1
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
2
|
Kemler M, Denchev TT, Denchev CM, Begerow D, Piątek M, Lutz M. Host preference and sorus location correlate with parasite phylogeny in the smut fungal genus Microbotryum (Basidiomycota, Microbotryales). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01571-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractThe smut fungal genus Microbotryum (Microbotryales, Pucciniomycotina) contains species that parasitize plants from many different lineages of euasterids, with host specificity of individual parasite species in general being exceptionally high. Additionally, it has been shown that the location of spore production in some species is related to spore dispersal. In this phylogenetic study based on ITS and LSU rDNA data of 57 Microbotryum spp., host spectra and sorus location are mapped on the phylogeny of Microbotryum species in order to understand the macroevolutionary patterns of these two traits. We find that monophyletic parasite clades correspond well with monophyletic host clades and also that monophyletic parasite groups in general produce their spores in the same plant organ. Ancestral state reconstruction inferred the most probable ancestral trait for sorus location being leaves and the most probable ancestral host family for the genus Microbotryum as being the Polygonaceae. According to molecular analyses, a newly sequenced specimen of Ustilago ducellieri, a seed parasite on Arenaria leptoclados, previously treated as synonym of Microbotryum duriaeanum, belongs to a lineage distinct from specimens of M. duriaeanum. A new combination, Microbotryum ducellieri, is accordingly proposed. Taxonomic implications of the presented analyses for the genera Bauhinus and Haradaea are briefly discussed.
Collapse
|
3
|
Kido A, Hood ME. Mining new sources of natural history observations for disease interactions. AMERICAN JOURNAL OF BOTANY 2020; 107:3-11. [PMID: 31885083 PMCID: PMC6980919 DOI: 10.1002/ajb2.1409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Allyson Kido
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | | |
Collapse
|
4
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
5
|
Thines M. An evolutionary framework for host shifts - jumping ships for survival. THE NEW PHYTOLOGIST 2019; 224:605-617. [PMID: 31381166 DOI: 10.1111/nph.16092] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.
Collapse
Affiliation(s)
- Marco Thines
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, D-60486, Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Hood ME, Antonovics J, Wolf M, Stern ZL, Giraud T, Abbate JL. Sympatry and interference of divergent Microbotryum pathogen species. Ecol Evol 2019; 9:5457-5467. [PMID: 31110694 PMCID: PMC6509394 DOI: 10.1002/ece3.5140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
The impact of infectious diseases in natural ecosystems is strongly influenced by the degree of pathogen specialization and by the local assemblies of potential host species. This study investigated anther-smut disease, caused by fungi in the genus Microbotryum, among natural populations of plants in the Caryophyllaceae. A broad geographic survey focused on sites of the disease on multiple host species in sympatry. Analysis of molecular identities for the pathogens revealed that sympatric disease was most often due to co-occurrence of distinct, host-specific anther-smut fungi, rather than localized cross-species disease transmission. Flowers from sympatric populations showed that the Microbotryum spores were frequently moved between host species. Experimental inoculations to simulate cross-species exposure to the pathogens in these plant communities showed that the anther-smut pathogen was less able to cause disease on its regular host when following exposure of the plants to incompatible pathogens from another host species. These results indicate that multi-host/multi-pathogen communities are common in this system and they involve a previously hidden mechanism of interference between Microbotryum fungi, which likely affects both pathogen and host distributions.
Collapse
Affiliation(s)
| | - Janis Antonovics
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia
| | - Monroe Wolf
- Department of BiologyAmherst CollegeAmherstMassachusetts
| | | | - Tatiana Giraud
- Ecologie Systematique et Evolution, Univ. Paris‐Sud, CNRS, AgroParisTechUniversité Paris SaclayOrsayFrance
| | - Jessica L. Abbate
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia
- INRA ‐ UMR 1062 CBGP (INRA, IRD, CIRAD, Montpellier SupAgro)Montferrier‐sur‐LezFrance
| |
Collapse
|
7
|
Fortuna TM, Namias A, Snirc A, Branca A, Hood ME, Raquin C, Shykoff JA, Giraud T. Multiple infections, relatedness and virulence in the anther-smut fungus castrating Saponaria plants. Mol Ecol 2018; 27:4947-4959. [PMID: 30372557 DOI: 10.1111/mec.14911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/26/2022]
Abstract
Multiple infections (co-occurrence of multiple pathogen genotypes within an individual host) can have important impacts on diseases. Relatedness among pathogens can affect the likelihood of multiple infections and their consequences through kin selection. Previous studies on the castrating anther-smut fungus Microbotryum lychnidis-dioicae have shown that multiple infections occur in its host plant Silene latifolia. Relatedness was high among fungal genotypes within plants, which could result from competitive exclusion between unrelated fungal genotypes, from population structure or from interactions between plant and fungal genotypes for infection ability. Here, we aimed at disentangling these hypotheses using M. saponariae and its host Saponaria officinalis, both experimentally tractable for these questions. By analysing populations using microsatellite markers, we also found frequent occurrence of multiple infections and high relatedness among strains within host plants. Infections resulting from experimental inoculations in the greenhouse also revealed high relatedness among strains co-infecting host plants, even in clonally replicated plant genotypes, indicating that high relatedness within plants did not result merely from plant x fungus interactions or population structure. Furthermore, hyphal growth in vitro was affected by the presence of a competitor growing nearby and by its genetic similarity, although this latter effect was strain-dependent. Altogether, our results support the hypothesis that relatedness-dependent competitive exclusion occurs in Microbotryum fungi within plants. These microorganisms can thus respond to competitors and to their level of relatedness.
Collapse
Affiliation(s)
- Taiadjana M Fortuna
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Alice Namias
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.,Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts
| | - Christian Raquin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Jacqui A Shykoff
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
8
|
Ziegler R, Lutz M, Piątek J, Piątek M. Dismantling a complex of anther smuts (Microbotryum) on carnivorous plants in the genus Pinguicula. Mycologia 2018; 110:361-374. [PMID: 29792777 DOI: 10.1080/00275514.2018.1451697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The anther smuts of the genus Microbotryum are known from host plant species belonging to the Caryophyllaceae, Dipsacaceae, Lamiaceae, Lentibulariaceae, Montiaceae, and Primulaceae. Of these, the anther smuts on Caryophyllaceae, in particular on Silene spp., are best known because they include model organisms studied in many disciplines of fungal biology. For Microbotryum species parasitic on Caryophyllaceae, a high degree of host specificity was revealed and several cryptic species were described. In contrast, the host specificity within Microbotryum pinguiculae occurring in anthers of different Pinguicula species (Lentibulariaceae) has not been investigated in detail until now. The anther smuts on Pinguicula alpina, P. villosa, and P. vulgaris, on which M. pinguiculae was described, were analyzed using nuc rDNA ITS1-5.8S-ITS2 and nuc rDNA 28S D1-D2 sequences and morphology to determine if they belong to one polyphagous species or rather represent three host-specific species. The results of the morphological investigations revealed no decisive differences between the anther smuts on different Pinguicula species. However, genetic divergence and molecular phylogenetic analyses, which split the specimens according to host plant species, supported host specificity of the anther smuts on different Pinguicula species. Accordingly, in addition to Microbotryum pinguiculae s. str. on Pinguicula vulgaris, M. alpinum sp. nov. on P. alpina from Europe and M. liroi sp. nov. on P. villosa from Asia are described and illustrated.
Collapse
Affiliation(s)
- Rebekka Ziegler
- a Plant Evolutionary Ecology , Institute of Evolution and Ecology, University of Tübingen , Auf der Morgenstelle 5, D-72076 Tübingen , Germany
| | - Matthias Lutz
- a Plant Evolutionary Ecology , Institute of Evolution and Ecology, University of Tübingen , Auf der Morgenstelle 5, D-72076 Tübingen , Germany
| | - Jolanta Piątek
- b Department of Phycology , W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz 46, PL-31-512 Kraków , Poland
| | - Marcin Piątek
- c Department of Mycology , W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz 46, PL-31-512 Kraków , Poland
| |
Collapse
|
9
|
Kruse J, Dietrich W, Zimmermann H, Klenke F, Richter U, Richter H, Thines M. Ustilago species causing leaf-stripe smut revisited. IMA Fungus 2018; 9:49-73. [PMID: 30018872 PMCID: PMC6048562 DOI: 10.5598/imafungus.2018.09.01.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 12/02/2022] Open
Abstract
Leaf-stripe smuts on grasses are a highly polyphyletic group within Ustilaginomycotina, occurring in three genera, Tilletia, Urocystis, and Ustilago. Currently more than 12 Ustilago species inciting stripe smuts are recognised. The majority belong to the Ustilago striiformis-complex, with about 30 different taxa described from 165 different plant species. This study aims to assess whether host distinct-lineages can be observed amongst the Ustilago leaf-stripe smuts using nine different loci on a representative set. Phylogenetic reconstructions supported the monophyly of the Ustilago striiformis-complex that causes leaf-stripe and the polyphyly of other leaf-stripe smuts within Ustilago. Furthermore, smut specimens from the same host genus generally clustered together in well-supported clades that often had available species names for these lineages. In addition to already-named lineages, three new lineages were observed, and described as new species on the basis of host specificity and molecular differences: namely Ustilago jagei sp. nov. on Agrostis stolonifera, U. kummeri sp. nov. on Bromus inermis, and U. neocopinata sp. nov. on Dactylis glomerata.
Collapse
Affiliation(s)
- Julia Kruse
- Goethe University Frankfurt am Main, Faculty of Biosciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | | | - Horst Zimmermann
- Cluster for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| | | | - Udo Richter
- Traubenweg 8, 06632 Freyburg / Unstrut, Germany
| | | | - Marco Thines
- Goethe University Frankfurt am Main, Faculty of Biosciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Cluster for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| |
Collapse
|
10
|
|
11
|
Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, Wu F, He MQ, Moncalvo JM, Hyde KD. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0381-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Petit E, Silver C, Cornille A, Gladieux P, Rosenthal L, Bruns E, Yee S, Antonovics J, Giraud T, Hood ME. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts. Mol Ecol 2017; 26:1877-1890. [PMID: 28231407 DOI: 10.1111/mec.14073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 02/09/2017] [Indexed: 01/05/2023]
Abstract
Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages.
Collapse
Affiliation(s)
- Elsa Petit
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Casey Silver
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| | - Amandine Cornille
- Center for Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland
| | - Pierre Gladieux
- UMR BGPI, INRA, Campus International de Baillarguet, 34398, Montpellier, France
| | - Lisa Rosenthal
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| | - Emily Bruns
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Sarah Yee
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tatiana Giraud
- Ecologie Systematique Evolution, CNRS, University of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, MA, 01002, USA
| |
Collapse
|
13
|
Fortuna TM, Snirc A, Badouin H, Gouzy J, Siguenza S, Esquerre D, Le Prieur S, Shykoff JA, Giraud T. Polymorphic Microsatellite Markers for the Tetrapolar Anther-Smut Fungus Microbotryum saponariae Based on Genome Sequencing. PLoS One 2016; 11:e0165656. [PMID: 27832131 PMCID: PMC5104459 DOI: 10.1371/journal.pone.0165656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
Background Anther-smut fungi belonging to the genus Microbotryum sterilize their host plants by aborting ovaries and replacing pollen by fungal spores. Sibling Microbotryum species are highly specialized on their host plants and they have been widely used as models for studies of ecology and evolution of plant pathogenic fungi. However, most studies have focused, so far, on M. lychnidis-dioicae that parasitizes the white campion Silene latifolia. Microbotryum saponariae, parasitizing mainly Saponaria officinalis, is an interesting anther-smut fungus, since it belongs to a tetrapolar lineage (i.e., with two independently segregating mating-type loci), while most of the anther-smut Microbotryum fungi are bipolar (i.e., with a single mating-type locus). Saponaria officinalis is a widespread long-lived perennial plant species with multiple flowering stems, which makes its anther-smut pathogen a good model for studying phylogeography and within-host multiple infections. Principal Findings Here, based on a generated genome sequence of M. saponariae we developed 6 multiplexes with a total of 22 polymorphic microsatellite markers using an inexpensive and efficient method. We scored these markers in fungal individuals collected from 97 populations across Europe, and found that the number of their alleles ranged from 2 to 11, and their expected heterozygosity from 0.01 to 0.58. Cross-species amplification was examined using nine other Microbotryum species parasitizing hosts belonging to Silene, Dianthus and Knautia genera. All loci were successfully amplified in at least two other Microbotryum species. Significance These newly developed markers will provide insights into the population genetic structure and the occurrence of within-host multiple infections of M. saponariae. In addition, the draft genome of M. saponariae, as well as one of the described markers will be useful resources for studying the evolution of the breeding systems in the genus Microbotryum and the evolution of specialization onto different plant species.
Collapse
Affiliation(s)
- Taiadjana M. Fortuna
- Laboratoire d’Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- * E-mail:
| | - Alodie Snirc
- Laboratoire d’Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Hélène Badouin
- Laboratoire d’Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Jérome Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Sophie Siguenza
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Diane Esquerre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Stéphanie Le Prieur
- Laboratoire d’Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Jacqui A. Shykoff
- Laboratoire d’Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Tatiana Giraud
- Laboratoire d’Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
14
|
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, Aguileta G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME, Schultz DJ, Cuomo CA. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 2015; 16:461. [PMID: 26076695 PMCID: PMC4469406 DOI: 10.1186/s12864-015-1660-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. Results We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14 % of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. Conclusions The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1660-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Joelle Amselem
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. .,Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France.
| | - Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Sebastien Duplessis
- INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. .,UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France.
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France. .,Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France.
| | - Helene Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Jared Andrews
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Dominique Razeeq
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain.
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA.
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
15
|
Vasighzadeh A, Zafari D, Selçuk F, Hüseyin E, Kurşat M, Lutz M, Piątek M. Discovery of Thecaphora schwarzmaniana on Rheum ribes in Iran and Turkey: implications for the diversity and phylogeny of leaf smuts on rhubarbs. Mycol Prog 2014. [DOI: 10.1007/s11557-014-0972-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Chakraborty C, Doss CGP, Patra BC, Bandyopadhyay S. DNA barcoding to map the microbial communities: current advances and future directions. Appl Microbiol Biotechnol 2014; 98:3425-36. [PMID: 24522727 DOI: 10.1007/s00253-014-5550-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
During the last two decades, the DNA barcode development towards microbial community has increased dramatically. DNA barcode development is related to error-free and quick species identification which aid in understanding the microbial biodiversity, as well as the diseases related to microbial species. Here, we seek to evaluate the so-called barcoding initiatives for the microbial communities and the emerging trends in this field. In this paper, we describe the development of DNA marker-based DNA barcoding system, comparison between routine species identification and DNA barcode, and microbial biodiversity and DNA barcode for microbial communities. Two major topics, such as the molecular diversity of viruses and barcode for viruses have been discussed at the same time. We demonstrate the current status and the maker of DNA barcode for bacteria, algae, fungi, and protozoa. Furthermore, we argue about the promises, limitations, and present and future challenges of microbial barcode development.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India,
| | | | | | | |
Collapse
|
17
|
Piątek M, Lutz M, Chater AO. Cryptic diversity in the Antherospora vaillantii complex on Muscari species. IMA Fungus 2013; 4:5-19. [PMID: 23898408 PMCID: PMC3719206 DOI: 10.5598/imafungus.2013.04.01.02] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 02/28/2013] [Indexed: 12/31/2022] Open
Abstract
The anther smut fungi in the ustilaginomycetous genus Antherospora (Floromycetaceae, Urocystidales) that infect monocots, are currently placed in nine species. Against the background of the generally observed high host specificity in smut fungi, the broad host range reported for some of the species suggests much higher diversity. Antherospora vaillantii s. lato includes anther smuts on different Muscari species. In this study, specimens of anther smuts on Muscari armeniacum, M. botryoides, M. comosum, and M. tenuiflorum were analysed by rDNA sequences and morphology to determine whether they represented one polyphagous or several host specific species. The molecular phylogeny revealed three distinct lineages that were correlated with host plants, yet had only slight morphological differences. These lineages are assigned to three cryptic species: Antherospora hortensis sp. nov. on Muscari armeniacum, A. muscari-botryoidis comb. nov. (syn. Ustilago muscari-botryoidis) on M. botryoides, and A. vaillantii s. str. on M. comosum and M. tenuiflorum. All species on Muscari form a monophyletic group within Antherospora, and the phylogenetic relations within this group coincide well with the subgeneric classification of the respective host species. This indicates a common ancestry of Muscari anther smuts and co-evolution as a driver of their diversification.
Collapse
Affiliation(s)
- Marcin Piątek
- Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | | | | |
Collapse
|
18
|
Piątek M, Lutz M, Kemler M. Microbotryum silenes-saxifragae sp. nov. sporulating in the anthers of Silene saxifraga in southern European mountains. IMA Fungus 2013; 4:29-40. [PMID: 23898410 PMCID: PMC3719204 DOI: 10.5598/imafungus.2013.04.01.04] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022] Open
Abstract
Currently, the monophyletic lineage of anther smuts on Caryophyllaceae includes 22 species classified in the genus Microbotryum. They are model organisms studied in many disciplines of fungal biology. A molecular phylogenetic approach was used to resolve species boundaries within the caryophyllaceous anther smuts, as species delimitation based solely on phenotypic characters was problematic. Several cryptic species were found amongst the anther smuts on Caryophyllaceae, although some morphologically distinct species were discernible, and most species were characterized by high host-specificity. In this study, anther smut specimens infecting Silene saxifraga were analysed using rDNA sequences (ITS and LSU) and morphology to resolve their specific status and to discuss their phylogenetic position within the lineage of caryophyllaceous anther smuts. The molecular phylogeny revealed that all specimens form a monophyletic lineage that is supported by the morphological trait of reticulate spores with tuberculate interspaces (observed in certain spores). This lineage cannot be attributed to any of the previously described species, and the anther smut on Silene saxifraga is described and illustrated here as a new species, Microbotryum silenes-saxifragae. This species clusters in a clade that includes Microbotryum species, which infect both closely and distantly related host plants growing in diverse ecological habitats. It appears possible that host shifts combined with changes to ecological host niches drove the evolution of Microbotryum species within this clade.
Collapse
Affiliation(s)
- Marcin Piątek
- Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | | | | |
Collapse
|
19
|
Lutz M, Vánky K, Piątek M. Shivasia gen. nov. for the Australasian smut Ustilago solida that historically shifted through five different genera. IMA Fungus 2012; 3:143-54. [PMID: 23355967 PMCID: PMC3539317 DOI: 10.5598/imafungus.2012.03.02.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022] Open
Abstract
The generic position of the enigmatic smut fungus Ustilago solida is evaluated applying molecular phylogenetic analyses using ITS and LSU rDNA sequences as well as light and scanning electron microscopical investigations of several collections of this species. Ustilago solida has previously been included in five different genera (Ustilago, Urocystis, Sorosporium, Cintractia, and Tolyposporium), however, molecular analyses revealed that this smut does not belong to any of these genera and represents a distinct ustilaginalean lineage. The closest known phylogenetic relative of Ustilago solida is Heterotolyposporium lepidospermatis, the type species of the monotypic genus Heterotolyposporium. Both smuts differ considerably in both LSU sequences and in several morphological traits, such as the structure of sori and the characteristics of spore balls. Accordingly, the new genus Shivasia is described to accommodate Ustilago solida. This smut infects different Schoenus species (Cyperaceae) in Australia and New Zealand. The description of Shivasia increases the number of endemic smut genera in Australasia to ten. Compared to all other continents the number of endemic smut genera is exceptionally high, which may point at fast evolving characters and/or may be caused by the regional history, including the long-term geographic isolation of Australasia.
Collapse
Affiliation(s)
- Matthias Lutz
- Evolutionäre Ökologie der Pflanzen, Institut für Evolution und Ökologie, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
20
|
Kemler M, Martín MP, Telleria MT, Schäfer AM, Yurkov A, Begerow D. Contrasting phylogenetic patterns of anther smuts (Pucciniomycotina: Microbotryum) reflect phylogenetic patterns of their caryophyllaceous hosts. ORG DIVERS EVOL 2012. [DOI: 10.1007/s13127-012-0115-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Piçtek M, Lutz M, Smith PA, Chater AO. A new species of Antherospora supports the systematic placement of its host plant. IMA Fungus 2011; 2:135-42. [PMID: 22679598 PMCID: PMC3359811 DOI: 10.5598/imafungus.2011.02.02.04] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/30/2011] [Indexed: 11/25/2022] Open
Abstract
The morphology and phylogeny of anther smut specimens on Tractema verna collected in the United Kingdom were investigated using light microscopy, scanning electron microscopy and partial rDNA sequence analyses. The anther smut of Tractema verna shows similarity to Antherospora eucomis, A. scillae, A. tourneuxii, A. urgineae, A. vaillantii, and A. vindobonensis but differs in spore size range, spore wall thickness, host plant genera and considerable divergences of ITS and LSU sequences. Consequently, the smut is described here as a new species, Antherospora tractemae. The host plant was formerly included in the genus Scilla (S. verna), but recently moved to a distinct genus Tractema. Molecular phylogenetic analyses reveal that Antherospora tractemae is sister to the lineage of Muscari-parasitizing Antherospora and only distantly related to the Scilla-parasitizing Antherospora species. Thus, the phylogenetic placement of the smut fungus supports the systematic placement of its host plant.
Collapse
Affiliation(s)
- Marcin Piçtek
- Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | | | | | | |
Collapse
|
22
|
|
23
|
|
24
|
Hood ME, Mena-Alí JI, Gibson AK, Oxelman B, Giraud T, Yockteng R, Arroyo MTK, Conti F, Pedersen AB, Gladieux P, Antonovics J. Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. THE NEW PHYTOLOGIST 2010; 187:217-229. [PMID: 20406409 PMCID: PMC3487183 DOI: 10.1111/j.1469-8137.2010.03268.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
*Understanding disease distributions is of fundamental and applied importance, yet few studies benefit from integrating broad sampling with ecological and phylogenetic data. Here, anther-smut disease, caused by the fungus Microbotryum, was assessed using herbarium specimens of Silene and allied genera of the Caryophyllaceae. *A total of 42,000 herbarium specimens were examined, and plant geographical distributions and morphological and life history characteristics were tested as correlates of disease occurrence. Phylogenetic comparative methods were used to determine the association between disease and plant life-span. *Disease was found on 391 herbarium specimens from 114 species and all continents with native Silene. Anther smut occurred exclusively on perennial plants, consistent with the pathogen requiring living hosts to overwinter. The disease was estimated to occur in 80% of perennial species of Silene and allied genera. The correlation between plant life-span and disease was highly significant while controlling for the plant phylogeny, but the disease was not correlated with differences in floral morphology. *Using resources available in natural history collections, this study illustrates how disease distribution can be determined, not by restriction to a clade of susceptible hosts or to a limited geographical region, but by association with host life-span, a trait that has undergone frequent evolutionary transitions.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| | | | | | - Bengt Oxelman
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91405 Orsay Cedex, France
| | - Roxana Yockteng
- MNHN, Département Systématique et Evolution, 16 rue Buffon CP 39, 75005 Paris, France
| | - Mary T K Arroyo
- Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias, University of Chile, Casilla 653, Santiago, Chile
| | - Fabio Conti
- Dipartimento di Scienze Ambientali, Università di Camerino - Centro Ricerche Floristiche dell'Appennino, Barisciano (L'Aquila), Italy
| | - Amy B Pedersen
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Pierre Gladieux
- Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique, Université Paris-Sud, F-91405 Orsay Cedex, France
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 2010; 87:99-108. [PMID: 20405123 DOI: 10.1007/s00253-010-2585-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 12/11/2022]
Abstract
Fungal research is experiencing a new wave of methodological improvements that most probably will boost mycology as profoundly as molecular phylogeny has done during the last 15 years. Especially the next generation sequencing technologies can be expected to have a tremendous effect on fungal biodiversity and ecology research. In order to realise the full potential of these exciting techniques by accelerating biodiversity assessments, identification procedures of fungi need to be adapted to the emerging demands of modern large-scale ecological studies. But how should fungal species be identified in the near future? While the answer might seem trivial to most microbiologists, taxonomists working with fungi may have other views. In the present review, we will analyse the state of the art of the so-called barcoding initiatives in the light of fungi, and we will seek to evaluate emerging trends in the field. We will furthermore demonstrate that the usability of DNA barcoding as a major tool for identification of fungi largely depends on the development of high-quality sequence databases that are thoroughly curated by taxonomists and systematists.
Collapse
|