1
|
Naia Fioretto M, Maciel FA, Barata LA, Ribeiro IT, Basso CBP, Ferreira MR, Dos Santos SAA, Mattos R, Baptista HS, Portela LMF, Padilha PM, Felisbino SL, Scarano WR, Zambrano E, Justulin LA. Impact of maternal protein restriction on the proteomic landscape of male rat lungs across the lifespan. Mol Cell Endocrinol 2024; 592:112348. [PMID: 39218056 DOI: 10.1016/j.mce.2024.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The developmental origins of healthy and disease (DOHaD) concept has demonstrated a higher rate of chronic diseases in the adult population of individuals whose mothers experienced severe maternal protein restriction (MPR). Using proteomic and in silico analyses, we investigated the lung proteomic profile of young and aged rats exposed to MPR during pregnancy and lactation. Our results demonstrated that MPR lead to structural and immune system pathways changes, and this outcome is coupled with a rise in the PI3k-AKT-mTOR signaling pathway, with increased MMP-2 activity, and CD8 expression in the early life, with long-term effects with aging. This led to the identification of commonly or inversely differentially expressed targets in early life and aging, revealing dysregulated pathways related to the immune system, stress, muscle contraction, tight junctions, and hemostasis. We identified three miRNAs (miR-378a-3p, miR-378a-5p, let-7a-5p) that regulate four proteins (ACTN4, PPIA, HSPA5, CALM1) as probable epigenetic lung marks generated by MPR. In conclusion, MPR impacts the lungs early in life, increasing the possibility of long-lasting negative outcomes for respiratory disorders in the offspring.
Collapse
Affiliation(s)
- Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flávia Alessandra Maciel
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luísa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Carolina Beatriz Pinheiro Basso
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Alexandre Alcantara Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, 19111, USA
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Hecttor Sebastian Baptista
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luiz Marcos Frediane Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Pedro Magalhães Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Department Reproductive Biology, Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Fan X, Zang T, Wu N, Liu J, Sun Y, Slack J, Bai J, Liu Y. The mediating effect of maternal gut microbiota between prenatal psychological distress and neurodevelopment of infants. J Affect Disord 2024; 362:893-902. [PMID: 39013520 DOI: 10.1016/j.jad.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Prenatal psychological distress and maternal inflammation can increase the risk of neurodevelopmental delay in offspring; recently, the gut microbiota has been shown to may be a potential mechanism behind this association and not fully elucidated in population study. METHODS Seventy-two maternal-infant pairs who completed the assessments of prenatal psychological distress during the third trimester and neurodevelopment of infants at age 6-8 months of age were included in this study. The gut microbiota and its short-chain fatty acids (SCFAs) of maternal-infant were determined by 16S rRNA sequencing and liquid chromatography-mass spectrometry analysis. Inflammatory cytokines in the blood of pregnant women during the third trimester were detected by luminex liquid suspension microarrays. RESULTS This study found that infants in the prenatal psychological distress group had poorer fine motor skills (β = -4.396, 95 % confidence interval (CI) = -8.546, -0.246, p = 0.038), problem-solving skills (β = -5.198, 95 % CI = -10.358, -0.038, p = 0.048) and total development (β = -22.303, 95%CI = -41.453, -3.153, p = 0.022) compared to the control group. The study also indicated that the higher level of interleukin-1β (IL-1β) (β = -1.951, 95%CI = -3.321, -0.581, p = 0.005) and interferon-inducible protein-10 (IP-10) (β = -0.019, 95%CI = -0.034, -0.004, p = 0.015) during the third trimester, the poorer fine motor skills in infants. Also, the higher level of IL-10 (β = -0.498, 95%CI = -0.862, -0.133, p = 0.007), IL-12p70 (β = -0.113, 95%CI = -0.178, -0.048, p = 0.001), IL-17 A (β = -0.817, 95%CI = -1.517, -0.118, p = 0.022), interferon-γ (β = -0.863, 95%CI = -1.304, -0.422, p < 0.001), IP-10 (β = -0.020, 95%CI = -0.038, -0.001, p = 0.035), and regulated upon activation normal T cell expressed and secreted (β = -0.002, 95%CI = -0.003, -0.001, p = 0.005) during the third trimester, the poorer problem-solving skills in infants. After controlling for relevant covariates, this study found that maternal gut microbiota Roseburia mediates the relationship between prenatal psychological distress and total neurodevelopment of infants (a = 0.433, 95%CI = 0.079, 0.787, p = 0.017; b = -19.835, 95%CI = -33.877, -5.792, p = 0.006; c = 22.407, 95%CI = -43.207,-1.608, p = 0.035; indirect effect = -8.584, 95%CI = -21.227, -0.587). CONCLUSIONS This is the first study to emphasize the role of the maternal-infant gut microbiota in prenatal psychological distress and infant neurodevelopment. Further studies are needed to explore the biological mechanisms underlying the relationship between prenatal psychological distress, maternal-infant gut microbiota, and infant neurodevelopment.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Jun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Yu Sun
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Julia Slack
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
3
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Haug LS, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Jovanovic N, Philippat C, Eggesbo M, Lepage P, Slama R. Perinatal Exposure to Phenols and Poly- and Perfluoroalkyl Substances and Gut Microbiota in One-Year-Old Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15395-15414. [PMID: 39173114 DOI: 10.1021/acs.est.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and β-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and β-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Line Småstuen Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Nicolas Jovanovic
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Merete Eggesbo
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| |
Collapse
|
4
|
Cai P, He H, Song X, Qiu T, Chen D, Zhang H. Association between gestational arsenic exposure and infant physical development: a prospective cohort study. BMC Public Health 2024; 24:2292. [PMID: 39174974 PMCID: PMC11342644 DOI: 10.1186/s12889-024-19818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Arsenic pollution is widespread worldwide. The association between gestational arsenic exposure and adverse birth outcomes has been demonstrated in previous studies; however, few investigations have examined whether gestational arsenic exposure has adverse effects on infant growth and development after birth. OBJECTIVE Our study was designed to evaluate particular associations between gestational arsenic exposure during pregnancy and newborn birth size and to investigate whether these associations continue to affect infants after birth. METHODS An ongoing prospective cohort study of 1100 pregnant women was conducted at the Wuxi Maternity and Child Health Care Hospital. The total urinary arsenic concentrations in the 2nd and 3rd trimester were determined using atomic fluorescence spectrometry. The relationships between urinary arsenic concentration and foetal growth parameters (birth weight, head circumference, length, and ponderal index), SGA (Small for gestational age), and physical growth of infants within one year after birth were analysed. RESULTS Urinary arsenic concentration in the 3rd trimester was associated with an increased incidence of SGA [adjusted model: OR = 2.860 (95% CI: 1.168, 7.020), P = 0.021)]. Arsenic exposure in late pregnancy had an adverse effect on the physical development of infants before the age of 1 year, and there was an interaction effect with the sex of infants. The weight and length of boys at 6 and 12 months negatively correlated with maternal urinary arsenic levels during late pregnancy. CONCLUSIONS In addition to affecting foetal growth, exposure to arsenic in the 3rd trimester also negatively affected the growth of offspring within the first year of life.
Collapse
Affiliation(s)
- Panyuan Cai
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hongning He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Ting Qiu
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Daozhen Chen
- Department of Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Heng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| |
Collapse
|
5
|
Katić A, Brčić Karačonji I, Micek V, Želježić D. Endocrine-Disrupting Effects of Transplacental and Translactational Exposure to Tembotrione on Hormone Status in Wistar Rat Offspring at Different Developmental Stages: A Pilot Study. TOXICS 2024; 12:533. [PMID: 39195635 PMCID: PMC11359872 DOI: 10.3390/toxics12080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Green agronomy promotes the implementation of natural and naturally derived substances in crop protection. In the present study, we evaluated the endocrine-disrupting potential of the allelopathic herbicide tembotrione in Wistar rats by studying the hormone status of offspring from the treated dams. Three doses of tembotrione (0.0004, 0.0007, and 4.0 mg/kg b.w./day) have been administered to dams during gestation and/or lactation. In the serum of newborn, weaning, and pubertal female and male offspring, 17β-estradiol and testosterone were determined using enzyme-linked immunosorbent assay. A decrease in 17β-estradiol and testosterone was observed in female and male weaning and pubertal offspring exposed to all doses of tembotrione during gestation and lactation. In weaning offspring exposed only during lactation, 17β-estradiol dropped significantly after exposure to the two lower doses and testosterone after exposure to the lowest dose of tembotrione. The greatest effect was observed at the lowest dose of tembotrione. In newborns, we observed increased 17β-estradiol after exposure to two lower doses of tembotrione and significantly increased testosterone after exposure to the lowest dose. The highest dose of tembotrione decreased 17β-estradiol significantly in newborn females. The obtained results suggest that tembotrione might be considered a pro-estrogenic or estrogen agonistic compound under the exposure conditions applied in this investigation.
Collapse
Affiliation(s)
- Anja Katić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
| | - Irena Brčić Karačonji
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia;
| | - Davor Želježić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (I.B.K.); (D.Ž.)
| |
Collapse
|
6
|
Santos da Silva Calado CM, Manhães-de-Castro R, Souza VDS, Cavalcanti Bezerra Gouveia HJ, Pereira SDC, da Silva MM, Albuquerque GLD, Lima BMP, Lira AVSMD, Toscano AE. Early-life malnutrition role in memory, emotional behavior and motor impairments in early brain lesions with potential for neurodevelopmental disorders: a systematic review with meta-analysis. Nutr Neurosci 2024:1-23. [PMID: 38963807 DOI: 10.1080/1028415x.2024.2361572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The present study aims to evaluate the impact of early exposure to brain injury and malnutrition on episodic memory and behavior. METHODS For this, a systematic review was carried out in the Medline/Pubmed, Web of Science, Scopus, and LILACS databases with no year or language restrictions. RESULTS Initially, 1759 studies were detected. After screening, 53 studies remained to be read in full. The meta-analysis demonstrated that exposure to double insults worsens episodic recognition memory but does not affect spatial memory. Early exposure to low-protein diets has been demonstrated to aggravate locomotor and masticatory sequelae. Furthermore, it reduces the weight of the soleus muscle and the muscle fibers of the masseter and digastric muscles. Early exposure to high-fat diets promotes an increase in oxidative stress and inflammation in the brain, increasing anxiety- and depression-like behavior and reducing locomotion. DISCUSSION Epigenetic modifications were noted in the hippocampus, hypothalamus, and prefrontal cortex depending on the type of dietetic exposure in early life. These findings demonstrate the impact of the double insult on regions involved in cognitive and behavioral processes. Additional studies are essential to understand the real impact of the double insults in the critical period.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Sabrina da Conceição Pereira
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Márcia Maria da Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Glayciele Leandro de Albuquerque
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Bruno Monteiro Paiva Lima
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | | | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão-Pernambuco, Brazil
| |
Collapse
|
7
|
Araújo SMP, Nascimento GG, Ladeira LLC, Alves-Costa S, Saraiva MC, Alves CMC, Thomaz EBAF, Ribeiro CCC. Chronic oral disease burden at the first 1000 days: Intergenerational risk factors, BRISA cohort. Oral Dis 2024. [PMID: 38852170 DOI: 10.1111/odi.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE To analyze multiple-causal models, including socioeconomic, obesity, sugar consumption, alcohol smoking, caries, and periodontitis variables in pregnant women with early sugar exposure, obesity, and the Chronic Oral Disease Burden in their offspring around the first 1000 days of life. METHODS The BRISA cohort study, Brazil, had two assessments: at the 22nd-25th gestational weeks and during the child's second year (n = 1141). We proposed a theoretical model exploring the association between socioeconomic and pregnancy factors (age, smoking, alcohol, sugars, obesity, periodontitis, and caries) and child's variables (sugars and overweight) with the outcome, Chronic Oral Disease Burden (latent variable deduced from visible plaque, gingivitis, and tooth decay), using structural equation modeling. RESULTS Caries and periodontitis were correlated in pregnant women. Addictive behaviors in the gestational period were correlated. Obesity (Standardized coefficient - SC = 0.081; p = 0.047) and added sugar consumption (SC = 0.142; p = 0.041) were observed intergenerationally in the pregnant woman-child dyads. Sugar consumption by the children (SC = 0.210; p = 0.041) increased the Chronic Oral Disease Burden. CONCLUSIONS Poor caries and periodontal indicators were correlated in pregnant women and their offspring. Obesity and sugar consumption act intergenerationally. Oral health in early life may change life trajectory since the worst oral conditions predict main NCDs.
Collapse
Affiliation(s)
| | - Gustavo G Nascimento
- Section for Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore City, Singapore
- Oral Health ACP, Health Services and Systems Research Programme Duke-NUS Medical School, Singapore City, Singapore
| | | | - Silas Alves-Costa
- Postgraduate Program of Dentistry, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Maria Conceição Saraiva
- Department of Pediatric Dentistry, Epidemiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
8
|
Calado CMSDS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, Dos Santos Junior OH, Lagranha CJ, Juárez PAR, Torner L, Guzmán-Quevedo O, Toscano AE. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 2024; 61:3619-3640. [PMID: 38001357 DOI: 10.1007/s12035-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Leticia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Alberto Romero Juárez
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
9
|
Kibirige D, Sekitoleko I, Lumu W, Thomas N, Hawkins M, Jones AG, Hattersley AT, Smeeth L, Nyirenda MJ. Phenotypic characterization of nonautoimmune diabetes in adult Ugandans with low body mass index. Ther Adv Endocrinol Metab 2024; 15:20420188241252314. [PMID: 38808009 PMCID: PMC11131405 DOI: 10.1177/20420188241252314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Background Type 2 diabetes is common in relatively lean individuals in sub-Saharan Africa. It is unclear whether phenotypic differences exist between underweight and normal-weight African patients with type 2 diabetes. This study compared specific characteristics between underweight (body mass index <18.5 kg/m2) and normal-weight (body mass index of 18.5-24.9 kg/m2) adult Ugandans with new-onset nonautoimmune diabetes. Methods We collected the demographic, clinical, anthropometric, and metabolic characteristics of 160 participants with nonobese new-onset type 2 diabetes (defined as diabetes diagnosed <3 months, body mass index <25 kg/m2, and absence of islet-cell autoimmunity). These participants were categorized as underweight and normal weight, and their phenotypic characteristics were compared. Results Of the 160 participants with nonobese new-onset type 2 diabetes, 18 participants (11.3%) were underweight. Compared with those with normal weight, underweight participants presented with less co-existing hypertension (5.6% versus 28.2%, p = 0.04) and lower median visceral fat levels [2 (1-3) versus 6 (4-7), p < 0.001], as assessed by bioimpedance analysis. Pathophysiologically, they presented with a lower median 120-min post-glucose load C-peptide level [0.29 (0.13-0.58) versus 0.82 (0.39-1.50) nmol/l, p = 0.04] and a higher prevalence of insulin deficiency (66.7% versus 31.4%, p = 0.003). Conclusion This study demonstrates that nonautoimmune diabetes occurs in underweight individuals in sub-Saharan Africa and is characterized by the absence of visceral adiposity, reduced late-phase insulin secretion, and greater insulin deficiency. These findings necessitate further studies to inform how the prevention, identification, and management of diabetes in such individuals can be individualized.
Collapse
Affiliation(s)
- Davis Kibirige
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51/59 Nakiwogo Road, Entebbe, Uganda
- Department of Medicine, Uganda Martyrs Hospital Lubaga, Kampala +256, Uganda
| | - Isaac Sekitoleko
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - William Lumu
- Department of Medicine, Mengo Hospital, Kampala, Uganda
| | - Nihal Thomas
- Department of Endocrinology, Diabetes, and Metabolism, Christian Medical College Vellore, Vellore, Tamil Nadu, India
| | | | - Angus G. Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Liam Smeeth
- Department of Non-Communicable Diseases Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Moffat J. Nyirenda
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Diseases Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
10
|
Yu HR, Yeh YT, Tzeng HT, Dai HY, Lee WC, Wu KLH, Chan JYH, Tain YL, Hsu CN. Carbohydrate-Mediated Pregnancy Gut Microbiota and Neonatal Low Birth Weight. Nutrients 2024; 16:1326. [PMID: 38732572 PMCID: PMC11085476 DOI: 10.3390/nu16091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The effects of gut microbiota on the association between carbohydrate intake during pregnancy and neonatal low birth weight (LBW) were investigated. A prospective cohort study was conducted with 257 singleton-born mother-child pairs in Taiwan, and maternal dietary intake was estimated using a questionnaire, with each macronutrient being classified as low, medium, or high. Maternal fecal samples were collected between 24 and 28 weeks of gestation, and gut microbiota composition and diversity were profiled using 16S rRNA amplicon gene sequencing. Carbohydrates were the major source of total energy (56.61%), followed by fat (27.92%) and protein (15.46%). The rate of infant LBW was 7.8%, which was positively correlated with maternal carbohydrate intake. In the pregnancy gut microbiota, Bacteroides ovatus and Dorea spp. were indirectly and directly negatively associated with fetal growth, respectively; Rosenburia faecis was directly positively associated with neonatal birth weight. Maternal hypertension during pregnancy altered the microbiota features and was associated with poor fetal growth. Microbiota-accessible carbohydrates can modify the composition and function of the pregnancy gut microbiota, thus providing a potential marker to modulate deviations from dietary patterns, particularly in women at risk of hypertension during pregnancy, to prevent neonatal LBW.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Ying Dai
- Aging and Disease Prevention Research Center, Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Wei-Chia Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Oliveira JM, Zenzeluk J, Serrano-Nascimento C, Romano MA, Romano RM. A System Biology Approach Reveals New Targets for Human Thyroid Gland Toxicity in Embryos and Adult Individuals. Metabolites 2024; 14:226. [PMID: 38668354 PMCID: PMC11052307 DOI: 10.3390/metabo14040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to analyze public data on the human thyroid transcriptome and investigate potential new targets of EDCs in the embryonic and adult thyroid glands. We compared the public transcriptome data of adult and embryonic human thyroid glands and selected 100 up- or downregulated genes that were subsequently subjected to functional enrichment analysis. In the embryonic thyroid, the most highly expressed gene was PRMT6, which methylates arginine-4 of histone H2A (86.21%), and the downregulated clusters included plasma lipoprotein particles (39.24%) and endopeptidase inhibitory activity (24.05%). For the adult thyroid gland, the most highly expressed genes were related to the following categories: metallothionein-binding metals (56.67%), steroid hormone biosynthetic process (16.67%), and cellular response to vascular endothelial growth factor stimulus (6.67%). Several compounds ranging from antihypertensive drugs to enzyme inhibitors were identified as potentially harmful to thyroid gland development and adult function.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Jamilli Zenzeluk
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Caroline Serrano-Nascimento
- Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Department of Biological Sciences, Federal University of São Paulo (UNIFESP), Rua Professor Arthur Riedel, 275, Diadema 09972-270, SP, Brazil;
- Department of Medicine, Laboratory of Molecular and Translational Endocrinology Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo, 669-11º andar-L11E, São Paulo 04039-032, SP, Brazil
| | - Marco Aurelio Romano
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Renata Marino Romano
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| |
Collapse
|
12
|
Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev Endocr Metab Disord 2024; 25:309-324. [PMID: 38040983 DOI: 10.1007/s11154-023-09854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maria Natália Chimirri Peres
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Douglas Lopes Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Mariane Carneiro da Silva
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
13
|
Toubon G, Butel MJ, Rozé JC, Delannoy J, Ancel PY, Aires J, Charles MA. Association between gut microbiota at 3.5 years of age and body mass index at 5 years: results from two French nationwide birth cohorts. Int J Obes (Lond) 2024; 48:503-511. [PMID: 38097759 DOI: 10.1038/s41366-023-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 04/02/2024]
Abstract
BACKGROUND/OBJECTIVES The relationship between gut microbiota and changes in body mass index (BMI) or pediatric overweight in early life remains unclear, and information regarding the preterm population is scarce. This study aimed to investigate how the gut microbiota at 3.5 years of age is associated with (1) later BMI at 5 years, and (2) BMI z-score variations between 2 and 5 years in children from two French nationwide birth cohorts. SUBJECTS/METHODS Bacterial 16S rRNA gene sequencing was performed to profile the gut microbiota at 3.5 years of age in preterm children (n = 143, EPIPAGE 2 cohort) and late preterm/full-term children (n = 369, ELFE cohort). The predicted abundances of metabolic functions were computed using PICRUSt2. Anthropometric measurements were collected at 2 and 5 years of age during medical examinations or retrieved from children's health records. Statistical analyses included multivariable linear and logistic regressions, random forest variable selection, and MiRKAT. RESULTS The Firmicutes to Bacteroidetes (F/B) ratio at 3.5 years was positively associated with the BMI z-score at 5 years. Several genera were positively ([Eubacterium] hallii group, Fusicatenibacter, and [Eubacterium] ventriosum group) or negatively (Eggerthella, Colidextribacter, and Ruminococcaceae CAG-352) associated with the BMI z-scores at 5 years. Some genera were also associated with variations in the BMI z-scores between 2 and 5 years of age. Predicted metabolic functions, including steroid hormone biosynthesis, biotin metabolism, glycosaminoglycan degradation, and amino sugar and nucleotide sugar metabolism, were associated with lower BMI z-scores at 5 years. The unsaturated fatty acids biosynthesis pathway was associated with higher BMI z-scores. CONCLUSIONS These findings indicate that the gut microbiota at 3.5 years is associated with later BMI during childhood, independent of preterm or term birth, suggesting that changes in the gut microbiota that may predispose to adult obesity begin in early childhood.
Collapse
Affiliation(s)
- Gaël Toubon
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Marie-José Butel
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Centre d'investigation clinique 1413, Centre hospitalo-universitaire de Nantes, F-44300, Nantes, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Pierre-Yves Ancel
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France.
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France.
| | - Marie-Aline Charles
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France.
| |
Collapse
|
14
|
Valle A, Castillo P, García-Rodríguez A, Palou A, Palou M, Picó C. Brain-Derived Neurotrophic Factor as a Potential Mediator of the Beneficial Effects of Myo-Inositol Supplementation during Suckling in the Offspring of Gestational-Calorie-Restricted Rats. Nutrients 2024; 16:980. [PMID: 38613013 PMCID: PMC11013066 DOI: 10.3390/nu16070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.
Collapse
Affiliation(s)
- Ana Valle
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
15
|
Li Y, Huang J, Ge C, Zhu S, Wang H, Zhang Y. The effects of prenatal azithromycin exposure on offspring ovarian development at different stages, doses, and courses. Biomed Pharmacother 2024; 172:116246. [PMID: 38359487 DOI: 10.1016/j.biopha.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Azithromycin, a commonly used macrolide antibiotic for treating chlamydial infections during pregnancy, has sparked investigations into its potential effects on offspring development. Despite these inquiries, there remains uncertainty about the specific impact of prenatal azithromycin exposure (PAzE) on offspring ovarian development and the precise "effect window". Pregnant mice, following clinical guidelines for azithromycin dosing, were orally administered azithromycin at different gestational stages [(gestational day, GD) 10-12 or GD 15-17], doses (50, 100, or 200 mg/kg·d), and courses (single or multiple). On GD 18, we collected offspring blood and ovaries to examine changes in fetal serum estradiol (E2) levels, fetal ovarian morphology, pre-granulosa cell function, and oocyte development. Multiple courses of PAzE resulted in abnormal fetal ovarian morphological development, disorganized germ cell nests, enhanced ovarian cell proliferation, and reduced apoptosis. Simultaneously, multiple courses of PAzE significantly increased fetal serum E2 levels, elevated ovarian steroidogenic function (indicated by Star, 3β-hsd, and Cyp19 expression), disrupted oocyte development (indicated by Figlα and Nobox expression), and led to alterations in the MAPK signal pathway in fetal ovaries, particularly in the high-dose treatment group. In contrast, a single course of PAzE reduced fetal ovarian cell proliferation, decreased steroidogenic function, and inhibited oocyte development, particularly through the downregulation of Mek2 expression in the MAPK signal pathway. These findings suggest that PAzE can influence various aspects of fetal mouse ovarian cell development. Multiple courses enhance pre-granulosa cell estrogen synthesis function and advance germ cell development, while a single terminal gestation dose inhibits germ cell development. These differential effects may be associated with changes in the MAPK signal pathway.
Collapse
Affiliation(s)
- Yating Li
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Sen Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
16
|
Poudel K, Kobayashi S, Iwata H, Tojo M, Yamaguchi T, Yamazaki K, Tamura N, Itoh M, Obara T, Kuriyama S, Kishi R. Hokkaido birth cohort study in Japan on the growth trajectory of children born with low birth weight until 7 years of age. Early Hum Dev 2024; 189:105925. [PMID: 38199046 DOI: 10.1016/j.earlhumdev.2023.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Low birth weight (LBW) is a significant global health concern with potential health risks and developmental implications for infants. Catch-up growth, an accelerated growth following an inhibition period, may partially compensate for growth deficits in LBW children. AIMS This study investigated the prevalence of LBW and catch-up growth in height, weight, and body mass index (BMI) among LBW children in Japan, identified factors associated with LBW, and explored the potential for catch-up growth at different ages up to seven years. STUDY DESIGN AND SUBJECTS The Hokkaido birth cohort study included 20,926 pregnant Japanese women recruited during their first trimester from 37 hospitals and clinics. Follow-up assessments were conducted in children up to seven years of age, tracking LBW children's growth and development using the Maternal and Child Health Handbook, and providing valuable insights into catch-up growth patterns. OUTCOME MEASURES LBW was defined as a neonatal birth weight of <2500 g. The primary outcomes were catch-up growth in height, weight, and BMI at different ages. Z-scores were calculated to assess growth parameters with catch-up growth, defined as a change in z-score (> 0.67) between two time points. RESULTS AND CONCLUSIONS A LBW was prevalent in 7.6 % of the cohort, which was lower than that reported in other Japanese studies. Among LBW children, 19.3 % achieved catch-up growth in height by age seven, and 10.6 % in weight. Catch-up growth in LBW children could partially offset these deficits. Further research will help understand the long-term outcomes and inform interventions for healthy development.
Collapse
Affiliation(s)
- Kritika Poudel
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Victoria, Australia
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Division of Epidemiological Research for Chemical Disorders, Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, Japan, 6-21-1 Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | - Hiroyoshi Iwata
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Maki Tojo
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Takeshi Yamaguchi
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Department of Pediatrics, Hokkaido University Hospital, North-14, West-5, Kita-ku, Sapporo 060-0648, Japan
| | - Keiko Yamazaki
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Naomi Tamura
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Mariko Itoh
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
17
|
D’Urso S, Moen GH, Hwang LD, Hannigan LJ, Corfield EC, Ask H, Johannson S, Njølstad PR, Beaumont RN, Freathy RM, Evans DM, Havdahl A. Intrauterine Growth and Offspring Neurodevelopmental Traits: A Mendelian Randomization Analysis of the Norwegian Mother, Father and Child Cohort Study (MoBa). JAMA Psychiatry 2024; 81:144-156. [PMID: 37878341 PMCID: PMC10600722 DOI: 10.1001/jamapsychiatry.2023.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/18/2023] [Indexed: 10/26/2023]
Abstract
Importance Conventional epidemiological analyses have suggested that lower birth weight is associated with later neurodevelopmental difficulties; however, it is unclear whether this association is causal. Objective To investigate the relationship between intrauterine growth and offspring neurodevelopmental difficulties. Design, Setting, and Participants MoBa is a population-based pregnancy cohort that recruited pregnant women from June 1999 to December 2008 included approximately 114 500 children, 95 200 mothers, and 75 200 fathers. Observational associations between birth weight and neurodevelopmental difficulties were assessed with a conventional epidemiological approach. Mendelian randomization analyses were performed to investigate the potential causal association between maternal allele scores for birth weight and offspring neurodevelopmental difficulties conditional on offspring allele scores. Exposures Birth weight and maternal allele scores for birth weight (derived from genetic variants robustly associated with birth weight) were the exposures in the observational and mendelian randomization analyses, respectively. Main Outcomes and Measures Clinically relevant maternal ratings of offspring neurodevelopmental difficulties at 6 months, 18 months, 3 years, 5 years, and 8 years of age assessing language and motor difficulties, inattention and hyperactivity-impulsivity, social communication difficulties, and repetitive behaviors. Results The conventional epidemiological sample included up to 46 970 offspring, whereas the mendelian randomization sample included up to 44 134 offspring (median offspring birth year, 2005 [range, 1999-2009]; mean [SD] maternal age at birth, 30.1 [4.5] years; mean [SD] paternal age at birth, 32.5 [5.1] years). The conventional epidemiological analyses found evidence that birth weight was negatively associated with several domains at multiple offspring ages (outcome of autism-related trait scores: Social Communication Questionnaire [SCQ]-full at 3 years, β = -0.046 [95% CI, -0.057 to -0.034]; SCQ-Restricted and Repetitive Behaviors subscale at 3 years, β = -0.049 [95% CI, -0.060 to -0.038]; attention-deficit/hyperactivity disorder [ADHD] trait scores: Child Behavior Checklist [CBCL]-ADHD subscale at 18 months, β = -0.035 [95% CI, -0.045 to -0.024]; CBCL-ADHD at 3 years, β = -0.032 [95% CI, -0.043 to -0.021]; CBCL-ADHD at 5 years, β = -0.050 [95% CI, -0.064 to -0.037]; Rating Scale for Disruptive Behavior Disorders [RS-DBD]-ADHD at 8 years, β = -0.036 [95% CI, -0.049 to -0.023]; RS-DBD-Inattention at 8 years, β = -0.037 [95% CI, -0.050 to -0.024]; RS-DBD-Hyperactive-Impulsive Behavior at 8 years, β = -0.027 [95% CI, -0.040 to -0.014]; Conners Parent Rating Scale-Revised [Short Form] at 5 years, β = -0.041 [95% CI, -0.054 to -0.028]; motor scores: Ages and Stages Questionnaire-Motor Difficulty [ASQ-MOTOR] at 18 months, β = -0.025 [95% CI, -0.035 to -0.015]; ASQ-MOTOR at 3 years, β = -0.029 [95% CI, -0.040 to -0.018]; and Child Development Inventory-Gross and Fine Motor Skills at 5 years, β = -0.028 [95% CI, -0.042 to -0.015]). Mendelian randomization analyses did not find any evidence for an association between maternal allele scores for birth weight and offspring neurodevelopmental difficulties. Conclusions and Relevance This study found that the maternal intrauterine environment, as proxied by maternal birth weight genetic variants, is unlikely to be a major determinant of offspring neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Shannon D’Urso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laurie J. Hannigan
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Elizabeth C. Corfield
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Helga Ask
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Stefan Johannson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Robin N. Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Alexandra Havdahl
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Papi A, Faner R, Pavord I, Baraldi F, McDonald VM, Thomas M, Miravitlles M, Roche N, Agustí A. From treatable traits to GETomics in airway disease: moving towards clinical practice. Eur Respir Rev 2024; 33:230143. [PMID: 38232989 DOI: 10.1183/16000617.0143-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 01/19/2024] Open
Abstract
The treatable traits approach represents a strategy for patient management. It is based on the identification of characteristics susceptible to treatments or predictive of treatment response in each individual patient. With the objective of accelerating progress in research and clinical practice relating to such a treatable traits approach, the Portraits event was convened in Barcelona, Spain, in November 2022. Here, while reporting the key concepts that emerged from the discussions during the meeting, we review the current state of the art related to treatable traits and chronic respiratory diseases management, and we describe the possible actions that clinicians can take in clinical practice to implement the treatable traits framework. Furthermore, we explore the new concept of GETomics and the new models of research in the field of COPD.
Collapse
Affiliation(s)
- Alberto Papi
- Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Rosa Faner
- University of Barcelona, Biomedicine Department, FCRB-IDIBAPS, Centro de Investigación Biomedica en Red M.P. (CIBER), Barcelona, Spain
| | - Ian Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Vanessa M McDonald
- School of Nursing and Midwifery, The University of Newcastle, NHMRC Centre of Excellence in Asthma Treatable Traits, Hunter Medical Research Institute Asthma and Breathing Research Programme and Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Mike Thomas
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicholas Roche
- Respiratory Medicine Department, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, AP-HP and Université Paris Cité, Paris, France
| | - Alvar Agustí
- University of Barcelona, Hospital Clinic, IDIBAPS and CIBERES, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Perinatal Use of Citrulline Rescues Hypertension in Adult Male Offspring Born to Pregnant Uremic Rats. Int J Mol Sci 2024; 25:1612. [PMID: 38338891 PMCID: PMC10855562 DOI: 10.3390/ijms25031612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The growing recognition of the association between maternal chronic kidney disease (CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring. Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the renin-angiotensin system (RAS). Our prior investigation showed that the administration of adenine to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP) in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal (pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium Butyriciproducens. Citrulline's ability to influence taxa associated with hypertension may be linked to its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic mother rats.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
20
|
Litt JS, Halfon N, Msall ME, Russ SA, Hintz SR. Ensuring Optimal Outcomes for Preterm Infants after NICU Discharge: A Life Course Health Development Approach to High-Risk Infant Follow-Up. CHILDREN (BASEL, SWITZERLAND) 2024; 11:146. [PMID: 38397258 PMCID: PMC10886801 DOI: 10.3390/children11020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Children born prematurely (<37 weeks' gestation) have an increased risk for chronic health problems and developmental challenges compared to their term-born peers. The threats to health and development posed by prematurity, the unintended effects of life-sustaining neonatal intensive care, the associated neonatal morbidities, and the profound stressors to families affect well-being during infancy, childhood, adolescence, and beyond. Specialized clinical programs provide medical and developmental follow-up care for preterm infants after hospital discharge. High-risk infant follow-up, like most post-discharge health services, has many shortcomings, including unclear goals, inadequate support for infants, parents, and families, fragmented service provisions, poor coordination among providers, and an artificially foreshortened time horizon. There are well-documented inequities in care access and delivery. We propose applying a life course health development framework to clinical follow-up for children born prematurely that is contextually appropriate, developmentally responsive, and equitably deployed. The concepts of health development, unfolding, complexity, timing, plasticity, thriving, and harmony can be mapped to key components of follow-up care delivery to address pressing health challenges. This new approach envisions a more effective version of clinical follow-up to support the best possible functional outcomes and the opportunity for every premature infant to thrive within their family and community environments over their life course.
Collapse
Affiliation(s)
- Jonathan S. Litt
- Division of Newborn Medicine, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Social and Behavioral Pediatrics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Neal Halfon
- Center for Healthier Children, Families, and Communities, University of California, Los Angeles, CA 90024, USA; (N.H.); (S.A.R.)
- Department of Pediatrics, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90024, USA
- Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
- Department of Public Policy, UCLA Luskin School of Public Affairs, Los Angeles, CA 90095, USA
| | - Michael E. Msall
- Department of Pediatrics, Sections of Developmental and Behavioral Pediatrics and Kennedy Research Center on Intellectual and Neurodevelopmental Disabilities, University of Chicago Medicine, Chicago, IL 60637, USA;
| | - Shirley Ann Russ
- Center for Healthier Children, Families, and Communities, University of California, Los Angeles, CA 90024, USA; (N.H.); (S.A.R.)
- Department of Pediatrics, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90024, USA
| | - Susan R. Hintz
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| |
Collapse
|
21
|
Camargo AC, Constantino FB, Santos SA, Colombelli KT, Portela LM, Fioretto MN, Barata LA, Valente GT, Moreno CS, Justulin LA. Deregulation of ABCG1 early in life contributes to prostate carcinogenesis in maternally malnourished offspring rats. Mol Cell Endocrinol 2024; 580:112102. [PMID: 37972683 DOI: 10.1016/j.mce.2023.112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
AIMS The developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. Using a model of maternal exposure to a low protein diet (LPD; 6% protein) during the gestational and lactational periods, we demonstrated changes in the ventral prostate (VP) transcriptomic landscape in young rats exposed to maternal malnutrition. Male offspring Sprague Dawley rats were submitted to maternal malnutrition during gestation and lactation, and they were weighed, and distance anogenital was measured, followed were euthanized by an overdose of anesthesia at 21 postnatal days. Next, the blood and the ventral prostate (VP) were collected and processed by morphological analysis, biochemical and molecular analyses. RNA-seq analysis identified 411 differentially expressed genes (DEGs) in the VP of maternally malnourished offspring compared to the control group. The molecular pathways enriched by these DEGs are related to cellular development, differentiation, and tissue morphogenesis, all of them involved in both normal prostate development and carcinogenesis. Abcg1 was commonly deregulated in young and old maternally malnourished offspring rats, as well in rodent models of prostate cancer (PCa) and in PCa patients. Our results described ABCG1 as a potential DOHaD gene associated with perturbation of prostate developmental biology with long-lasting effects on carcinogenesis in old offspring rats. A better understanding of these mechanisms may help with the discussion of preventive strategies against early life origins of non-communicable chronic diseases.
Collapse
Affiliation(s)
- Ana Cl Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil; Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Flávia B Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Sergio Aa Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz Mf Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luísa A Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Guilherme T Valente
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine and Department of Biomedical Informatics, Emory University School of Medicine, USA
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
22
|
Xie L, Qin J, Wang T, Zhang S, Luo M, Cheng X, Cao X, Wang H, Yao B, Xu D, Peng B. Impact of Prenatal Acetaminophen Exposure for Hippocampal Development Disorder on Mice. Mol Neurobiol 2023; 60:6916-6930. [PMID: 37516664 DOI: 10.1007/s12035-023-03515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used as analgesic agents. They have been detected in various environmental matrices. The degradation of environmental contaminants and the long-term adverse effects have become a major public concern. Prenatal exposure to acetaminophen can cause damage to the developing hippocampus. However, the molecular mechanisms behind hippocampal damage following prenatal acetaminophen exposure (PAcE) remain unclear. The present study shows an increased risk of adverse neurodevelopmental outcomes in offspring following exposure to acetaminophen during pregnancy on mice. The results revealed that different doses, timings, and duration of exposure to acetaminophen during pregnancy were associated with dose-dependent changes in the hippocampus of the offspring. Furthermore, exposure to high doses, multiple-treatment courses, and late pregnancy induced pathological changes, such as wrinkling and vacuolation, inhibited hippocampal proliferation and increased apoptosis. In addition, PAcE significantly decreased the expression of genes related to synaptic development in fetal hippocampal neurons and hippocampal astrocyte and microglia were also damaged to varying degrees. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the SOX2/Notch pathway may suggest that the role of SOX2/Notch pathway in impaired hippocampal development in the offspring due to PAcE. In general, PAcE at high doses, multiple-treatment courses, and mid- and late gestation were associated with neurodevelopmental toxicity to the offspring.
Collapse
Affiliation(s)
- Lulu Xie
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Qin
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xuelei Cheng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xinrui Cao
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
23
|
Liu Y, Liu Y, Chen S, Kong Z, Guo Y, Wang H. Prenatal exposure to acetaminophen at different doses, courses and time causes testicular dysplasia in offspring mice and its mechanism. CHEMOSPHERE 2023; 345:140496. [PMID: 37865203 DOI: 10.1016/j.chemosphere.2023.140496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Epidemiological investigation suggested that the use of acetaminophen during pregnancy may cause offspring testicular dysplasia, but no systematic study has been conducted. In this study, Kunming mice were given acetaminophen at different doses (100/200/400 mg/kg.d), courses (single/multiple), time (second/third trimester) during pregnancy. Fetal blood and testes were collected on gestaional day 18 for detection. The results indicated abnormal testicular development in the PAcE (prenatal acetaminophen exposure) groups. The maximum diameter/cross-sectional area decreased, the interstitial space widened, and decreased proliferation/increased apoptosis were observed, especially in the high-dose, multi-course and second-trimester groups. Meanwhile, the serum testosterone level decreased in PAcE groups, and the steroid synthesis function in Leydig cells, Sertoli and spermatogenic cell function were inhibited, it was more significant in high-dose, multi-course and second-trimester groups. Furthermore, Wnt signal pathway was activated but Notch signal pathway was inhibited in the PAcE groups. Finally, in vitro experiment, acetaminophen could inhibit spermatogonial cell proliferation, enhance apoptosis, and change Wnt/Notch signal pathway. In conclusion, this study confirmed that PAcE can change fetal testicular development in a dose, course and time-dependent manner, and found that multicellular function impaired. This study provides theoretical and experimental basis for systematically elucidating the developmental toxicity of acetaminophen in testis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ziyu Kong
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
24
|
Ma C, Li X, Xiao H, Li B, Gu H, Guo Y, Wang H, Wen Y, Chen L. Course-, dose-, and stage-dependent toxic effects of prenatal acetaminophen exposure on fetal long bone development. Toxicol Lett 2023; 387:50-62. [PMID: 37741353 DOI: 10.1016/j.toxlet.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.
Collapse
Affiliation(s)
- Chi Ma
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xufeng Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
25
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
26
|
Tang J, Han J, Jiang Y, Xue J, Zhou H, Hu L, Chen C, Lu L. An Innovative Three-Stage Model for Prenatal Genetic Disorder Detection Based on Region-of-Interest in Fetal Ultrasound. Bioengineering (Basel) 2023; 10:873. [PMID: 37508900 PMCID: PMC10376765 DOI: 10.3390/bioengineering10070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
A global survey has revealed that genetic syndromes affect approximately 8% of the population, but most genetic diagnoses are typically made after birth. Facial deformities are commonly associated with chromosomal disorders. Prenatal diagnosis through ultrasound imaging is vital for identifying abnormal fetal facial features. However, this approach faces challenges such as inconsistent diagnostic criteria and limited coverage. To address this gap, we have developed FGDS, a three-stage model that utilizes fetal ultrasound images to detect genetic disorders. Our model was trained on a dataset of 2554 images. Specifically, FGDS employs object detection technology to extract key regions and integrates disease information from each region through ensemble learning. Experimental results demonstrate that FGDS accurately recognizes the anatomical structure of the fetal face, achieving an average precision of 0.988 across all classes. In the internal test set, FGDS achieves a sensitivity of 0.753 and a specificity of 0.889. Moreover, in the external test set, FGDS outperforms mainstream deep learning models with a sensitivity of 0.768 and a specificity of 0.837. This study highlights the potential of our proposed three-stage ensemble learning model for screening fetal genetic disorders. It showcases the model's ability to enhance detection rates in clinical practice and alleviate the burden on medical professionals.
Collapse
Affiliation(s)
- Jiajie Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- School of Information Management, Wuhan University, Wuhan 430072, China
| | - Jin Han
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Graduate School, Guangzhou Medical University, Guangzhou 511495, China
| | - Yuxuan Jiang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- School of Information Management, Wuhan University, Wuhan 430072, China
- Center for Healthcare Big Data Research, The Big Data Institute, Wuhan University, Wuhan 430072, China
| | - Jiaxin Xue
- Graduate School, Guangzhou Medical University, Guangzhou 511495, China
| | - Hang Zhou
- Graduate School, Guangzhou Medical University, Guangzhou 511495, China
| | - Lianting Hu
- Medical Big Data Center, Guangdong Provincial People's Hospital, Guangzhou 510317, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 510317, China
| | - Caiyuan Chen
- Graduate School, Guangzhou Medical University, Guangzhou 511495, China
| | - Long Lu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- School of Information Management, Wuhan University, Wuhan 430072, China
- School of Public Health, Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
李 启, 陈 雨, 刘 雨, 曹 柳, 王 一, 杜 秋, 田 亚, 李 卡. [Status Quo and Prospects of Research on Precision Nursing of Life-Cycle Health and Disease]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:705-711. [PMID: 37545060 PMCID: PMC10442637 DOI: 10.12182/20230760302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/08/2023]
Abstract
With the changing lifestyle and spectrum of diseases among Chinese people, the life-cycle approach to health has been given national strategic importance. Over the past decade, global nursing researchers have gradually started to pay more attention to the research related to precision nursing at different stages of the life cycle. Researchers have applied multi-omics to explore the pathogenesis and novel biomarkers of relevant symptoms in tumor patients or patients with chronic diseases in order to manage symptoms with better precision. However, systematic theories of precision nursing of life-cycle health and disease have not yet been developed, and the research field and its implications still need to be continuously expanded and innovated. In the nursing discipline, the advantages of interdisciplinary integration should be given full play and the precise and effective resolution of life-cycle health problems should be taken as its goal. Through accurately defining key quantitative objective indicators of nursing care, the nursing discipline will be able to achieve early identification of life-cycle health problems, clarify the occurrence and patterns of change in life-cycle health problems, and gain a better understanding of the regulatory mechanisms. Precise and effective nursing-related technologies and products of non-medication and non-surgery nature should be developed to achieve better precision in nursing interventions, thereby effectively promoting recovery from diseases and improving the overall health of the people.
Collapse
Affiliation(s)
- 启杰 李
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 雨文 陈
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 雨薇 刘
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 柳娇 曹
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 一琳 王
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 秋静 杜
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 亚丽 田
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - 卡 李
- 四川大学华西医院/四川大学华西护理学院 (成都 610041)West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Oliveira WR, Rigo CP, Ferreira ARO, Ribeiro MVG, Perres MNC, Palma-Rigo K. Precocious evaluation of cardiovascular risk and its correlation with perinatal condition. AN ACAD BRAS CIENC 2023; 95:e20201702. [PMID: 37377255 DOI: 10.1590/0001-3765202320201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/28/2021] [Indexed: 06/29/2023] Open
Abstract
The cardiovascular disease is the main cause of worldwide death. This profile is potentialized by the increased severity of infections in people with obesity, type 2 diabetes and hypertension. Children and adolescents are target groups for the prevention of non-communicable diseases. The Developmental Origins of Health and Disease concept points that perinatal conditions are an important risk factor to development of non-communicable disease in adulthood. In this context, the present review identifies perinatal factor that induces precocious cardiovascular risk factors, related with cardiometabolic syndrome. The low or high birth weight and caesarean delivery are risk factors that induce increased occurrence of cardiovascular risk biomarkers in children and adolescents, while the breast feeding or feeding with breast milk from the birth until two years-old is a protector strategy. Evaluation of perinatal conditions associated with precocious identification of cardiovascular risk factors in children and adolescents is an efficient strategy to prevent and control cardiovascular mortality; through interventions, as lifestyle changes during vulnerable windows of development, able to set up the risk to cardiometabolic disease.
Collapse
Affiliation(s)
- Wanderson R Oliveira
- Faculdade Adventista Paranaense, PR-317, Km 119, Gleba, Rua Paiçandu, Lote 80, Zona Rural, 87130-000 Ivatuba, PR, Brazil
| | - Cleusa P Rigo
- Centro Universitário Filadélfia, Rua Alagoas, 2050, Centro, 86010-520 Londrina, PR, Brazil
| | - Anna R O Ferreira
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Av. Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil
| | - Maiara V G Ribeiro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Av. Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil
| | - Maria N C Perres
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Av. Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil
| | - Kesia Palma-Rigo
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Av. Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil
- Faculdade Adventista Paranaense, PR-317, Km 119, Gleba, Rua Paiçandu, Lote 80, Zona Rural, 87130-000 Ivatuba, PR, Brazil
| |
Collapse
|
29
|
Toubon G, Butel MJ, Rozé JC, Nicolis I, Delannoy J, Zaros C, Ancel PY, Aires J, Charles MA. Early Life Factors Influencing Children Gut Microbiota at 3.5 Years from Two French Birth Cohorts. Microorganisms 2023; 11:1390. [PMID: 37374892 DOI: 10.3390/microorganisms11061390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Early life gut microbiota-influencing factors may play an important role in programming individuals long-term health and substantial efforts have been devoted into studying the development of the gut microbiota in relation to early life events. This study aimed to examine in a single study, the persistence of associations between 20 factors occurring in the early life and the gut microbiota at 3.5 years of 798 children from two French nationwide birth cohorts, EPIPAGE 2 (very preterm children) and ELFE (late preterm and full-term children). Gut microbiota profiling was assessed using 16S rRNA gene sequencing-based method. Upon thorough adjustment of confounding factors, we demonstrated that gestational age was one of the factors most associated with gut microbiota differences with a noticeable imprint of prematurity at 3.5 years of age. Children born by cesarean section harbored lower richness and diversity and a different overall gut microbiota composition independently of preterm status. Children who had ever received human milk were associated with a Prevotella-driven enterotype (P_type) compared to those who had never received human milk. Living with a sibling was associated with higher diversity. Children with siblings and those attending daycare centers were associated with a P_type enterotype. Maternal factors including the country of birth and preconception maternal body mass index were associated with some microbiota characteristics: children born to overweight or obese mothers showed increased gut microbiota richness. This study reveals that multiple exposures operating from early life imprint the gut microbiota at 3.5 years that is a pivotal age when the gut microbiota acquires many of its adult characteristics.
Collapse
Affiliation(s)
- Gaël Toubon
- Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), Inserm, INRAE, Université Paris Cité et Université Sorbonne Paris Nord, 75004 Paris, France
- Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Inserm, UMR-S 1139, Université Paris Cité, 75006 Paris, France
- FHU PREMA, Fighting Prematurity, 75014 Paris, France
| | - Marie-José Butel
- Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Inserm, UMR-S 1139, Université Paris Cité, 75006 Paris, France
- FHU PREMA, Fighting Prematurity, 75014 Paris, France
| | - Jean-Christophe Rozé
- Physiologie des Adaptations Nutritionnelles (PhAN), INRAE, UMR 1280, Université Hospitalière de Nantes, 44093 Nantes, France
| | - Ioannis Nicolis
- EA7537 Biostatistique, Modélisation et Traitement des Données Biologiques (BioSTM), Université Paris Cité, 75006 Paris, France
| | - Johanne Delannoy
- Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Inserm, UMR-S 1139, Université Paris Cité, 75006 Paris, France
- FHU PREMA, Fighting Prematurity, 75014 Paris, France
| | - Cécile Zaros
- Ined, Inserm, EFS Joint Unit Elfe, 93322 Aubervilliers, France
| | - Pierre-Yves Ancel
- Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), Inserm, INRAE, Université Paris Cité et Université Sorbonne Paris Nord, 75004 Paris, France
- FHU PREMA, Fighting Prematurity, 75014 Paris, France
| | - Julio Aires
- Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), Inserm, UMR-S 1139, Université Paris Cité, 75006 Paris, France
- FHU PREMA, Fighting Prematurity, 75014 Paris, France
| | - Marie-Aline Charles
- Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), Inserm, INRAE, Université Paris Cité et Université Sorbonne Paris Nord, 75004 Paris, France
- Ined, Inserm, EFS Joint Unit Elfe, 93322 Aubervilliers, France
| |
Collapse
|
30
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
31
|
Li S, Liu B, Liu Y, Ding YQ, Zhang J, Feng L. Effects of maternal urban particulate matter SRM 1648a exposure on birth outcomes and offspring growth in mice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2387-2400. [PMID: 35972609 DOI: 10.1007/s10653-022-01352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The association between exposure to particulate matter (PM) during pregnancy and abnormal birth outcomes is still inconclusive. This study aims to provide more evidence for this public health concern by investigating birth outcomes and the growth of offspring in mice exposed to PM during pregnancy. C57BL/6 J pregnant mice were exposed to PM via nasal drip at three doses or solvent control. The dam weight gain was recorded during pregnancy. The number of pups, pup weight, and placental weight were recorded at embryonic day 18.5 (E18.5) necropsy. For mice that gave birth naturally, we calculated the gestation length and measured the body weight of offspring once a week from the 1st to the 6th week after birth. The results showed that there were no significant differences in maternal body weight gain, conception rate, pregnancy duration, and litter size among different groups. There were no significant differences in fetal weight, placental weight, and fetal/placental weight ratio at E18.5. Weight gain in offspring was reduced after birth. The average body weight of offspring in the high-dose group was significantly lower than that in the control group at weeks 5 in female pups. There were no significant differences in the body weight of male offspring among groups from 1st to the 6th. Together, our study indicated that maternal exposure to PM did not significantly impact birth outcomes of C57BL/6 J mice but affected growth trajectories in offspring after birth in a dose- and fetal sex-dependent manner.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
- Division of Reproductive Science, Department of Obstetrics and Gynecology, Duke University Medical Center, Box 103208, Durham, NC, 27710, USA.
| |
Collapse
|
32
|
Yearwood L, Bone JN, Wen Q, Muraca GM, Lyons J, Razaz N, Joseph K, Lisonkova S. The association between maternal stature and adverse birth outcomes and the modifying effect of race and ethnicity: a population-based retrospective cohort study. AJOG GLOBAL REPORTS 2023; 3:100184. [PMID: 36941862 PMCID: PMC10024135 DOI: 10.1016/j.xagr.2023.100184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND There are known differences in the risk of perinatal and maternal birth outcomes because of maternal factors, such as body mass index and maternal race. However, the association of maternal height with adverse birth outcomes and the potential differences in this relationship by race and ethnicity have been understudied. OBJECTIVE This study aimed to examine the association between maternal stature and adverse perinatal outcomes and the potential modification of the association by race and ethnicity. STUDY DESIGN This retrospective cohort study was conducted using data on all singleton births in the United States in 2016 and 2017 (N=7,361,713) obtained from the National Center for Health Statistics. Short and tall stature were defined as <10th and >90th percentiles of the maternal height distribution (<154.9 and >172.7 cm, respectively). Race and ethnicity categories included non-Hispanic White, non-Hispanic Black, American Indian or Alaskan Native Asian or Pacific Islander, and Hispanic. The primary outcomes were preterm birth (<37 weeks of gestation), perinatal death, and composite perinatal death or severe neonatal morbidity. Logistic regression was used to obtain adjusted odds ratios and 95% confidence intervals with adjustment for confounding by maternal age, body mass index, and other factors. Multiplicative and additive effect modifications by race and ethnicity were assessed. RESULTS The study population included 7,361,713 women with a singleton stillbirth or live birth. Short women had an increased risk of adverse outcomes, whereas tall women had a decreased risk relative to average-stature women. Short women had an increased risk of perinatal death and composite perinatal death or severe neonatal morbidity (adjusted odds ratios, 1.14 [95% confidence interval, 1.10-1.17] and 1.21 [95% confidence interval, 1.19-1.23], respectively). The association between short stature and perinatal death was attenuated in non-Hispanic Black women compared with non-Hispanic White women (adjusted odds ratio, 1.10 [95% confidence interval, 1.03-1.17] vs 1.26 [95% confidence interval, 1.19-1.33]). Compared with average-stature women, tall non-Hispanic White women had lower rates of preterm birth, perinatal death, and composite perinatal death or severe neonatal morbidity (adjusted odds ratios, 0.82 [95% confidence interval, 0.81-0.83], 0.95 [95% confidence interval, 0.91-1.00], and 0.90 [95% confidence interval, 0.88-0.93], respectively). The association between tall and average stature with perinatal death was reversed in Hispanic women (adjusted odds ratio, 1.27; 95% confidence interval, 1.12-1.44). Compared with average-stature women, all tall women had lower rates of preterm birth, particularly among non-Hispanic Black and Hispanic women. CONCLUSION Relative to average-stature women, short women have an increased risk of adverse perinatal outcomes across all race and ethnicity groups; these associations were attenuated in Hispanic women and for some adverse outcomes in non-Hispanic Black and Asian women. Tall mothers have a lower risk of preterm birth in all racial and ethnic groups, whereas tall non-Hispanic White mothers have a lower risk of perinatal death or severe neonatal morbidity compared with average-stature women.
Collapse
Affiliation(s)
- Lauren Yearwood
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada (XX Yearwood, XX Bone, Ms Wen, XX Lyons, XX Joseph, and Dr Lisonkova)
| | - Jeffrey N. Bone
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada (XX Yearwood, XX Bone, Ms Wen, XX Lyons, XX Joseph, and Dr Lisonkova)
- Children's and Women's Hospital and Health Centre of British Columbia, Vancouver, British Columbia, Canada (XX Bone, XX Joseph, and Dr Lisonkova)
| | - Qi Wen
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada (XX Yearwood, XX Bone, Ms Wen, XX Lyons, XX Joseph, and Dr Lisonkova)
| | - Giulia M. Muraca
- Department of Obstetrics and Gynecology and Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada (XX Muraca)
- Clinical Epidemiology Unit, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden (XX Muraca and XX Razaz)
| | - Janet Lyons
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada (XX Yearwood, XX Bone, Ms Wen, XX Lyons, XX Joseph, and Dr Lisonkova)
| | - Neda Razaz
- Clinical Epidemiology Unit, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden (XX Muraca and XX Razaz)
| | - K.S. Joseph
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada (XX Yearwood, XX Bone, Ms Wen, XX Lyons, XX Joseph, and Dr Lisonkova)
- Children's and Women's Hospital and Health Centre of British Columbia, Vancouver, British Columbia, Canada (XX Bone, XX Joseph, and Dr Lisonkova)
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada (XX Joseph and Dr Lisonkova)
| | - Sarka Lisonkova
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada (XX Yearwood, XX Bone, Ms Wen, XX Lyons, XX Joseph, and Dr Lisonkova)
- Children's and Women's Hospital and Health Centre of British Columbia, Vancouver, British Columbia, Canada (XX Bone, XX Joseph, and Dr Lisonkova)
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada (XX Joseph and Dr Lisonkova)
- Corresponding author: Sarka Lisonkova, MD, PhD.
| |
Collapse
|
33
|
Örkenby L, Skog S, Ekman H, Gozzo A, Kugelberg U, Ramesh R, Magadi S, Zambanini G, Nordin A, Cantú C, Nätt D, Öst A. Stress-sensitive dynamics of miRNAs and Elba1 in Drosophila embryogenesis. Mol Syst Biol 2023; 19:e11148. [PMID: 36938679 PMCID: PMC10167479 DOI: 10.15252/msb.202211148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Early-life stress can result in life-long effects that impact adult health and disease risk, but little is known about how such programming is established and maintained. Here, we show that such epigenetic memories can be initiated in the Drosophila embryo before the major wave of zygotic transcription, and higher-order chromatin structures are established. An early short heat shock results in elevated levels of maternal miRNA and reduced levels of a subgroup of zygotic genes in stage 5 embryos. Using a Dicer-1 mutant, we show that the stress-induced decrease in one of these genes, the insulator-binding factor Elba1, is dependent on functional miRNA biogenesis. Reduction in Elba1 correlates with the upregulation of early developmental genes and promotes a sustained weakening of heterochromatin in the adult fly as indicated by an increased expression of the PEV wm4h reporter. We propose that maternal miRNAs, retained in response to an early embryonic heat shock, shape the subsequent de novo heterochromatin establishment that occurs during early development via direct or indirect regulation of some of the earliest expressed genes, including Elba1.
Collapse
Affiliation(s)
- Lovisa Örkenby
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helen Ekman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alessandro Gozzo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rashmi Ramesh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Srivathsa Magadi
- Division of Neurobiology (NEURO), Linköping University, Linköping, Sweden
| | - Gianluca Zambanini
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Anna Nordin
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Claudio Cantú
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Daniel Nätt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Zeng F, Zhang L, Deng F, Lou S. Early-life exposure to di (2-ethyl-hexyl) phthalate: Role in children with endocrine disorders. Front Cell Dev Biol 2023; 11:1115229. [PMID: 36846588 PMCID: PMC9950113 DOI: 10.3389/fcell.2023.1115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP), one of endocrine-disrupting chemicals (EDCs), has widespread concern due to its serious health hazards. Exposure to DEHP in the early stage of life affects fetal metabolic and endocrine function, which even would cause genetic lesions. To date, it is widely believed that the increasing incidence of childhood obesity and diabetes in adolescents is related to the impact of DEHP on glucose and lipid homeostasis in children. However, there remains a knowledge gap to recognize these adverse effects. Thus, in this review, besides the exposure routes and levels of DEHP, we further outline the effects of early-life exposure to DEHP on children and potential mechanisms, focusing on the aspect of metabolic and endocrine homeostasis.
Collapse
Affiliation(s)
- Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Luodan Zhang
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, China
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, China,*Correspondence: Fang Deng, ; Shuiping Lou,
| | - Shuiping Lou
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China,*Correspondence: Fang Deng, ; Shuiping Lou,
| |
Collapse
|
35
|
Shaul NC, Jordan JM, Falsztyn IB, Ryan Baugh L. Insulin/IGF-dependent Wnt signaling promotes formation of germline tumors and other developmental abnormalities following early-life starvation in Caenorhabditis elegans. Genetics 2023; 223:iyac173. [PMID: 36449574 PMCID: PMC9910406 DOI: 10.1093/genetics/iyac173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/25/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease hypothesis postulates that early-life stressors can predispose people to disease later in life. In the roundworm Caenorhabditis elegans, prolonged early-life starvation causes germline tumors, uterine masses, and other gonad abnormalities to develop in well-fed adults. Reduction of insulin/insulin-like growth factor (IGF) signaling (IIS) during larval development suppresses these starvation-induced abnormalities. However, molecular mechanisms at play in formation and suppression of starvation-induced abnormalities are unclear. Here we describe mechanisms through which early-life starvation and reduced IIS affect starvation-induced abnormalities. Transcriptome sequencing revealed that expression of genes in the Wnt signaling pathway is upregulated in adults starved as young larvae, and that knockdown of the insulin/IGF receptor daf-2/InsR decreases their expression. Reduction of Wnt signaling through RNAi or mutation reduced starvation-induced abnormalities, and hyperactivation of Wnt signaling produced gonad abnormalities in worms that had not been starved. Genetic and reporter-gene analyses suggest that Wnt signaling acts downstream of IIS in the soma to cell-nonautonomously promote germline hyperproliferation. In summary, this work reveals that IIS-dependent transcriptional regulation of Wnt signaling promotes starvation-induced gonad abnormalities, illuminating signaling mechanisms that contribute to adult pathology following early-life starvation.
Collapse
Affiliation(s)
- Nathan C Shaul
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ivan B Falsztyn
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
36
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
37
|
Zhang T, Luo ZC, Ji Y, Chen Y, Ma R, Fan P, Tang N, Li J, Tian Y, Zhang J, Ouyang F. The impact of maternal depression, anxiety, and stress on early neurodevelopment in boys and girls. J Affect Disord 2023; 321:74-82. [PMID: 36280196 DOI: 10.1016/j.jad.2022.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To examine the effects of prenatal maternal depression, anxiety and stress, and postnatal depression on infant early neurodevelopment, and the sex dimorphism. STUDY DESIGN We used data from 3379 mother-infant pairs from the Shanghai Birth Cohort. Maternal mental health was assessed using the Center for Epidemiological Studies-Depression Scale, Zung Self-Rating Anxiety Scale, Perceived Stress Scale at mid-pregnancy, and the Edinburgh Postnatal Depression Scale at postpartum. Infant neurodevelopment was evaluated using the Ages & Stages Questionnaires and Bayley Scales at ages 6, 12, and 24 months, respectively. Linear mixed models and linear regression models were used. RESULTS Among 3379 mothers, 11.07 %, 5.42 %, and 34.85 % of women experienced depression, anxiety, and elevated stress, separately. As maternal prenatal mental scores increased per 1SD, infant social-emotional scores decreased -2.82 (-3.86, -1.79) vs -2.86 (-3.94, -1.79) for depression, -2.34 (-3.38, -1.31) vs -2.72 (-3.81, -1.64) for anxiety, and -2.55 (-3.60, -1.50) vs -3.41 (-4.48, -2.35) for stress among boys and girls at age 24 months, respectively. Associations were also observed on social-emotional and communication scores in boys and girls, and fine motor in girls at age 6 and 12 months. These associations were not observed for postpartum depression. LIMITATION Generalizability of the results to other population remains to be determined. CONCLUSIONS Prenatal maternal depression, anxiety, and stress were negatively associated with infant early neurodevelopment, which were not observed for postpartum depression. We underscore the importance of maternal prenatal mental health in optimizing infant neuropsychiatric development.
Collapse
Affiliation(s)
- Ting Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-Cheng Luo
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute, Prosserman Center for Population Health Research, Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, Faculty of Medicine, University of Toronto, Toronto M5G 1X5, Canada
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Yuanzhi Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Tang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | |
Collapse
|
38
|
Thriene K, Michels KB. Human Gut Microbiota Plasticity throughout the Life Course. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1463. [PMID: 36674218 PMCID: PMC9860808 DOI: 10.3390/ijerph20021463] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
The role of the gut microbiota in human health and disease has garnered heightened attention over the past decade. A thorough understanding of microbial variation over the life course and possible ways to influence and optimize the microbial pattern is essential to capitalize on the microbiota's potential to influence human health. Here, we review our current understanding of the concept of plasticity of the human gut microbiota throughout the life course. Characterization of the plasticity of the microbiota has emerged through recent research and suggests that the plasticity in the microbiota signature is largest at birth when the microbial colonization of the gut is initiated and mode of birth imprints its mark, then decreases postnatally continuously and becomes less malleable and largely stabilized with advancing age. This continuing loss of plasticity has important implication for the impact of the exposome on the microbiota and health throughout the life course and the identification of susceptible 'windows of opportunity' and methods for interventions.
Collapse
Affiliation(s)
- Kerstin Thriene
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Silveira JS, Júnior OVR, Schmitz F, Ferreira FS, Rodrigues FC, Deon M, Ribas G, Coutinho-Silva R, Vargas CR, Savio LEB, Wyse AT. High-protein nutrition during pregnancy increases neuroinflammation and homocysteine levels and impairs behavior in male adolescent rats offspring. Life Sci 2022; 310:121084. [DOI: 10.1016/j.lfs.2022.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
40
|
Everest C, da Silva DF, Puranda J, Souza SCS, Goudreau AD, Nagpal TS, Edwards CM, Gupta R, Adamo KB. Physical Activity and Weight Gain Throughout Pregnancy Are Associated With Umbilical Cord Markers. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1262-1270. [PMID: 36216221 DOI: 10.1016/j.jogc.2022.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Maternal serum and umbilical cord (UC) lipid and glucose levels are influenced by a variety of maternal factors over the course of pregnancy, including maternal physical activity (PA) levels and gestational weight gain (GWG). However, previous research has not assessed the interaction of these 2 variables. This study investigated mid-gestation (24-28 weeks) and late gestation (34-38 weeks) maternal and UC serum lipid and glucose profiles in relation to maternal PA status and GWG, independently and in combination. METHODS This study had a longitudinal design. Pregnant participants (n = 40) were categorized as active or inactive based on the 2019 Canadian Guideline for Physical Activity throughout Pregnancy, and GWG was categorized as insufficient, appropriate, or excessive based on 2009 Institute of Medicine recommendations. Fasting maternal serum was taken in mid- and late gestation, and venous UC serum was taken at birth. RESULTS No relationship was found between maternal serum values and PA and/or GWG. Infants born to individuals who were physically active across pregnancy, or who were active in mid-pregnancy and had their activity status drop in late gestation, had lower UC total cholesterol levels than those who were inactive throughout pregnancy (P < 0.0001). Participants who had gained weight appropriately at mid-gestation had significantly lower UC glucose levels than those who gained weight insufficiently (P = 0.040) or excessively (P = 0.021). CONCLUSION In our study, PA, and GWG (independently and in combination) may not have affected maternal serum; however, meeting PA recommendations at mid-gestation may provide prophylactic effects on UC serum, potentially providing long-term health benefits to the newborn.
Collapse
Affiliation(s)
- Catherine Everest
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Danilo F da Silva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Jessica Puranda
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Sara C S Souza
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Alexandra D Goudreau
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Taniya S Nagpal
- Department of Kinesiology, Brock University, St. Catharine's, ON
| | - Chris M Edwards
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Rhea Gupta
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON.
| |
Collapse
|
41
|
Muraro EN, Sbardelotto BM, Guareschi ZM, de Almeida W, Souza Dos Santos A, Grassiolli S, Centenaro LA. Vitamin D supplementation combined with aerobic physical exercise restores the cell density in hypothalamic nuclei of rats exposed to monosodium glutamate. Clin Nutr ESPEN 2022; 52:20-27. [PMID: 36513455 DOI: 10.1016/j.clnesp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS In view of the increase in the prevalence of obesity and metabolic syndrome in childhood and adolescence, this study proposed the early and combined use of treatments to restore brain areas related to satiety. The vitamin D supplementation, aerobic exercise and the combination of these interventions on the structure of arcuate (ARC) and ventromedial (VMH) nuclei of hypothalamus were investigated in monosodium glutamate (MSG)-treated rats. METHODS Wistar rats were separated into five groups: Control group (CT); Obese group injected with MSG (OB); Obese group supplemented with vitamin D (OBvd); Obese group submitted to forced swimming training (OBexe) and Obese group treated with vitamin D supplementation and forced swimming training (OBvd + exe). RESULTS In the OB group, the visceral fat weight was significantly higher, there was a reduction in the number of glial cells in the ARC nucleus and also in the number of neurons in the ARC and VMH nuclei. Aerobic exercise was able to reduce the visceral fat weight in the OBexe group. The combination of treatments used in the OBvd + exe group reversed the loss of neurons and glial cells produced by MSG in the ARC nucleus. All treated groups exhibited a higher number of neurons in VMH nucleus, but an increase in the glial cells were observed only in the OBexe and OBvd + exe groups. CONCLUSIONS The effectiveness of obesity treatment can be favored through the early and combined use of vitamin D supplementation and aerobic exercise, since these therapies are able to restore brain nuclei involved in the control of food intake.
Collapse
Affiliation(s)
- Eduardo Natan Muraro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Bruno Marques Sbardelotto
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Zoé Maria Guareschi
- Laboratório de Fisiologia Endócrina e Metabólica, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Wellington de Almeida
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Adriana Souza Dos Santos
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Sabrina Grassiolli
- Laboratório de Fisiologia Endócrina e Metabólica, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Lígia Aline Centenaro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| |
Collapse
|
42
|
Mendez N, Halabi D, Salazar-Petres ER, Vergara K, Corvalan F, Richter HG, Bastidas C, Bascur P, Ehrenfeld P, Seron-Ferre M, Torres-Farfan C. Maternal melatonin treatment rescues endocrine, inflammatory, and transcriptional deregulation in the adult rat female offspring from gestational chronodisruption. Front Neurosci 2022; 16:1039977. [PMID: 36507347 PMCID: PMC9727156 DOI: 10.3389/fnins.2022.1039977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Gestational chronodisruption impact maternal circadian rhythms, inhibiting the nocturnal increase of melatonin, a critical hormone that contributes to maternal changes adaptation, entrains circadian rhythms, and prepares the fetus for birth and successful health in adulthood. In rats, we know that gestational chronodisruption by maternal chronic photoperiod shifting (CPS) impaired maternal melatonin levels and resulted in long-term metabolic and cardiovascular effects in adult male offspring. Here, we investigated the consequences of CPS on mother and adult female offspring and explored the effects of melatonin maternal supplementation. Also, we tested whether maternal melatonin administration during gestational chronodisruption rescues maternal circadian rhythms, pregnancy outcomes, and transcriptional functions in adult female offspring. Methods Female rats raised and maintained in photoperiod 12:12 light: dark were mated and separated into three groups: (a) Control photoperiod 12:12 (LD); (b) CPS photoperiod; and (c) CPS+Mel mothers supplemented with melatonin in the drinking water throughout gestation. In the mother, we evaluated maternal circadian rhythms by telemetry and pregnancy outcomes, in the long-term, we study adult female offspring by evaluating endocrine and inflammatory markers and the mRNA expression of functional genes involved in adrenal, cardiac, and renal function. Results In the mothers, CPS disrupted circadian rhythms of locomotor activity, body temperature, and heart rate and increased gestational length by almost 12-h and birth weight by 12%, all of which were rescued by maternal melatonin administration. In the female offspring, we found blunted day/night differences in circulating levels of melatonin and corticosterone, abnormal patterns of pro-inflammatory cytokines Interleukin-1a (IL1a), Interleukin-6 (IL6), and Interleukin-10 (IL10); and differential expression in 18 out of 24 adrenal, cardiac, and renal mRNAs evaluated. Conclusion Maternal melatonin contributed to maintaining the maternal circadian rhythms in mothers exposed to CPS, and the re-establishing the expression of 60% of the altered mRNAs to control levels in the female offspring. Although we did not analyze the effects on kidney, adrenal, and heart physiology, our results reinforce the idea that altered maternal circadian rhythms, resulting from exposure to light at night, should be a mechanism involved in the programming of Non-Communicable Diseases.
Collapse
Affiliation(s)
- Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban Roberto Salazar-Petres
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Hans G. Richter
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Carla Bastidas
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Pía Bascur
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile,*Correspondence: Claudia Torres-Farfan,
| |
Collapse
|
43
|
Perfused boundary region as biomarker for endothelial integrity in former preterms in adolescence. Pediatr Res 2022:10.1038/s41390-022-02321-3. [PMID: 36183004 DOI: 10.1038/s41390-022-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Extremely low birth weight (ELBW) survivors have microvascular structural differences already described in kidney and retina, suggesting changes in endothelial integrity. A biomarker of endothelial integrity is perfused boundary region (PBR), which measures glycocalycal thickness. The endothelial glycocalyx is a complex, highly versatile structure with essential roles in vascular integrity and function. We explored PBR patterns together with other microvascular markers in healthy controls and former ELBW children. METHODS In the PREMATCH cohort (87 healthy controls, 93 ELBW survivors), we assessed endothelial integrity by calculating PBR (sidestream dark-field imaging), several microvascular markers (blood pressure, estimated glomerular filtration rate (eGFRcysC)), and retinal imaging in early adolescence. We explored differences between both groups, and searched for perinatal determinants of PBR and correlations between different microvascular markers. RESULTS We provided reference values for PBR (average 1.90 µm, SD 0.30) in children. PBR was not different from ELBW survivors during early adolescence, despite their higher blood pressure, lower eGFRcysC, and different retinal vessel width and tortuosity. CONCLUSIONS We generated reference values for PBR in early adolescence. Despite some correlations between microvascular parameters, there seem to be numerous confounders to propose PBR as a marker for endothelial integrity in ELBW survivors. IMPACT The endothelial glycocalyx is a complex and versatile structure. Changes in blood pressure and retinal and renal vascularization suggest a disturbance of its integrity in extremely low birth weight (ELBW) survivors. Its thickness can be measured by calculating perfused boundary region (PBR) using sidestream dark-field imaging, with a higher PBR indicating a thinner glycocalyx. We generated reference values for PBR in healthy adolescents. These values were not different in former ELBW children. Despite some correlations of PBR with other microvascular biomarkers, these are not strong enough to describe endothelial integrity and its covariates in former ELBW children.
Collapse
|
44
|
Ruden DM, Wang K, Wang K, Perera BPU, Lee Petroff R. Editorial: Long-term toxicity and epigenetic effects of environmental exposures. Front Genet 2022; 13:1044589. [PMID: 36246632 PMCID: PMC9562261 DOI: 10.3389/fgene.2022.1044589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Douglas M. Ruden
- Institute of Environmental Health Sciences, C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- *Correspondence: Douglas M. Ruden,
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Kangxu Wang
- Department of Animal Science, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Bambarendage P. U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Rebekah Lee Petroff
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
45
|
Hua L, Chen W, Meng Y, Qin M, Yan Z, Yang R, Liu Q, Wei Y, Zhao Y, Yan L, Qiao J. The combination of DNA methylome and transcriptome revealed the intergenerational inheritance on the influence of advanced maternal age. Clin Transl Med 2022; 12:e990. [PMID: 36103411 PMCID: PMC9473489 DOI: 10.1002/ctm2.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The number of women delivering at advanced maternal age (AMA; > = 35) continuously increases in developed and high-income countries. Large cohort studies have associated AMA with increased risks of various pregnancy complications and adverse pregnancy outcomes, which raises great concerns about the adverse effect of AMA on the long-term health of offspring. Specific acquired characteristics of parents can be passed on to descendants through certain molecular mechanisms, yet the underlying connection between AMA-related alterations in parents and that in offspring remains largely uncharted. METHODS We profiled the DNA methylomes of paired parental peripheral bloods and cord bloods from 20 nuclear families, including 10 AMA and 10 Young, and additional transcriptomes of 10 paired maternal peripheral bloods and cord bloods. RESULTS We revealed that AMA induced aging-like changes in DNA methylome and gene expression in both parents and offspring. The expression changes in several genes, such as SLC28A3, were highly relevant to the disorder in DNA methylation. In addition, AMA-related differentially methylated regions (DMRs) identified in mother and offspring groups showed remarkable similarities in both genomic locations and biological functions, mainly involving neuron differentiation, metabolism, and histone modification pathways. AMA-related differentially expressed genes (DEGs) shared by mother and offspring groups were highly enriched in the processes of immune cell activation and mitotic nuclear division. We further uncovered developmental-dependent dynamics for the DNA methylation of intergenerationally correlated DMRs during pre-implantation embryonic development, as well as diverse gene expression patterns during gametogenesis and early embryonic development for those common AMA-related DEGs presenting intergenerational correlation, such as CD24. Moreover, some intergenerational DEGs, typified by HTRA3, also showed the same significant alterations in AMA MII oocyte or blastocyst. CONCLUSIONS Our results reveal potential intergenerational inheritance of both AMA-related DNA methylome and transcriptome and provide new insights to understand health problems in AMA offspring.
Collapse
Affiliation(s)
- Lingyue Hua
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Wei Chen
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Yan Meng
- Department of Obstetrics and GynecologyBeijing Jishuitan Hospital, Fourth Clinical College of Peking UniversityBeijingChina
| | - Meng Qin
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Zhiqiang Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Rui Yang
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Qiang Liu
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Yuan Wei
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Center for Healthcare Quality Management in ObstetricsBeijingChina
| | - Yangyu Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Center for Healthcare Quality Management in ObstetricsBeijingChina
| | - Liying Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
| | - Jie Qiao
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
- Key Laboratory of Assisted Reproduction, Peking UniversityMinistry of EducationBeijingChina
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
- Beijing Advanced Innovation Center for GenomicsBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
46
|
Lizé M, Monfort C, Rouget F, Limon G, Durand G, Tillaut H, Chevrier C. Prenatal exposure to organophosphate pesticides and autism spectrum disorders in 11-year-old children in the French PELAGIE cohort. ENVIRONMENTAL RESEARCH 2022; 212:113348. [PMID: 35500857 DOI: 10.1016/j.envres.2022.113348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Organophosphate (OP) pesticides act by inhibiting acetylcholinesterase activity at synaptic junctions and have already been linked with deleterious effects on neurodevelopment, including autism spectrum disorders (ASD). OBJECTIVES To investigate the association of prenatal exposure to OP pesticides with traits related to ASD in 11-year-old children. METHODS The "Childhood Autism Spectrum Test" (CAST) parent questionnaire was used to screen for autistic traits in 792 children from the French PELAGIE cohort. Prenatal maternal urine samples were collected <19 weeks of gestation in which metabolites of organophosphate insecticides were assessed for 185 of them. Negative binomial regression models were performed to explore the association between the CAST score and 8 groups of urine components, adjusted for potential ASD risk factors. RESULTS In these urine samples, dialkylphosphates (DAP) were detected most often (>80%), terbufos and its metabolites least often (<10%). No association with ASD was found for DAP, terbufos or its metabolites. Incidence rate ratios (IRRs) increased with maternal urinary diazinon concentrations, from 1.11 (95% CI: 0.87-1.42) to 1.17 (95% CI: 0.94-1.46). Higher CAST scores were statistically significantly associated with the maternal urine samples in which chlorpyrifos or two of its metabolites (chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol) were detected. The IRR for exposure to chlorpyrifos or chlorpyrifos-oxon was 1.27 (95%CI: 1.05-1.52) among all children, and 1.39 (95%CI: 1.07-1.82) among boys. CONCLUSION These findings suggest an increase in autistic traits among 11-year-old children in association with prenatal maternal exposure to chlorpyrifos and possibly diazinon. These associations were previously suspected in the literature, in particular for chlorpyrifos. Further work establishing the causal mechanisms behind these risk association is needed.
Collapse
Affiliation(s)
- Mathilde Lizé
- Université Rennes 1, CHU Rennes, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Christine Monfort
- Université Rennes 1, CHU Rennes, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Florence Rouget
- CHU Rennes, Université Rennes 1, Inserm, EHESP, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France.
| | - Gwendolina Limon
- LABOCEA (Laboratoire public Conseil, Expertise et Analyse in Brittany), F-29280, Plouzané, France.
| | - Gaël Durand
- LABOCEA (Laboratoire public Conseil, Expertise et Analyse in Brittany), F-29280, Plouzané, France.
| | - Hélène Tillaut
- Université Rennes 1, Inserm, EHESP, Irset (institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Cécile Chevrier
- Université Rennes 1, Inserm, EHESP, Irset (institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
47
|
Hsu CN, Yu HR, Chan JYH, Lee WC, Wu KLH, Hou CY, Chang-Chien GP, Lin S, Tain YL. Maternal Acetate Supplementation Reverses Blood Pressure Increase in Male Offspring Induced by Exposure to Minocycline during Pregnancy and Lactation. Int J Mol Sci 2022; 23:ijms23147924. [PMID: 35887270 PMCID: PMC9319590 DOI: 10.3390/ijms23147924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring’s gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
48
|
Harding JE, Rajay AB, Alsweiler JM, Brown G, Crowther CA, Franke N, Gamble G, McKinlay C, Milne B, Rogers J, Wouldes T. Different Approaches to requesting Consent for Routine data linkage in Neonatal follow-up (ACORN): protocol for a 2×2 factorial randomised trial. BMJ Open 2022; 12:e060476. [PMID: 35831046 PMCID: PMC9280877 DOI: 10.1136/bmjopen-2021-060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Routinely collected data can be linked to research data to create a rich dataset and inform practice. However, consent is normally required to link identifiable data. Reported rates of consent to data linkage for children ranged from 21% to 96%, but no studies have investigated different approaches to seeking consent for data linkage for school-age children. METHODS AND ANALYSIS The Approaches to Consent for Routine Data Linkage in Neonatal Follow-up (ACORN) trial is a 2×2 factorial randomised trial to assess whether, for children who participated in neonatal randomised trials (pre-hypoglycaemia Prevention with Oral Dextrose Gel (hPOD), hPOD and The Impact of Protein Intravenous Nutrition on Development in Extremely Low Birth Weight Babies (ProVIDe)) and are approached to participate in an in-person assessment at 6-7 years of age, parental consent to data linkage is higher if consent is sought (1) after the in-person assessment (delayed) or concurrently and (2) for health and education data combined or separately. The primary outcomes will be rates of consent to linkage of (1) either health or education data and (2) both health and education data. A pilot study indicates the potentially available cohort size of 2110 (80% follow-up of the neonatal trial cohorts) would be adequate to detect an absolute difference of 6%-5%-4% from a baseline consent rate of 70%-85%-90%, respectively (2-tailed alpha 0.05, 90% power). With at least 1136 participants, the ACORN trial would have 90% power to detect an absolute difference of 5% in the primary outcome for each factor, assuming a consent rate of 90% in the control groups and alpha 0.05. Data are categorical and will be presented as number and per cent. The effects of factors will be tested using generalised linear models and presented as ORs and 95% CIs. ETHICS AND DISSEMINATION Ethics approval by the New Zealand Health and Disability Ethics Committee (19/STH/202). Dissemination will be via peer-reviewed publications, scientific meetings, educational sessions and public fora. TRIAL REGISTRATION NUMBER ACTRN12621000571875 (Australian New Zealand Clinical Trials Registry).
Collapse
Affiliation(s)
- Jane E Harding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Jane Marie Alsweiler
- Department of Paediatrics Child and Youth Health, The University of Auckland, Auckland, New Zealand
| | - Gavin Brown
- Faculty of Education and Social Work, The University of Auckland, Auckland, New Zealand
| | | | - Nike Franke
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Greg Gamble
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher McKinlay
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Paediatrics Child and Youth Health, The University of Auckland, Auckland, New Zealand
| | - Barry Milne
- Centre of Methods and Policy Application in the Social Sciences, The University of Auckland, Auckland, New Zealand
| | - Jenny Rogers
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Trecia Wouldes
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Long-lasting beneficial effects of maternal intake of sulforaphane glucosinolate on gut microbiota in adult offspring. J Nutr Biochem 2022; 109:109098. [PMID: 35788394 DOI: 10.1016/j.jnutbio.2022.109098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Mounting evidence suggests the impact of maternal diet on the health of offspring. We reported that maternal diet of sulforaphane glucosinolate (SGS) could prevent behavioral abnormalities in offspring after maternal immune activation. The present study was designed to investigate whether the dietary intake of SGS during pregnancy and lactation influences the composition of gut microbiota in the offspring. The dietary intake of SGS during pregnancy and lactation caused significant changes in the α-diversity and β-diversity of gut microbiota in 3-week-old offspring (SGS-3W group) and 10-week-old offspring (SGS-10W group). The LEfSe algorithm identified several microbes as important phylotypes in the SGS-3W or SGS-10W groups. Predictive functional metagenomes showed that the maternal intake of SGS caused several KEGG pathways alterations with respect to the genetic information processing and metabolism. Furthermore, the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SGS-10W group after the injection of lipopolysaccharide (LPS: 0.5 mg/kg) were significantly lower than those of the CON-10W group. It is noteworthy that there were positive correlations between the relative abundance of the genus Blautia and IL-6 (or TNF-α) in adult offspring. Moreover, there were sex differences of gut microbiota composition in offspring. In conclusion, these data suggest that the dietary intake of SGS during pregnancy and lactation might produce long-lasting beneficial effects in adult offspring through the persistent modulation of gut microbiota. It is likely that the modulation of gut microbiota by maternal nutrition may confer resilience versus vulnerability to stress-related psychiatric disorders in the offspring.
Collapse
|
50
|
Ibrahim KG, Adeshina KA, Bello MB, Malami I, Abubakar B, Abubakar MB, Imam MU. Prophylactic Use of Natural Products against Developmentally Programmed Metabolic Syndrome. PLANTA MEDICA 2022; 88:650-663. [PMID: 34000739 DOI: 10.1055/a-1482-2343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parental dietary choices and/or nutritional interventions in the offspring are critical to early life development, especially during the periods of active developmental plasticity in the offspring. Exposure to a high-fructose, high-fat diet during the fetal or neonatal period predisposes the affected individuals to the development of one or more features of metabolic syndrome, such as dyslipidemia, insulin resistance, diabetes, and associated cardiovascular diseases, later in their life. Owing to the increasing global prevalence of metabolic syndrome and multiple side effects that accompany conventional medicines, much attention is directed towards medicinal plants and phytochemicals as alternative interventions. Several studies have investigated the potential of natural agents to prevent programmed metabolic syndrome. This present review, therefore, highlights an inextricable relationship between the administration of medicinal plants or phytochemicals during the intrauterine or neonatal period, and the prevention of metabolic dysfunction in adulthood, while exploring the mechanisms by which they exert such an effect. The review also identifies plant products as a novel approach to the prevention and management of metabolic syndrome.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|