial and endothelial cells in various organs. CSFV neurotropism was also found in the small neurons of the cerebrum and the ganglia of the myenteric plexus. Analysis of the full-length envelope protein (E2) genome sequence showed that all strains were genetically clustered into subgenotype 2.5, sharing a nucleotide identity of 94.0%-100.00%. Based on the results of this study, the strain was categorized as a moderately virulent CSFV.
Collapse
Affiliation(s)
- Uda Zahli Izzati
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Nguyen Thi Hoa
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Nguyen Thi Lan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Nguyen Van Diep
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Naoyuki Fuke
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takuya Hirai
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
10
|
Malik YS, Bhat S, Kumar ORV, Yadav AK, Sircar S, Ansari MI, Sarma DK, Rajkhowa TK, Ghosh S, Dhama K. Classical Swine Fever Virus Biology, Clinicopathology, Diagnosis, Vaccines and a Meta-Analysis of Prevalence: A Review from the Indian Perspective. Pathogens 2020; 9:pathogens9060500. [PMID: 32580503 PMCID: PMC7350356 DOI: 10.3390/pathogens9060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
Classical swine fever (CSF) is an economically significant, multi-systemic, highly contagious viral disease of swine world over. The disease is notifiable to the World Organization for Animal Health (OIE) due to its enormous consequences on porcine health and the pig industry. In India, the pig population is 9.06 million and contributes around 1.7% of the total livestock population. The pig industry is not well organized and is mostly concentrated in the eastern and northeastern states of the country (~40% of the country’s population). Since the first suspected CSF outbreak in India during 1944, a large number of outbreaks have been reported across the country, and CSF has acquired an endemic status. As of date, there is a scarcity of comprehensive information on CSF from India. Therefore, in this review, we undertook a systematic review to compile and evaluate the prevalence and genetic diversity of the CSF virus situation in the porcine population from India, targeting particular virus genes sequence analysis, published reports on prevalence, pathology, and updates on indigenous diagnostics and vaccines. The CSF virus (CSFV) is genetically diverse, and at least three phylogenetic groups are circulating throughout the world. In India, though genotype 1.1 predominates, recently published reports point toward increasing evidence of co-circulation of sub-genotype 2.2 followed by 2.1. Sequence identities and phylogenetic analysis of Indian CSFV reveal high genetic divergence among circulating strains. In the meta-analysis random-effects model, the estimated overall CSF prevalence was 35.4%, encompassing data from both antigen and antibody tests, and region-wise sub-group analysis indicated variable incidence from 25% in the southern to nearly 40% in the central zone, eastern, and northeastern regions. A country-wide immunization approach, along with other control measures, has been implemented to reduce the disease incidence and eliminate the virus in time to come.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
- Correspondence: (Y.S.M.); (K.D.); Tel.: +91-58-1230-2777 (Y.S.M. & K.D.); Fax: +91-58-1230-1757 (Y.S.M. & K.D.)
| | - Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
| | - O. R. Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| | - Ajay Kumar Yadav
- Animal Health, ICAR-National Research Centre on Pig (ICAR-NRCP), Guwahati, Assam 781015, India;
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243001, India; (S.B.); (S.S.); (M.I.A.)
| | - Dilip Kumar Sarma
- Department of Veterinary Microbiology, Assam Agricultural University, Khanapara, Guwahati 781022, India;
| | - Tridib Kumar Rajkhowa
- College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram 796001, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Basseterre, St. Kitts PO Box 334, West Indies;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
- Correspondence: (Y.S.M.); (K.D.); Tel.: +91-58-1230-2777 (Y.S.M. & K.D.); Fax: +91-58-1230-1757 (Y.S.M. & K.D.)
| |
Collapse
|
11
|
Ma SM, Mao Q, Yi L, Zhao MQ, Chen JD. Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens 2019; 8:pathogens8040239. [PMID: 31744077 PMCID: PMC6963731 DOI: 10.3390/pathogens8040239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023] Open
Abstract
Classical swine fever (CSF) is a severe acute infectious disease that results from classical swine fever virus (CSFV) infection, which leads to serious economic losses in the porcine industry worldwide. In recent years, numerous studies related to the immune escape mechanism of the persistent infection and pathogenesis of CSFV have been performed. Remarkably, several independent groups have reported that apoptosis, autophagy, and pyroptosis play a significant role in the occurrence and development of CSF, as well as in the immunological process. Apoptosis, autophagy, and pyroptosis are the fundamental biological processes that maintain normal homeostatic and metabolic function in eukaryotic organisms. In general, these three cellular biological processes are always understood as an immune defense response initiated by the organism after perceiving a pathogen infection. Nevertheless, several viruses, including CSFV and other common pathogens such as hepatitis C and influenza A, have evolved strategies for infection and replication using these three cellular biological process mechanisms. In this review, we summarize the known roles of apoptosis, autophagy, and pyroptosis in CSFV infection and how viruses manipulate these three cellular biological processes to evade the immune response.
Collapse
|
12
|
Gong X, Hu A, Li X, He J, Wu Z, Zuo X, Ning P. Coordinated expression of vascular endothelial growth factor A and urokinase-type plasminogen activator contributes to classical swine fever virus Shimen infection in macrophages. BMC Vet Res 2019; 15:82. [PMID: 30849965 PMCID: PMC6407193 DOI: 10.1186/s12917-019-1826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 02/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Shimen strain of classical swine fever (CSF) virus (CSFV) causes CSF, which is mainly characterised by disseminated intravascular haemorrhage. Macrophages are an essential component of innate immunity against pathogenic microorganisms; however, the role of macrophages in CSF pathogenesis remains unclear. To illuminate the infective mechanism of CSFV, we used gene co-expression networks derived from macrophages infected with CSFV Shimen and CSFV C as well as uninfected macrophages to screen key regulatory genes, and their contributions to the pathogenesis of CSF were discussed. RESULTS Vascular endothelial growth factor A (VEGFA) and plasminogen activator, urokinase (PLAU, which encodes urokinase-type plasminogen activator [uPA]) were identified as coordinated genes expressed in macrophages by gene co-expression networks. Quantitative polymerase chain reaction and western blot analysis confirmed that VEGFA and PLAU were significantly up-regulated at both the transcription and translation levels after infection. Further, confocal microscopy analysis proposed that the VEGFA and uPA proteins were temporally co-localised with the CSFV protein E2. CONCLUSIONS Our findings suggest that co-expression of VEGFA and PLAU in macrophages contributes to CSFV Shimen infection and serves as a significant avenue for the strain to form an inflammatory microenvironment, providing new insight into the mechanisms of CSF caused by a virulent strain.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Aoxue Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Xuepeng Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Zhongxing Wu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Xi Zuo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China. .,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, People's Republic of China.
| |
Collapse
|
13
|
Gaikwad SS, Lee HJ, Kim JY, Choi KS. Expression and serological application of recombinant epitope-repeat protein carrying an immunodominant epitope of Newcastle disease virus nucleoprotein. Clin Exp Vaccine Res 2019; 8:27-34. [PMID: 30775348 PMCID: PMC6369128 DOI: 10.7774/cevr.2019.8.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The aim of the present study was to develop a serodiagnostic test for differentiation infected from vaccinated animal (DIVA) strategy accompanying the marker vaccine lacking an immunodominant epitope (IDE) of nucleoprotein of Newcastle disease virus (NDV). Materials and Methods Recombinant epitope-repeat protein (rERP) gene encoding eight repeats of the IDE sequence (ETQFLDLMRAVANSMR) by tetra-glycine linker was synthesized. Recombinant baculovirus carrying the rERP gene was generated to express the rERP in insect cells. Specificity and sensitivity of an indirect enzyme-linked immunosorbent assay (ELISA) employing the rERP was evaluated. Results The rERP with molecular weight of 20 kDa was successfully expressed by the recombinant baculovirus in an insect-baculovirus system. The rERP was antigenically functional as demonstrated by Western blotting. An indirect ELISA employing the rERP was developed and its specificity and sensitivity was determined. The ELISA test allowed discrimination of NDV infected sera from epitope deletion virus vaccinated sera. Conclusion The preliminary results represent rERP ELISA as a promising DIVA diagnostic tool.
Collapse
Affiliation(s)
- Satish S Gaikwad
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Parbhani, India
| | - Hyun-Jeong Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Ji-Ye Kim
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Kang-Seuk Choi
- Planning and Coordination Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
14
|
Wu Z, Liu B, Du J, Zhang J, Lu L, Zhu G, Han Y, Su H, Yang L, Zhang S, Liu Q, Jin Q. Discovery of Diverse Rodent and Bat Pestiviruses With Distinct Genomic and Phylogenetic Characteristics in Several Chinese Provinces. Front Microbiol 2018; 9:2562. [PMID: 30405596 PMCID: PMC6207626 DOI: 10.3389/fmicb.2018.02562] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/08/2018] [Indexed: 11/13/2022] Open
Abstract
Bats and rodents are widely distributed worldwide and can be native or intermediate reservoirs of many important zoonotic viruses. Pestiviruses are a group of virus species of the genus Pestivirus under the family Flaviviridae that can infect a wide variety of artiodactylous hosts, including swine and ruminants. Two classic types of pestiviruses, bovine viral diarrhea virus and classical swine fever virus, are important causative agents of mild-to-severe disease in bovine and swine hosts, respectively, and cause tremendous economic losses in these industries. Recent reports revealed that bats and rodents could also act as natural hosts of pestiviruses and an atypical porcine pestivirus, which cause disease in piglets, showed a close genetic relationship with a specific bat pestivirus, RaPestV-1. This study aimed to describe the detection and characterization of novel pestiviruses from bats and rodents in different locations by analyzing the available bat and rodent virome data from throughout China. Two bat pestivirus species and four rodent pestivirus species that are distinct from other known viruses were identified and sequenced. These viruses were identified from two bat species and four rodent species in different Chinese provinces. There were two distinct lineages present in these viruses, that differ from artiodactylous pestivirus. These findings expand our understanding of the genetic diversity of pestiviruses in bats and rodents and suggest the presence of a diverse set of pestiviruses in non-artiodactylous hosts. This study may provide new insight for the prevention of future viral disease outbreaks originating from bats and rodents.
Collapse
Affiliation(s)
- Zhiqiang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junpeng Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Yelin Han
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haoxiang Su
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuyi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qiyong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
PATIL SS, SURESH KP, SAHA SNEHA, HAMSAPRIYA S, BARMAN NN, ROY PARIMAL. Import risk model: A quantitative risk assessment of classical swine fever virus (CSFV) introduction into Arunachal Pradesh via importation of pigs from bordering countries. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i10.84144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
CHOORI P, PATIL SS, RATNAMMA D, APRAJAPATI, MUKARTAL SY, REDDY GBMANJUNATHA, SURESH KP, HEMADRI D, RAHMAN H. Seroprevalence of Classical Swine Fever in pigs of Karnataka and comparative diagnostic evaluation of antigen ELISA and reverse transcriptase -PCR. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v87i12.79743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Classical swine fever is highly contagious viral disease of swine causing huge economic losses to pig farmersand pig industry. The study was conducted in Karnataka to understand the current scenario of CSF in the state andto evaluate efficiency of diagnostic tests (antigen ELISA and RT-PCR) in detecting the disease. Serum sampleswere collected from 270 pigs from 13 districts of the state and were tested for the presence of CSF antibodies.Whole blood samples (151) from 14 outbreaks of CSF were collected for the comparative diagnosis of the diseaseusing Antigen ELISA and reverse transcriptase (RT)-PCR. A seroprevalence of 28.5% (77/270) was found in theserum samples collected form the whole Karnataka. The southern Karnataka had higher seroprevalence (47%) incomparison to northern Karnataka region where seroprevalence was 17%. It confirms endemicity of the disease insouthern region. Of 151 blood samples collected for comparative diagnosis, 61 samples were positive for CSF byRT-PCR and 39 by antigen ELISA, indicating the superiority of RT-PCR over antigen ELISA to detect CSFVinfection in earliest stages of infection.
Collapse
|
17
|
Mukherjee P, Karam A, Singh U, Chakraborty AK, Huidrom S, Sen A, Sharma I. Seroprevalence of selected viral pathogens in pigs reared in organized farms of Meghalaya from 2014 to 16. Vet World 2018; 11:42-47. [PMID: 29479156 PMCID: PMC5813510 DOI: 10.14202/vetworld.2018.42-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/15/2017] [Indexed: 01/22/2023] Open
Abstract
Aim: A pilot study was carried out to find out the seroprevalence of Porcine circovirus 2 (PCV2), classical swine fever virus (CSFV), and Porcine respiratory and reproductive syndrome virus (PRRS) in pig population of Meghalaya. Materials and Methods: Serum samples were collected from piglets of 40–45 days age group, growers, and sows reared under organized and unorganized management in 11 districts of Meghalaya situated in the Khasi, Jaintia, and Garo hills divisions in the time period of 2014-2016 from apparently healthy and suspected pigs. Seroprevalence of PCV2, CSFV, and PRRS specific antibodies was detected by enzyme-linked immunosorbent assay (ELISA). Results: A total of 1899 serum samples were collected and screened using antibody ELISA kits specific for PCV2, CSFV, and PRRS. The highest antibody prevalence during the selected time periods was detected for PCV2 (80.8% in 2014, 79.1% in 2015, and 96.2% in 2016) followed by CSFV (76.4% in 2014, 66.09% in 2015, and 25.5% in 2016) and PRRS (2.8% in 2014, 2.7% in 2015, and 3.62% in 2016). The result indicates high seroprevalence for PCV2, which can be considered as an inducement factor due to the immunosuppressive nature of the virus, for animals being susceptible to other pathogens in farms where airborne transmission of PCV2 and postweaning multisystemic wasting syndrome among animals reared in close pens can be a major possibility. Conclusions: The data from this study indicates ubiquitous prevalence of PCV2 antibodies in the farm animals along with the endemic presence of swine fever and emergence of PRRS in an organized farm. There are few reports regarding PCV2 infections/outbreaks in pigs associated with reproductive failure from northern and southern part of India, but till date, there are no reports regarding concomitant infection of CSFV and PCV2 from India. Considerable high seropositivity of PCV2 indicates the need for high impact hygiene practice in farms, routine seromonitoring and implementation the vaccination program. To the author’s best knowledge, this is the first documented report on the seroprevalence of PCV2, CSFV, and PRRS from pig population of Meghalaya.
Collapse
Affiliation(s)
- Priyanka Mukherjee
- Division of Animal Health, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam - 793 103, Meghalaya, India.,Department of Microbiology, Assam University, Silchar - 788 011, Assam, India
| | - Amarjit Karam
- Division of Animal Health, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam - 793 103, Meghalaya, India
| | - Uttam Singh
- Division of Animal Health, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam - 793 103, Meghalaya, India
| | - Amit Kumar Chakraborty
- Division of Animal Health, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam - 793 103, Meghalaya, India.,Department of Microbiology, Assam University, Silchar - 788 011, Assam, India
| | - Surmani Huidrom
- Division of Animal Health, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam - 793 103, Meghalaya, India
| | - Arnab Sen
- Division of Animal Health, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam - 793 103, Meghalaya, India
| | - Indu Sharma
- Department of Microbiology, Assam University, Silchar - 788 011, Assam, India
| |
Collapse
|
18
|
Schulz K, Staubach C, Blome S. African and classical swine fever: similarities, differences and epidemiological consequences. Vet Res 2017; 48:84. [PMID: 29183365 PMCID: PMC5706370 DOI: 10.1186/s13567-017-0490-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
For the global pig industry, classical (CSF) and African swine fever (ASF) outbreaks are a constantly feared threat. Except for Sardinia, ASF was eradicated in Europe in the late 1990s, which led to a research focus on CSF because this disease continued to be present. However, ASF remerged in eastern Europe in 2007 and the interest in the disease, its control and epidemiology increased tremendously. The similar names and the same susceptible species suggest a similarity of the two viral diseases, a related biological behaviour and, correspondingly, similar epidemiological features. However, there are several essential differences between both diseases, which need to be considered for the design of control or preventive measures. In the present review, we aimed to collate differences and similarities of the two diseases that impact epidemiology and thus the necessary control actions. Our objective was to discuss critically, if and to which extent the current knowledge can be transferred from one disease to the other and where new findings should lead to a critical review of measures relating to the prevention, control and surveillance of ASF and CSF. Another intention was to identify research gaps, which need to be closed to increase the chances of a successful eradication of ASF and therefore for a decrease of the economic threat for pig holdings and the international trade.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| |
Collapse
|
19
|
He W, Xu H, Gou H, Yuan J, Liao J, Chen Y, Fan S, Xie B, Deng S, Zhang Y, Chen J, Zhao M. CSFV Infection Up-Regulates the Unfolded Protein Response to Promote Its Replication. Front Microbiol 2017; 8:2129. [PMID: 29163417 PMCID: PMC5673830 DOI: 10.3389/fmicb.2017.02129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023] Open
Abstract
Classical swine fever (CSF) is an OIE-listed, highly contagious animal disease caused by classical swine fever virus (CSFV). The endoplasmic reticulum (ER) is an organelle in which the replication of many RNA viruses takes place. During viral infection, a series of events elicited in cells can destroy the ER homeostasis that cause ER stress and induce an unfolded protein response (UPR). In this study, we demonstrate that ER stress was induced during CSFV infection as several UPR-responsive elements such as XBP1(s), GRP78 and CHOP were up-regulated. Specifically, CSFV transiently activated IRE1 pathway at the initial stage of infection but rapidly switched off, likely due to the reduction in cytoplasm Ca2+ after viral incubation. Additionally, our data show that the ER stress induced by CSFV can promote CSFV production, which the IRE1 pathway play an important role in it. Evidence of ER stress in vivo was also confirmed by the marked elevation of GRP78 in CSFV-infected pig PBMC and tissues. Collectively, these data indicate that the ER stress was induced upon CSFV infection and that the activation of the IRE1 pathway benefits CSFV replication.
Collapse
Affiliation(s)
- Wencheng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hailuan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongchao Gou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiedan Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Baoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaofeng Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yangyi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Giles TA, Belkhiri A, Barrow PA, Foster N. Molecular approaches to the diagnosis and monitoring of production diseases in pigs. Res Vet Sci 2017; 114:266-272. [PMID: 28535467 PMCID: PMC7118804 DOI: 10.1016/j.rvsc.2017.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs.
Collapse
Affiliation(s)
- Timothy A Giles
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Aouatif Belkhiri
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| |
Collapse
|
21
|
Lin H, Ma Z, Chen L, Fan H. Recombinant Swinepox Virus Expressing Glycoprotein E2 of Classical Swine Fever Virus Confers Complete Protection in Pigs upon Viral Challenge. Front Vet Sci 2017; 4:81. [PMID: 28612010 PMCID: PMC5447669 DOI: 10.3389/fvets.2017.00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/12/2017] [Indexed: 01/21/2023] Open
Abstract
Classical swine fever (CSF) is a highly contagious and serious viral disease that affects the pig industry worldwide. The glycoprotein E2 of the classical swine fever virus (CSFV) can induce neutralizing antibodies, and it is widely used for novel vaccine development. To explore the development of a vaccine against CSFV infections, the gene of glycoprotein E2 was inserted into the swinepox virus (SPV) genome by homologous recombination. The culture titers of rSPV-E2 remained at about 4.3 × 106 TCID50 for more than 60 passages in PK15 and swine testis cell lines. The rSPV-E2 could not be replicated in Vero, MDBK or other non-porcine cell lines. After two to three passages, the SPV specific gene of rSPV-E2 could not been detected in the non-porcine cell culture. To evaluate the immunogenicity of rSPV-E2, 20 CSFV seronegative minipigs were immunized with rSPV-E2, a commercial C-strain vaccine, wild-type SPV (wtSPV; negative control), or PBS (a no-challenge control). After challenge with CSFV, pigs in the rSPV-E2-immunized group showed significantly shorter fever duration compared with the wtSPV-treated group (P < 0.05). E2-specific antibodies in the rSPV-E2-immunized group increased dramatically after vaccination and increased continuously over time. CSFV genomic copies in the serum of rSPV-E2-immunized pigs were significantly less compared with the wtSPV-treated group at all time points after challenge (P < 0.01). Significant reduction in gross lung lesion scores, histopathological liver, spleen, lung, and kidney lesion scores were noted in the rSPV-E2-immunized group compared with the wtSPV-treated group (P < 0.01). The results suggested that the recombinant rSPV-E2 provided pigs with significant protection from CSFV infections; thus, rSPV-E2 offers proof of principle for the development of a vaccine for the prevention of CSFV infections in pigs.
Collapse
Affiliation(s)
- Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
22
|
Schulz J, Staubach C, Conraths FJ, Schulz K. A Simulation Model to Determine Sensitivity and Timeliness of Surveillance Strategies. Transbound Emerg Dis 2016; 64:1709-1719. [PMID: 27619421 DOI: 10.1111/tbed.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 11/28/2022]
Abstract
Animal surveillance systems need regular evaluation. We developed an easily applicable simulation model of the German wild boar population to investigate two evaluation attributes: the sensitivity and timeliness (i.e. the ability to detect a disease outbreak rapidly) of a surveillance system. Classical swine fever (CSF) was used as an example for the model. CSF is an infectious disease that may lead to massive economic losses. It can affect wild boar as well as domestic pigs, and CSF outbreaks in domestic pigs have been linked to infections in wild boar. Awareness of the CSF status in wild boar is therefore vital. Our non-epidemic simulation model is based on real data and evaluates the currently implemented German surveillance system for CSF in wild boar. The results show that active surveillance for CSF fulfils the requirements of detecting an outbreak with 95% confidence within one year after the introduction of CSF into the wild boar population. Nevertheless, there is room for improved performance and efficiency by more homogeneous (active and passive) sampling of wild boar over the year. Passive surveillance alone is not sufficient to meet the requirements for detecting the infection. Although CSF was used as example to develop the model, it may also be applied to the evaluation of other surveillance systems for viral diseases in wild boar. It is also possible to compare sensitivity and timeliness across hypothetical alternative or risk-based surveillance strategies.
Collapse
Affiliation(s)
- J Schulz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - C Staubach
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - F J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - K Schulz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| |
Collapse
|
23
|
Hause BM, Collin EA, Peddireddi L, Yuan F, Chen Z, Hesse RA, Gauger PC, Clement T, Fang Y, Anderson G. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA. J Gen Virol 2015. [PMID: 26219947 DOI: 10.1099/jgv.0.000251] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pestiviruses are some of the most significant pathogens affecting ruminants and swine. Here, we assembled a 11 276 bp contig encoding a predicted 3635 aa polyprotein from porcine serum with 68 % pairwise identity to that of a recently partially characterized Rhinolophus affinis pestivirus (RaPV) and approximately 25-28 % pairwise identity to those of other pestiviruses. The virus was provisionally named atypical porcine pestivirus (APPV). Metagenomic sequencing of 182 serum samples identified four additional APPV-positive samples. Positive samples originated from five states and ELISAs using recombinant APPV Erns found cross-reactive antibodies in 94 % of a collection of porcine serum samples, suggesting widespread distribution of APPV in the US swine herd. The molecular and serological results suggest that APPV is a novel, highly divergent porcine pestivirus widely distributed in US pigs.
Collapse
Affiliation(s)
- Ben M Hause
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Emily A Collin
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Fangfeng Yuan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Zhenhai Chen
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Richard A Hesse
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Travis Clement
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
24
|
Kumar P, Upmanyu V, Dhar P. Biological and molecular characterization of classical swine fever challenge virus from India. Vet World 2015; 8:330-5. [PMID: 27047093 PMCID: PMC4774839 DOI: 10.14202/vetworld.2015.330-335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 11/26/2022] Open
Abstract
Aim: The aim of this study was biological and molecular characterization of classical swine fever (CSF) challenge virus from India. Materials and Methods: CSF challenge virus maintained at Division of Biological standardization was experimentally infected to two seronegative piglets. The biological characterization was done by clinical sign and symptoms along with postmortem findings. For molecular characterization 5’-nontranslated region, E2 and NS5B regions were amplified by reverse transcription polymerase chain reaction and sequenced. The sequences were compared with that of reference strains and the local field isolates to establish a phylogenetic relation. Results: The virus produced symptoms of acute disease in the piglets with typical post-mortem lesions. Phylogenetic analysis of the three regions showed that the current Indian CSF Challenge virus is having maximum similarity with the BresciaX strain (USA) and Madhya Pradesh isolate (India) and is belonging to subgroup 1.2 under Group 1. Conclusion: Based on biological and molecular characterization of CSF challenge virus from India is described as a highly virulent virus belonging to subgroup 1.2 under Group 1 along with some field isolates from India and Brescia strain.
Collapse
Affiliation(s)
- Parveen Kumar
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Vikramaditya Upmanyu
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Pronab Dhar
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|