1
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
2
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Zhou R, Wang Z, Zhou B, Yu Z, Wu C, Hou J, Cheng K, Liu TC. Estrogen receptors mediate the antidepressant effects of aerobic exercise: A possible new mechanism. Front Aging Neurosci 2022; 14:1040828. [PMID: 36570542 PMCID: PMC9780551 DOI: 10.3389/fnagi.2022.1040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
Collapse
|
4
|
Ivanova N, Nenchovska Z, Atanasova M, Laudon M, Mitreva R, Tchekalarova J. Chronic Piromelatine Treatment Alleviates Anxiety, Depressive Responses and Abnormal Hypothalamic-Pituitary-Adrenal Axis Activity in Prenatally Stressed Male and Female Rats. Cell Mol Neurobiol 2022; 42:2257-2272. [PMID: 34003403 PMCID: PMC11421606 DOI: 10.1007/s10571-021-01100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
The prenatal stress (PNS) model in rodents can induce different abnormal responses that replicate the pathophysiology of depression. We applied this model to evaluate the efficacy of piromelatine (Pir), a novel melatonin analog developed for the treatment of insomnia, in male and female offspring. Adult PNS rats from both sexes showed comparable disturbance associated with high levels of anxiety and depressive responses. Both males and females with PNS demonstrated impaired feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis compared to the intact offspring and increased glucocorticoid receptors in the hippocampus. However, opposite to female offspring, the male PNS rats showed an increased expression of mineralocorticoid receptors in the hippocampus. Piromelatine (20 mg/kg, i.p., for 21 days injected from postnatal day 60) attenuated the high anxiety level tested in the open field, elevated plus-maze and light-dark test, and depressive-like behavior in the sucrose preference and the forced swimming tests in a sex-specific manner. The drug reversed to control level stress-induced increase of plasma corticosterone 120 min later in both sexes. Piromelatine also corrected to control level the PNS-induced alterations of corticosteroid receptors only in male offspring. Our findings suggest that the piromelatine treatment exerts beneficial effects on impaired behavioral responses and dysregulated HPA axis in both sexes, while it corrects the PNS-induced changes in the hippocampal corticosteroid receptors only in male offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800, Pleven, Bulgaria
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, Israel
| | - Rumyana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Tchekalarova J, Kortenska L, Marinov P, Ivanova N. Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats. Int J Mol Sci 2022; 23:ijms231810349. [PMID: 36142262 PMCID: PMC9499655 DOI: 10.3390/ijms231810349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PNS) impairs the circadian rhythm of the sleep/wake cycle. The melatonin (MT) analogue Piromelatine (Pir) was designed for the treatment of insomnia. The present study aimed to explore effects of Pir on circadian rhythmicity, motor activity, and sleep structure in male and female rats with a history of prenatal stress (PNS). In addition, we elucidated the role of MT receptors and brain-derived neurotrophic factor (BDNF) to ascertain the underlying mechanism of the drug. Pregnant rats were exposed to different stressors from day seven until birth. Piromelatine (20 mg/kg/day/14 days) was administered to young adult offspring. Home-cage locomotion, electroencephalographic (EEG) and electromyographic (EMG) recordings were conducted for 24 h. Offspring treated with vehicle showed sex-and phase-dependent disturbed circadian rhythm of motor activity and sleep/wake cycle accompanied by elevated rapid eye movement (REM) pattern and theta power and diminished non-rapid eye movement (NREM) sleep and delta power. While Pir corrected the PNS-induced impaired sleep patterns, the MT receptor antagonist luzindol suppressed its effects in male and female offspring. In addition, Pir increased the BDNF expression in the hippocampus in male and female offspring with PNS. Our findings suggest that the beneficial effect of Pir on PNS-induced impairment of sleep/wake cycle circadian rhythm and sleep structure is exerted via activation of MT receptors and enhanced BDNF expression in the hippocampus in male and female offspring.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-887267052
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Pencho Marinov
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Hao Y, Guo X, Wang X, Shi X, Shi M, Meng L, Gong M, Fu Y, Zhao Y, Du Y, Yang R, Li W, Lian K, Song L, Wang S, Li Y, Shi Y, Shi H. Maternal exposure to triclosan during lactation alters social behaviors and the hippocampal ultrastructure in adult mouse offspring. Toxicol Appl Pharmacol 2022; 449:116131. [PMID: 35718130 DOI: 10.1016/j.taap.2022.116131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
We recently reported that exposure to triclosan (TCS), a broad-spectrum antibacterial agent, affects social behaviors in adult mice, however, the long-lasting effects of TCS exposure during early life on social behaviors are still elusive. The present study aimed to investigate the long-lasting impacts of adding TCS to the maternal drinking water during lactation on the social behaviors of adult mouse offspring and to explore the potential mechanism underlying these effects. The behavioral results showed that TCS exposure decreased body weight, increased depression-like behavior and decreased social dominance in both male and female offspring, as well as increased anxiety-like behavior and bedding preference in female offspring. In addition, enzyme-linked immunosorbent assay (ELISA) indicated that TCS exposure increased peripheral proinflammatory cytokine levels, altered serum oxytocin (OT) levels, and downregulated the expression of postsynaptic density protein 95 (PSD-95) in the hippocampus. Morphological analysis by transmission electron microscopy (TEM) demonstrated that exposure to TCS induced morphological changes to synapses and neurons in the hippocampus of offspring. These findings suggested that TCS exposure during lactation contributed to abnormal social behaviors accompanied by increased peripheral inflammation and altered hippocampal neuroplasticity, which provides a deeper understanding of the effects of TCS exposure during early life on brain function and behavioral phenotypes.
Collapse
Affiliation(s)
- Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Xiaorui Shi
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengxu Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Miao Gong
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Wenshuya Li
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Kaoqi Lian
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medical University, 050017, China.
| |
Collapse
|
8
|
Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene-environment interactions. Sci Rep 2022; 12:7269. [PMID: 35508566 PMCID: PMC9068699 DOI: 10.1038/s41598-022-11083-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and monogenic cause of autism spectrum disorder (ASD). FXS is due to a mutation in the X-linked FMR1 gene and is characterized by motor, cognitive and social alterations, mostly overlapping with ASD behavioral phenotypes. The severity of these symptoms and their timing may be exacerbated and/or advanced by environmental adversity interacting with the genetic mutation. We therefore tested the effects of the prenatal exposure to unpredictable chronic stress on the behavioral phenotype of juveniles of both sexes in the Fmr1 knock-out (KO) mouse model of FXS. Mice underwent behavioral tests at 7-8 weeks of age, that is, when most of the relevant behavioral alterations are absent or mild in Fmr1-KOs. Stress induced the early appearance of deficits in spontaneous alternation in KO male mice, without exacerbating the behavioral phenotype of mutant females. In males stress also altered social interaction and communication, but mostly in WT mice, while in females it induced effects on locomotion and communication in mice of both genotypes. Our data therefore highlight the sex-dependent relevance of early environmental stressors to interact with genetic factors to influence the appearance of selected FXS- and ASD-like phenotypes.
Collapse
|
9
|
Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? SEXES 2022. [DOI: 10.3390/sexes3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the gender perspective in scientific research and sex differences in biological studies on emotional disorders have become increasingly important. However, sex bias in basic research on anxiety and depression is still far from being covered. This review addresses the study of sex differences in the field of anxiety and depression using animal models that consider this issue so far. What can preclinical studies tell us and what are their main limitations? First, we describe the behavioral tests most frequently used in preclinical research to assess depressive-like and anxiety-like behaviors in rodents. Then, we analyze the main findings, strengths, and weaknesses of rodent models of anxiety and depression, dividing them into three main categories: sex chromosome complement-biased sex differences; gonadal hormone-biased sex differences; environmental-biased sex differences. Regardless of the animal model used, none can reproduce all the characteristics of such complex and multifactorial pathologies as anxiety and depressive disorders; however, each animal model contributes to elucidating the bases that underlie these disorders. The importance is highlighted of considering sex differences in the responses that emerge from each model.
Collapse
|
10
|
Amani M, Houwing DJ, Homberg JR, Salari AA. Perinatal fluoxetine dose-dependently affects prenatal stress-induced neurobehavioural abnormalities, HPA-axis functioning and underlying brain alterations in rat dams and their offspring. Reprod Toxicol 2021; 104:27-43. [PMID: 34186199 DOI: 10.1016/j.reprotox.2021.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Both untreated and SSRI antidepressant treated maternal depression during the perinatal period can pose both short-and long-term health risks to the offspring. Therefore, it is essential to have an effective SSRI treatment consisting of the lowest effective dose beneficial to the mother, without causing adverse effects on offspring development. The effects of prenatal stress on neurobehavioral outcomes were studied in the pregnant and lactating rat dam, and her offspring. Furthermore, stressed dams were treated with different doses of fluoxetine (FLX; 5, 10and 25 mg/kg) during pregnancy and the postpartum period. We found that prenatal stress-induced anxiety-and depressive-like behaviour and increased HPA-axis function in pregnant and postpartum dams, and in offspring. Maternal stress impaired object recognition but did not affect spatial memory in offspring. Prenatal stress decreased whole-brain serotonin and brain-derived-neurotrophic-factor, and increased interleukin-17 and malondialdehyde, but did not affect oxytocin and interleukin-6 in the brains of offspring. Maternal treatment with 5 mg/kg FLX during the perinatal period did not rescue any stress-induced anxiety/depressive-like behaviour in the pregnant and postpartum dam and had only a few rescuing effects in offspring. Maternal FLX treatment with 10 mg/kg did rescue most stress-induced anxiety-and depressive-like behaviour or HPA-axis-function in dams and offspring. The highest dose tested, 25 mg/kg FLX, had the rescuing properties in dams while having the same, or an even greater, detrimental effect as prenatal stress on offspring behaviour and molecular alterations in the brain. Our results show prenatal stress rescuing properties for FLX treatment in the pregnant and postpartum dam, with dose-dependent effects on the offspring.
Collapse
Affiliation(s)
- Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Danielle J Houwing
- Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
11
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
13
|
Sex-dependent metabolic effects of pregestational exercise on prenatally stressed mice. J Dev Orig Health Dis 2020; 12:271-279. [PMID: 32406352 DOI: 10.1017/s2040174420000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stressful events during the prenatal period have been related to hyperactive hypothalamic-pituitary-adrenal (HPA) axis responses as well as metabolic changes in adult life. Moreover, regular exercise may contribute to the improvement of the symptoms associated with stress and stress-related chronic diseases. Therefore, this study aims to investigate the effects of exercise, before the gestation period, on the metabolic changes induced by prenatal stress in adult mice. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS) and exercise before the gestational period plus PNS (EX + PNS). When adults, the plasmatic biochemical analysis, oxidative stress, gene expression of metabolic-related receptors and sex differences were assessed in the offspring. Prenatal stress decreased neonatal and adult body weight when compared to the pregestational exercise group. Moreover, prenatal stress was associated with reduced body weight in adult males. PNS and EX + PNS females showed decreased hepatic catalase. Pregestational exercise prevented the stress-induced cholesterol increase in females but did not prevent the liver mRNA expression reduction on the peroxisome proliferator-activated receptors (PPARs) α and γ in PNS females. Conversely, PNS and EX + PNS males showed an increased PPARα mRNA expression. In conclusion, pregestational exercise prevented some effects of prenatal stress on metabolic markers in a sex-specific manner.
Collapse
|
14
|
Zhong H, Rong J, Zhu C, Liang M, Li Y, Zhou R. Epigenetic Modifications of GABAergic Interneurons Contribute to Deficits in Adult Hippocampus Neurogenesis and Depression-Like Behavior in Prenatally Stressed Mice. Int J Neuropsychopharmacol 2020; 23:274-285. [PMID: 32211762 PMCID: PMC7177164 DOI: 10.1093/ijnp/pyaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Prenatal stress (PRS) is considered a risk factor for depressive disorder. Adult hippocampal neurogenesis is believed to play a role in the regulation of affective behaviors. GABAergic interneuron is a key modulator in adult hippocampal neurogenesis. Growing evidence indicates that PRS has adverse effects on adult hippocampal neurogenesis and DNA epigenetic modifications of the GABAergic system. The aim of this study was to investigate whether epigenetic GABAergic dysfunction participates in the negative impact of PRS on adult hippocampal neurogenesis and related emotional behaviors. METHODS Behavioral tests were used to explore PRS-induced depression-like behaviors of adult female mice. Immunohistochemistry staining, real-time reverse transcription-polymerase chain reaction, western blot, and chromatin immunoprecipitation were employed to detect adult neurogenesis and epigenetic changes of the GABAergic system in the hippocampus of PRS mice. RESULTS PRS mice developed a depression phenotype accompanied by the inhibited maturation of hippocampal newborn neurons. Compared with control mice, PRS mice showed decreased expression of glutamic acid decarboxylase 67 at the mRNA and protein levels. GABAA receptor agonist phenobarbital could rectify the decrease of 5-bromo-2-deoxyuridine/neuronal nuclei double-positive (BrdU+/NeuN+) cells in PRS mice. PRS mice also showed increased expression of DNA methyltransferase 1 and increased binding of DNA methyltransferase 1 to glutamic acid decarboxylase 67 promoter region. The treatment with DNA methyltransferase 1 inhibitor 5-aza-deoxycytidine restored the decrease of BrdU+/NeuN+ cells and depression-like behaviors in PRS mice via improving GABAergic system. CONCLUSIONS The present results indicate that epigenetic changes of the GABAergic system are responsible for adult hippocampus neurogenesis and depression-like behaviors in PRS mice.
Collapse
Affiliation(s)
- Haiquan Zhong
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Jing Rong
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Chunting Zhu
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Min Liang
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Jiangsu, China,Correspondence: Rong Zhou, PhD, Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, Jiangsu Province, China 211166 ()
| |
Collapse
|
15
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
16
|
Cox DA, Gottschalk MG, Stelzhammer V, Wesseling H, Cooper JD, Bahn S. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: A proteomic systems approach. World J Biol Psychiatry 2019; 19:S63-S74. [PMID: 27784204 DOI: 10.1080/15622975.2016.1252465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Rodent models of major depressive disorder (MDD) are indispensable when screening for novel treatments, but assessing their translational relevance with human brain pathology has proved difficult. METHODS Using a novel systems approach, proteomics data obtained from post-mortem MDD anterior prefrontal cortex tissue (n = 12) and matched controls (n = 23) were compared with equivalent data from three commonly used preclinical models exposed to environmental stressors (chronic mild stress, prenatal stress and social defeat). Functional pathophysiological features associated with depression-like behaviour were identified in these models through enrichment of protein-protein interaction networks. A cross-species comparison evaluated which model(s) represent human MDD pathology most closely. RESULTS Seven functional domains associated with MDD and represented across at least two models such as "carbohydrate metabolism and cellular respiration" were identified. Through statistical evaluation using kernel-based machine learning techniques, the social defeat model was found to represent MDD brain changes most closely for four of the seven domains. CONCLUSIONS This is the first study to apply a method for directly evaluating the relevance of the molecular pathology of multiple animal models to human MDD on the functional level. The methodology and findings outlined here could help to overcome translational obstacles of preclinical psychiatric research.
Collapse
Affiliation(s)
- David Alan Cox
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Michael Gerd Gottschalk
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Viktoria Stelzhammer
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Hendrik Wesseling
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Jason David Cooper
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Sabine Bahn
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
17
|
Abstract
Stress is an adaptive response to environment aversive stimuli and a common life experience of one's daily life. Chronic or excessive stress especially that happened in early life is found to be deleterious to individual's physical and mental health, which is highly related to depressive disorders onset. Stressful life events are consistently considered to be the high-risk factors of environment for predisposing depressive disorders. In linking stressful life events with depressive disorder onset, dysregulated HPA axis activity is supposed to play an important role in mediating aversive impacts of life stress on brain structure and function. Increasing evidence have indicated the strong association of stress, especially the chronic stress and early life stress, with depressive disorders development, while the association of stress with depression is moderated by genetic risk factors, including polymorphism of SERT, BDNF, GR, FKBP5, MR, and CRHR1. Meanwhile, stressful life experience particularly early life stress will exert epigenetic modification in these risk genes via DNA methylation and miRNA regulation to generate long-lasting effects on these genes expression, which in turn cause brain structural and functional alteration, and finally increase the vulnerability to depressive disorders. Therefore, the interaction of environment with gene, in which stressful life exposure interplay with genetic risk factors and epigenetic modification, is essential in predicting depressive disorders development. As the mediator of environmental risk factors, stress will function together with genetic and epigenetic mechanism to influence brain structure and function, physiology and psychology, and finally the vulnerability to depressive disorders.
Collapse
|
18
|
Singleton JM, Garland T. Influence of corticosterone on growth, home-cage activity, wheel running, and aerobic capacity in house mice selectively bred for high voluntary wheel-running behavior. Physiol Behav 2019; 198:27-41. [DOI: 10.1016/j.physbeh.2018.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
19
|
Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: A review of sex differences. Clin Psychol Rev 2018; 66:69-79. [DOI: 10.1016/j.cpr.2018.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
|
20
|
Maternal stress during pregnancy induces depressive-like behavior only in female offspring and correlates to their hippocampal Avp and Oxt receptor expression. Behav Brain Res 2018; 353:1-10. [DOI: 10.1016/j.bbr.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
|
21
|
Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, Li B. Stress in Regulation of GABA Amygdala System and Relevance to Neuropsychiatric Diseases. Front Neurosci 2018; 12:562. [PMID: 30154693 PMCID: PMC6103381 DOI: 10.3389/fnins.2018.00562] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
The amygdala is an almond-shaped nucleus located deep and medially within the temporal lobe and is thought to play a crucial role in the regulation of emotional processes. GABAergic neurotransmission inhibits the amygdala and prevents us from generating inappropriate emotional and behavioral responses. Stress may cause the reduction of the GABAergic interneuronal network and the development of neuropsychological diseases. In this review, we summarize the recent evidence investigating the possible mechanisms underlying GABAergic control of the amygdala and its interaction with acute and chronic stress. Taken together, this study may contribute to future progress in finding new approaches to reverse the attenuation of GABAergic neurotransmission induced by stress in the amygdala.
Collapse
Affiliation(s)
- Fan Jie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Guanghao Yin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Modi Yang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Neuroepigenetics of Prenatal Psychological Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:83-104. [DOI: 10.1016/bs.pmbts.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Blaze J, Asok A, Borrelli K, Tulbert C, Bollinger J, Ronca AE, Roth TL. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int J Dev Neurosci 2017; 62:56-62. [PMID: 28330827 PMCID: PMC5600826 DOI: 10.1016/j.ijdevneu.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
DNA methylation (addition of methyl groups to cytosines) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavior. Here, we measured methylation of DNA associated with the Brain-derived neurotrophic factor (Bdnf) gene, a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed male controls and stressed females. Further, prenatally-stressed animals had shorter telomeres than controls in the mPFC. Together findings indicate a long-term impact of prenatal stress on brain DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational molecular changes.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Arun Asok
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Kristyn Borrelli
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Christina Tulbert
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Justin Bollinger
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - April E Ronca
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, United States; Space Biosciences Research Division, NASA Ames Research Center, Moffett Field, CA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States.
| |
Collapse
|
24
|
Abstract
Clinical depression is accompanied by changes in sleep patterning, which is controlled in a circadian fashion. It is thus desirable that animal models of depression mirror such diurnally-specific state alterations, along with other behavioral and physiological changes. We previously found several changes in behavior indicative of a depression-like phenotype in offspring of rats subjected to repeated, variable prenatal stress (PNS), including increased locomotor activity during specific periods of the circadian cycle. We, therefore, investigated whether PNS rats also exhibit alterations in sleep/wakefulness behavior around the change from light-to-dark phase. Control and PNS Sprague-Dawley rats were implanted with electrodes for continuous monitoring of electroencephalic activity used to determine behavioral state. The distribution of slow-wave sleep (SWS), rapid eye movement sleep (REMS) and wakefulness was compared for periods before and after lights were turned off, between baseline conditions and after exposure to an acute stressor. Both REMS and SWS amounts were increased in PNS rats relative to control animals in the beginning of the dark phase. REMS changes were due to an increase in REMS bout number, rather than in bout duration. During this circadian time period, we did not find any sex differences in the state changes. These results indicate that PNS affects baseline sleep patterning in both male and female rats around active-phase onset.
Collapse
|
25
|
Lee YA, Kim YJ, Goto Y. Cognitive and affective alterations by prenatal and postnatal stress interaction. Physiol Behav 2016; 165:146-53. [DOI: 10.1016/j.physbeh.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 01/20/2023]
|
26
|
Prenatal stressors in rodents: Effects on behavior. Neurobiol Stress 2016; 6:3-13. [PMID: 28229104 PMCID: PMC5314420 DOI: 10.1016/j.ynstr.2016.08.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
The current review focuses on studies in rodents published since 2008 and explores possible reasons for any differences they report in the effects of gestational stress on various types of behavior in the offspring. An abundance of experimental data shows that different maternal stressors in rodents can replicate some of the abnormalities in offspring behavior observed in humans. These include, anxiety, in juvenile and adult rats and mice, assessed in the elevated plus maze and open field tests and depression, detected in the forced swim and sucrose-preference tests. Deficits were reported in social interaction that is suggestive of pathology associated with schizophrenia, and in spatial learning and memory in adult rats in the Morris water maze test, but in most studies only males were tested. There were too few studies on the novel object recognition test at different inter-trial intervals to enable a conclusion about the effect of prenatal stress and whether any deficits are more prevalent in males. Among hippocampal glutamate receptors, NR2B was the only subtype consistently reduced in association with learning deficits. However, like in humans with schizophrenia and depression, prenatal stress lowered hippocampal levels of BDNF, which were closely correlated with decreases in hippocampal long-term potentiation. In mice, down-regulation of BDNF appeared to occur through the action of gene-methylating enzymes that are already increased above controls in prenatally-stressed neonates. In conclusion, the data obtained so far from experiments in rodents lend support to a physiological basis for the neurodevelopmental hypothesis of schizophrenia and depression.
Collapse
|