1
|
Shokrollahi B, Park M, Baek YC, Jin S, Jang GS, Moon SJ, Um KH, Jang SS, Lee HJ. Differential gene expression in neonatal calf muscle tissues from Hanwoo cows overfed during mid to late pregnancy period. Sci Rep 2024; 14:23298. [PMID: 39375502 PMCID: PMC11458785 DOI: 10.1038/s41598-024-74976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Maternal nutrition significantly influences fetal development and postnatal outcomes. This study investigates the impact of maternal overfeeding during mid to late pregnancy on gene expression in the round and sirloin muscles of Hanwoo neonatal calves. Eight cows were assigned to either a control group receiving standard nutrition (100%) or a treated group receiving overnutrition (150%). After birth, tissue samples from the round and sirloin muscles of neonatal calves were collected and subjected to RNA sequencing to assess differentially expressed genes (DEGs). RNA sequencing identified 43 DEGs in round muscle and 15 in sirloin muscle, involving genes related to myogenesis, adipogenesis, and energy regulation. Key genes, including PPARGC1A, THBS1, CD44, JUND, CNN1, ENAH, and RUNX1, were predominantly downregulated. Gene ontology (GO) enrichment analyses revealed terms associated with muscle development, such as "biological regulation," "cellular process," and "response to stimulus." Protein-protein interaction networks highlighted complex interactions among DEGs. Random Forest analysis identified ARC, SLC1A5, and GNPTAB as influential genes for distinguishing between control and treated groups. Overall, maternal overnutrition during mid-to-late pregnancy results in the downregulation of genes involved in muscle development and energy metabolism in neonatal Hanwoo calves. These findings provide insights into the molecular effects of maternal nutrition on muscle development.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Myungsun Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Youl-Chang Baek
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Gi-Suk Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sung-Jin Moon
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Kyung-Hwan Um
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sun-Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea.
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, 55365, Wanju, Korea.
| |
Collapse
|
2
|
Fulton JO, Blair AD, Underwood KR, Daly RF, Gonda MG, Perry GA, Wright CL. The Effect of Copper and Zinc Sources on Liver Copper and Zinc Concentrations and Performance of Beef Cows and Suckling Calves. Vet Sci 2023; 10:511. [PMID: 37624298 PMCID: PMC10458842 DOI: 10.3390/vetsci10080511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
To determine the influence of the source of gestational and postnatal Cu and Zn supplementation on cow and calf performance, cows (n = 287) were assigned to one of the following two treatments: (1) inorganic (INORG) treatment, in which cows were supplemented with 15 mg of Cu (as CuSO4) and 15 mg of Zn (as ZnSO4) per kg of diet DM, or (2) organic (ORG) treatment, in which cows were supplemented with 15 mg of Cu (as Cu proteinate; Bioplex Cu, Alltech, Inc., Nicholasville, KY, USA) and 15 mg of Zn (as Zn proteinate; Bioplex Zn, Alltech, Inc., Nicholasville, KY, USA) per kg of diet DM. The treatments were initiated prior to breeding and continued throughout gestation until weaning. Liver biopsies were collected for analysis of mineral content. Cow body condition score (BCS), body weight (BW), pregnancy data, calf weaning weight (WW), and antibody response of the calves were recorded. The cows receiving the INORG treatment had a greater BW (p < 0.05) and BCS (p < 0.01) at breeding in Year 2, while the cows on the ORG treatment had a greater (p < 0.05) BW at weaning in Year 2. The cows that received the ORG mineral had improved (p < 0.05) conception rates in Year 1. The calves receiving the ORG treatment had heavier (p < 0.05) 205-day adjusted WWs.
Collapse
Affiliation(s)
- Jesse O. Fulton
- Department of Animal Science, University of Nebraska Panhandle Research & Extension Center, 4502 Ave I, Scottsbluff, NE 69361, USA
| | - Amanda D. Blair
- Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA; (A.D.B.); (K.R.U.); (M.G.G.); (C.L.W.)
| | - Keith R. Underwood
- Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA; (A.D.B.); (K.R.U.); (M.G.G.); (C.L.W.)
| | - Russell F. Daly
- Department of Veterinary and Biomedical Sciences, South Dakota State University, P.O. Box 2175, Brookings, SD 57007, USA;
| | - Michael G. Gonda
- Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA; (A.D.B.); (K.R.U.); (M.G.G.); (C.L.W.)
| | - George A. Perry
- Department of Animal Science, Texas A&M AgriLife Research and Extension Center, 1710 FM3053, Overton, TX 75684, USA;
| | - Cody L. Wright
- Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA; (A.D.B.); (K.R.U.); (M.G.G.); (C.L.W.)
| |
Collapse
|
3
|
Barcelos SDS, Nascimento KB, da Silva TE, Mezzomo R, Alves KS, de Souza Duarte M, Gionbelli MP. The Effects of Prenatal Diet on Calf Performance and Perspectives for Fetal Programming Studies: A Meta-Analytical Investigation. Animals (Basel) 2022; 12:2145. [PMID: 36009734 PMCID: PMC9404886 DOI: 10.3390/ani12162145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
This meta-analysis aimed to identify knowledge gaps in the scientific literature on future fetal-programming studies and to investigate the factors that determine the performance of beef cows and their offspring. A dataset composed of 35 publications was used. The prenatal diet, body weight (BW), average daily gain (ADG) during pregnancy, and calf sex were elicited as possible modulators of the beef cows and their offspring performance. Then, the correlations between these variables and the outcomes of interest were investigated. A mixed multiple linear regression procedure was used to evaluate the relationships between the responses and all the possible explanatory variables. A knowledge gap was observed in studies focused on zebu animals, with respect to the offspring sex and the consequences of prenatal nutrition in early pregnancy. The absence of studies considering the possible effects promoted by the interactions between the different stressors' sources during pregnancy was also detected. A regression analysis showed that prenatal diets with higher levels of protein improved the ADG of pregnant beef cows and that heavier cows give birth to heavier calves. Variations in the BW at weaning were related to the BW at birth and calf sex. Therefore, this research reinforces the importance of monitoring the prenatal nutrition of beef cows.
Collapse
Affiliation(s)
- Sandra de Sousa Barcelos
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | | | - Tadeu Eder da Silva
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rafael Mezzomo
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | - Kaliandra Souza Alves
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | | | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| |
Collapse
|
4
|
Zhou X, Yan Q, Liu L, Chen G, Tang S, He Z, Tan Z. Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring. Anim Biosci 2022; 35:847-857. [PMID: 34991223 PMCID: PMC9066034 DOI: 10.5713/ab.21.0285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were downregulated (p<0.05) in the restricted offspring. Conclusion Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.
Collapse
Affiliation(s)
- Xiaoling Zhou
- College of Animal Science, Tarim University, Alaer 843300, China.,Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Liling Liu
- College of Animal Science, Tarim University, Alaer 843300, China
| | - Genyuan Chen
- College of Animal Science, Tarim University, Alaer 843300, China
| | - Shaoxun Tang
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Zhixiong He
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Zhiliang Tan
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha 410128, China
| |
Collapse
|
5
|
Polizel GHG, de Francisco Strefezzi R, Cracco RC, Fernandes AC, Zuca CB, Castellar HH, Baldin GC, de Almeida Santana MH. Effects of different maternal nutrition approaches on weight gain and on adipose and muscle tissue development of young bulls in the rearing phase. Trop Anim Health Prod 2021; 53:536. [PMID: 34751823 DOI: 10.1007/s11250-021-02982-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
This study evaluated the effects of prenatal nutrition on body weight (BW), average daily gain (ADG), rump fat thickness (RFT), backfat thickness (BFT), ribeye area (REA), muscle cell area (MCA), and the number of cells in REA (NCREA) of young Nellore bulls during the rearing period. After pregnancy confirmation (30 days of pregnancy), 126 Nellore cows were separated into three prenatal nutritional treatments (NP (control; 0.03% of BW), only mineral supplementation; PP (0.3% of BW), protein-energy supplementation in the final third; and FP (0.3% of BW) protein-energy supplementation during the entire pregnancy). After calving, all animals were submitted to the same environmental conditions (sanitary and nutritional) and the different supplementation protocols ceased. The males (63 bulls) were evaluated during the entire rearing phase (210 ± 28 days to 540 ± 28 days of age) to weight gain (BW and ADG), carcass characteristics (RFT, BFT, and REA), and for histological assessments (MCA and NCREA; 7 animals per treatment randomly selected). All phenotypes were subjected to an analysis of variance. The different prenatal stimuli had no effect on BFT, RFT, MCA, and NCREA (P > 0.05); however, prenatal nutrition influenced BW of the animals during the rearing phase (P < 0.01) and showed a tendency on ADG (P = 0.09) and REA (P = 0.08). In conclusion, the offspring from FP treatment showed greater BW during the rearing phase in comparison to the NP group. This is related to a greater protein offered in prenatal nutrition, increasing muscle development during the gestational period.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.
| | - Ricardo de Francisco Strefezzi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Roberta Cavalcante Cracco
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Arícia Christofaro Fernandes
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Cassiano Bordignon Zuca
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Henrique Hespanhol Castellar
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Geovana Camila Baldin
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
6
|
Effects of maternal gestational diet, with or without methionine, on muscle transcriptome of Bos indicus-influenced beef calves following a vaccine-induced immunological challenge. PLoS One 2021; 16:e0253810. [PMID: 34166453 PMCID: PMC8224847 DOI: 10.1371/journal.pone.0253810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrition during gestation can cause epigenetic effects that translate to alterations in gene expression in offspring. This 2-year study employed RNA-sequencing technology to evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-influenced beef calves born from dams offered different supplementation strategies from 57 ± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were stratified by body weight and body condition score and assigned to bahiagrass pastures (3 heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly selected and individually limit-fed a high-concentrate diet until d 201. Calves were vaccinated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis using RNA sequencing. Molasses maternal supplementation led to a downregulation of genes associated with muscle cell differentiation and development along with intracellular signaling pathways (e.g., Wnt and TGF-β signaling pathway) compared to no maternal supplementation. Maternal fortification with methionine altered functional gene-sets involved in amino acid transport and metabolism and the one-carbon cycle. In addition, muscle transcriptome was impacted by vaccination with a total of 2,396 differentially expressed genes (FDR ≤ 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular matrix, and collagen formation were upregulated after vaccination. This study demonstrated that maternal supplementation of energy and protein, with or without, methionine has long-term implications on the muscle transcriptome of offspring and potentially influence postnatal muscle development.
Collapse
|
7
|
Gardner JM, Ineck NE, Quarnberg SM, Legako JF, Carpenter CE, Rood KA, Thornton-Kurth KJ. The Influence of Maternal Dietary Intake During Mid-Gestation on Growth, Feedlot Performance, miRNA and mRNA Expression, and Carcass and Meat Quality of Resultant Offspring. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This research analyzed how maternal plane of nutrition during mid-gestation impacts growth, blood metabolites, expression of microRNA and messenger RNA in skeletal muscle, feedlot performance, and carcass characteristics of progeny. Thirty-two cows were bred to the same Angus sire and fed to either maintain a body condition score (BCS) of 5.0 to 5.5 (maintenance [MAIN]; n = 15) or to lose 1 BCS (restriction [REST]; n = 17) over an 84-d period of mid-gestation. Following the second trimester, all cows were co-mingled and fed at maintenance for the remainder of gestation. Following the 84-d treatment period, REST cows had a lower (P < 0.01) BCS than MAIN cows. At the end of the third trimester, there was no difference (P = 0.78) in BCS between the treatment groups. There was no difference (P > 0.10) between offspring in birthweight, weaning weight, average daily gain, feed efficiency, dry matter intake, carcass yield, steak quality, or in circulating levels of glucose, cortisol, insulin, or insulin-like growth factor-1. REST offspring expressed more (P < 0.05) miR-133a, miR-133b, miR-181d, miR-214, miR-424 and miR-486 at weaning than MAIN offspring. At harvest, REST offspring expressed more (P < 0.05) miR-133a and less (P < 0.01) miR-486 than MAIN offspring. REST steaks were perceived as more tender (P = 0.05) by a trained sensory panel. These results indicate that maternal nutrient restriction during mid-gestation resulting in a loss of 1 BCS has an effect on microRNA expression in the skeletal muscle but does not alter postnatal growth potential, carcass quality, or end product quality of the offspring. This suggests that moderate restriction in maternal nutrition during the second trimester, which results in a drop in BCS that can be recovered during the third trimester, should not cause alarm for producers when considering future offspring performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerry A. Rood
- Utah State University Animal, Dairy and Veterinary Science
| | | |
Collapse
|
8
|
Zhang Y, Otomaru K, Oshima K, Goto Y, Oshima I, Muroya S, Sano M, Roh S, Gotoh T. Maternal Nutrition During Gestation Alters Histochemical Properties, and mRNA and microRNA Expression in Adipose Tissue of Wagyu Fetuses. Front Endocrinol (Lausanne) 2021; 12:797680. [PMID: 35178028 PMCID: PMC8844027 DOI: 10.3389/fendo.2021.797680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
We hypothesized that maternal low or high nutrition would give unique effects to morphological and molecular dynamics in adipose tissue of fetus of fatty breed Wagyu (Japanese Black) cattle which produce highly marbled beef. This study aimed to determine the effects of maternal energy intake in Wagyu cows, during gestation on fetal adipose tissue development, histochemical properties, and gene and microRNA (miRNA) expression. Cows were allocated to one of two nutritional energy groups: 120% (HIGH) or 60% nutritional requirements of (LOW). Fetuses (n = 6 per treatment) were removed from pregnant cows by cesarean section at fetal age 260 ± 8 days and euthanized. Subcutaneous adipose tissue (SAT), thoracic cavity visceral adipose tissue (TVAT), and perirenal adipose tissue (PAT) were collected for analysis. In histochemical analysis, in SAT and PAT, HIGH fetuses had greater diameter of adipocytes than LOW fetuses (P<0.05). Only in SAT, LOW fetuses had more Leptin (LEP) mRNA and tended to have more Peroxisome Proliferator-Activated Receptor gamma (PPARG) CCAAT-enhancer-binding proteins alpha (CEBPA) and Glucose transporter (GLUT) 4 mRNA(P<0.10). In all SAT, TVAT, and PAT, LOW fetuses had higher levels of the brown adipose tissue (BAT) biomarkers Uncoupling Protein (UCP) 1 and PPARG coactivator (PGC) 1α mRNA than HIGH fetuses (P<0.08). Meanwhile, in the other adipose tissue, LOW fetuses had lower PPARG, CEBPA, and Zinc Finger Protein (ZFP) 423 (in TVAT and PAT), FASN (in TVAT), LEP and GLUT4 mRNA (in PAT; P<0.10). In particular, in TVAT and PAT, LOW fetuses exhibited lower expression of WAT biomarkers (PPARG and ZFP423). Differential expression of various miRNAs related to adipogenesis between the LOW and HIGH fetuses was detected in an adipose tissue-specific manner (P<0.10). Based on adipose tissue-specific effects of maternal nutrition, these findings suggested that poor maternal nutrition in Wagyu cattle increased BAT development in SAT, TVAT and PAT, while elevated maternal nutrition stimulated fetal SAT development compared with that of TVAT and PAT.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazunaga Oshima
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Yuji Goto
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Susumu Muroya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Mitsue Sano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Gotoh
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
- *Correspondence: Takafumi Gotoh,
| |
Collapse
|
9
|
Tissue-specific fatty acid composition, cellularity, and gene expression in diverse cattle breeds. Animal 2020; 15:100025. [PMID: 33516001 DOI: 10.1016/j.animal.2020.100025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 11/20/2022] Open
Abstract
The nutritional quality of beef relates to the fatty acid (FA) composition of bovine adipose tissue. Those molecular mechanisms that induce the differing amounts and composition of fat in cattle breeds according to age at maturity and purpose of production remain unclear. Therefore, this study investigated the composition of total FAs, adipocyte size, and expression of some key genes involved in several adipogenesis and lipogenesis pathways measured in distinct adipose tissue depots from bulls of the genetically diverse cattle breeds Aberdeen Angus (n = 9), Gascon (n = 10), Holstein (n = 9), and Fleckvieh (n = 10). The animals were finished under identical housing and feeding conditions until slaughter at a similar age of 17 months. After slaughter, cod adipose tissue (CAT), subcutaneous adipose tissue (SAT), and M. longissimus lumborum (MLL) samples were collected. The saturated FA proportions were higher (P < .01) in CAT than in SAT across all breeds, whereas monounsaturated FA proportions were consistently higher (P < .001) in SAT compared to CAT and MLL. Aberdeen Angus bulls were distinguished from the other breeds in the proportions of mostly de novo synthesized C14:0, C16:0, C14:1n-5, C16:1n-7, and conjugated linoleic acid (P < .05). Adipocyte size decreased in the order CAT > SAT > MLL, and the largest adipocytes were observed in CAT of Holstein bulls (P < .05). Gene expression differences were more pronounced between adipose tissue depots than between breeds. The expression levels of ACACA, FASN, and SCD1 genes were related to tissue-specific, and to a lesser extent also breed-specific, differences in FA composition.
Collapse
|
10
|
Sandoval C, Lambo CA, Beason K, Dunlap KA, Satterfield MC. Effect of maternal nutrient restriction on skeletal muscle mass and associated molecular pathways in SGA and Non-SGA sheep fetuses. Domest Anim Endocrinol 2020; 72:106443. [PMID: 32222553 DOI: 10.1016/j.domaniend.2020.106443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Abstract
Maternal nutrient restriction causes small for gestational age (SGA) offspring, which exhibit a higher risk for metabolic syndrome in adulthood. Fetal skeletal muscle is particularly sensitive to maternal nutrient restriction, which impairs muscle mass and metabolism. Using a 50% nutrient restriction treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the nutrient-restricted (NR) group. Thus, our objective was to evaluate the effect of maternal NR on muscle mass, myofiber hypertrophy, myonuclear dotation, and molecular markers for protein synthesis and degradation, while accounting for the observed fetal weight variation. Within the NR group, we classified upper-quartile fetuses into NR(Non-SGA) (n = 11) and lower-quartile fetuses into NR(SGA) (n = 11). A control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and organs were collected, and gastrocnemius and soleus muscles were sampled for investigation. Results showed decreased (P < 0.05) absolute tissue/organ weights, including soleus and gastrocnemius muscles, in NR(SGA) fetuses compared to NR(Non-SGA) and control. Myofiber cross-sectional area was smaller in NR(SGA) vs control for gastrocnemius (P = 0.0092) and soleus (P = 0.0097) muscles. Within the gastrocnemius muscle, the number of myonuclei per myofiber was reduced (P = 0.0442) in NR(SGA) compared to control. Cortisol may induce protein degradation. However, there were no differences in fetal cortisol among groups. Nevertheless, for gastrocnemius muscle, cortisol receptor (NR3C1; P = 0.0124), and FOXO1 (P = 0.0131) were upregulated in NR(SGA) compared to control while NR(Non-SGA) did not differ from the other 2 groups. KLF15 was upregulated (P = 0.0002) in both NR(SGA) and NR(Non-SGA); while FBXO32, TRIM63, BCAT2 or MSTN did not differ. For soleus muscle, KLF15 mRNA was upregulated (P = 0.0145) in NR(SGA) compared to control, and expression of MSTN was increased (P = 0.0259) in NR(SGA) and NR(Non-SGA) compared to control. At the protein level, none of the mentioned molecules nor total ubiquitin-labeled proteins differed among groups (P > 0.05). Indicators of protein synthesis (total and phosphorylated MTOR, EI4EBP1, and RPS6KB1) did not differ among groups in either muscle (P > 0.05). Collectively, results highlight that maternal NR unequally affects muscle mass in NR(SGA) and NR(Non-SGA) fetuses, and alterations in myofiber cross-sectional area and myonuclei number partially explain those differences.
Collapse
Affiliation(s)
- C Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - C A Lambo
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - K Beason
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Thornton KJ. TRIENNIAL GROWTH SYMPOSIUM: THE NUTRITION OF MUSCLE GROWTH: Impacts of nutrition on the proliferation and differentiation of satellite cells in livestock species1,2. J Anim Sci 2019; 97:2258-2269. [PMID: 30869128 DOI: 10.1093/jas/skz081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nutrition and other external factors are known to have a marked effect on growth of skeletal muscle, modulated, at least in part, through effects on satellite cells. Satellite cells and their embryonic precursors play an integral role in both prenatal and postnatal skeletal muscle growth of mammals. Changes in maternal nutrition can impact embryonic muscle progenitor cells which ultimately impacts both prenatal and postnatal skeletal muscle development. Satellite cells are important in postnatal skeletal muscle growth as they support the hypertrophy of existing myofibers. Hypertrophy of existing fibers is the only mechanism of postnatal muscle growth because muscle fiber number is fixed at birth and fiber nuclei have exited the cell cycle. Because fiber nuclei do not divide, additional nuclei required for hypertrophy must be acquired from satellite cells. To date, little research has aimed at determining whether nutrition directly impacts satellite cell populations within skeletal muscle of livestock species. However, it is well established that nutrition alters circulating concentrations of various growth factors such as insulin-like growth factor 1, epidermal growth factor, hepatocyte growth factor, and fibroblast growth factor. Each of these different growth factors impacts satellite cell proliferation and/or activation, indicating that nutrition likely plays a large role in skeletal muscle growth through impacting the satellite cell pool in both prenatal and postnatal growth. The relationship among nutrition, growth factors, and satellite cells relative to skeletal muscle growth is an important area of research that warrants further consideration.
Collapse
Affiliation(s)
- Kara J Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT
| |
Collapse
|
12
|
|
13
|
Du M, Ford SP, Zhu MJ. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim Front 2017. [DOI: 10.2527/af.2017-0122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164
| | - Stephen P. Ford
- Department of Animal Science, University of Wyoming, Laramie, 82071
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164
| |
Collapse
|
14
|
Supplementation of grazing beef cows during gestation as a strategy to improve skeletal muscle development of the offspring. Animal 2017; 11:2184-2192. [DOI: 10.1017/s1751731117000982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|