1
|
Auer F, Guttman A. Effect of the operational parameters on the electromigration of proteins in sodium dodecyl sulfate capillary gel electrophoresis in the presence of propidium iodide fluorescent dye. Talanta 2025; 287:127601. [PMID: 39827481 DOI: 10.1016/j.talanta.2025.127601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Sodium dodecyl sulfate capillary gel electrophoresis (SDS-CGE) is a frequently used analytical technique in size-based separation of proteins, playing a vital role in the biopharmaceutical industry for the analysis and characterization of therapeutic proteins, employing both UV and fluorescent detection. Understanding the effect of the operational parameters using easily applicable in migratio fluorescent labeling is increasingly critical, especially because multicapillary electrophoresis systems with fluorescent detection have recently gained prominence in high-throughput biopolymer analysis. In this study, the effects of the three most important user-adjustable operational parameters (temperature, gel concentration, and electric field strength) were investigated on the electrophoretic mobility and resolution of SDS-protein complexes in the presence of propidium iodide in the gel-buffer system. In the separation temperature study, the Arrhenius equation was applied to calculate the required activation energy for the electromigration through the propidium iodide-containing separation matrix for the sample proteins. With increasing gel concentration, the presence of the fluorophore in the gel-buffer system resulted in linear Ferguson plots, suggesting more predictable and consistent sieving behavior, in contrast to the non-linear plots observed earlier without the addition of the fluorescent dye. Finally, increase in the applied electric field resulted in elevated electrophoretic mobilities, both in the presence and absence of propidium ions in the sieving matrix. The resolution between the consecutively migrating SDS-protein complexes, on the other hand, decreased above 500 V/cm, probably due to conformation changes caused by the high field strengths. Our results underline the importance of optimizing these key parameters in SDS-CGE with propidium-mediated LIF detection to obtain rapid and high-resolution separation of complex protein samples including biopharmaceuticals.
Collapse
Affiliation(s)
- Felicia Auer
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary.
| |
Collapse
|
2
|
Auer F, Guttman A. In Migratio Noncovalent Fluorophore Labeling of Proteins by Propidium Iodide in Sodium Dodecyl Sulfate Capillary Gel Electrophoresis. Anal Chem 2024; 96:10969-10977. [PMID: 38938066 DOI: 10.1021/acs.analchem.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sodium dodecyl sulfate capillary gel electrophoresis is one of the frequently used methods for size-based protein separation in molecular biology laboratories and the biopharmaceutical industry. To increase throughput, quite a few multicapillary electrophoresis systems have been recently developed, but most of them only support fluorescence detection, requiring fluorophore labeling of the sample proteins. To avoid the time-consuming derivatization reaction, we developed an on-column labeling approach utilizing propidium iodide for the first time in SDS-CGE of proteins, a dye only used before for nucleic acid analysis. As a key ingredient of the gel-buffer system, the oppositely migrating positively charged propidium ligand in migratio complexes with the SDS-proteins, therefore, supports in situ labeling during the electrophoretic separation process, not requiring any extra pre- or postcolumn derivatization step. A theoretical treatment is given to shed light on the basic principles of this novel online labeling process, also addressing the influence of propidium iodide on the electroosmotic flow, resulting in reduced retardation. The concept of propidium labeling in SDS-CGE was first demonstrated using a commercially available protein sizing ladder ranging from 6.5 to 200 kDa with different isoelectric points and post-translational modifications. Considering the increasing number of protein therapeutics on the market next, we focused on the labeling optimization of a therapeutic monoclonal antibody and its subunits, including the addition of the nonglycosylated heavy chain. Peak efficiency and resolution were compared between noncovalent and covalent labeling. The effect of ligand concentration on the effective and apparent electrophoretic mobility, the resulting peak area, and the resolution were all evaluated in view of the theoretical considerations. The best detection sensitivity for the intact monoclonal antibody was obtained by using 200 μg/mL propidium iodide in the separation medium (LOD 2 μg/mL, 1.35 × 10-8 M) with excellent detection linearity over 3 orders of magnitude. On the other hand, the resolution between the biopharmaceutical protein test mixture components containing the intact and subunit fragments of the therapeutic monoclonal antibody was very good in the ligand concentration range of 50-200 μg/mL, but using the local maximum at 100 μg/mL for the nonglycosylated/glycosylated heavy chain pair is recommended. The figures of merit, including precision, sensitivity, detection linear range, and resolution for a sample mixture in hand, can be optimized by varying the propidium iodide concentration in the gel-buffer system, as demonstrated in this paper.
Collapse
Affiliation(s)
- Felicia Auer
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem 8200, Hungary
| | - Andras Guttman
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem 8200, Hungary
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
3
|
Ko SH, Park PJ, Han J. Continuous-flow macromolecular sieving in slanted nanofilter array: stochastic model and coupling effect of electrostatic and steric hindrance. LAB ON A CHIP 2023; 23:4422-4433. [PMID: 37655439 DOI: 10.1039/d3lc00405h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microfabricated slanted nanofilter arrays are a promising technology for integrated biomolecule analysis systems such as online monitoring and point-of-care quality validation, due to their continuous-flow and one-step operation capability. However, an incomplete understanding of the system limits the performance and wider applications of slanted nanofilter arrays. In this paper, we present rigorous theoretical and experimental studies on macromolecule sieving in a slanted nanofilter array. From both stochastic and kinetic models, an explicit theoretical solution describing size-dependent molecule sieving was derived, which was validated using experimental sieving results obtained for various sieving conditions. Our results not only detail the relationship between sieving conditions and sieving efficiency but also demonstrate that sieving is affected by multiple hindrance effects (electrostatic hindrance), not steric hindrance alone. There is an optimal sieving condition for achieving the greatest separation efficiency for DNAs of a certain size range. Small DNA has great size selectivity in small nanofilters and in weak electric fields, whereas large DNA is present in large nanofilters and in strong electric fields. This study provides insights into designing a slanted nanofilter array for particular target applications and understanding the sieving principles in the nanofilter array.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Pyeong Jun Park
- School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju, Chungcheongbuk-do, 27469, Republic of Korea.
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- BioSystsinems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, 138602, Singapore
| |
Collapse
|
4
|
Ward CL, Cornejo MA, Peli Thanthri SH, Linz TH. A review of electrophoretic separations in temperature-responsive Pluronic thermal gels. Anal Chim Acta 2023; 1276:341613. [PMID: 37573098 DOI: 10.1016/j.aca.2023.341613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
Gel electrophoresis is a ubiquitous bioanalytical technique used in research laboratories to validate protein and nucleic acid samples. Polyacrylamide and agarose have been the gold standard gel materials for decades, but an alternative class of polymer has emerged with potentially superior performance. Pluronic thermal gels are water-soluble polymers that possess the unique ability to undergo a change in viscosity in response to changing temperature. Thermal gels can reversibly convert between low-viscosity liquids and high-viscosity solid gels using temperature as an adjustable parameter. The properties of thermal gels provide unmatched flexibility as a dynamic separations matrix to measure analytes ranging from small molecules to cells. This review article describes the physical and chemical properties of Pluronic thermal gels to provide a fundamental overview of polymer behavior. The performance of thermal gels is then reviewed to highlight their applications as a gel matrix for electrokinetic separations in capillary, microfluidic, and slab gel formats. The use of dynamic temperature-responsive gels in bioanalytical separations is an underexplored area of research but one that holds exciting potential to achieve performance unattainable with conventional static polymers.
Collapse
Affiliation(s)
- Cassandra L Ward
- Department of Chemistry, Wayne State University, Detroit, MI, USA; Lumigen Instrument Center, Wayne State University, Detroit, MI, USA.
| | - Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Thomas H Linz
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Walther C, Voigtmann M, Bruna E, Abusnina A, Tscheließnig AL, Allmer M, Schuchnigg H, Brocard C, Föttinger-Vacha A, Klima G. Smart Process Development: Application of machine-learning and integrated process modeling for inclusion body purification processes. Biotechnol Prog 2022; 38:e3249. [PMID: 35247040 DOI: 10.1002/btpr.3249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
The development of a biopharmaceutical production process usually occurs sequentially, and tedious optimization of each individual unit operation is very time consuming. Here, the conditions established as optimal for one step serve as input for the following step. Yet, this strategy does not consider potential interactions between a priori distant process steps and therefore cannot guarantee for optimal overall process performance. To overcome these limitations, we established a SMART approach to develop and utilize integrated process models using machine learning techniques and genetic algorithms. We evaluated the application of the data-driven models to explore potential efficiency increases and compared them to a conventional development approach for one of our development products. First, we developed a data-driven integrated process model using Gradient Boosting Machines and Gaussian Processes as machine learning techniques and a genetic algorithm as recommendation engine for two downstream unit operations, namely solubilization and refolding. Through projection of the results into our large-scale facility, we predicted a two-fold increase in productivity. Second, we extended the model to a three-step model by including the capture chromatography. Here, depending on the selected baseline-process chosen for comparison, we obtained between 50 and 100% increase in productivity. These data show the successful application of machine learning techniques and optimization algorithms for downstream process development. Finally, our results highlight the importance of considering integrated process models for the whole process chain, including all unit operations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Georg Klima
- Boehringer-Ingelheim RCV GmbH & CoKG, Wien, Austria
| |
Collapse
|
6
|
Zagst H, Elgert C, Behrends S, Wätzig H. Combination of strong anion exchange liquid chromatography with microchip capillary electrophoresis sodium dodecyl sulfate for rapid two-dimensional separations of complex protein mixtures. Anal Bioanal Chem 2022; 414:1699-1712. [PMID: 34870722 PMCID: PMC8761713 DOI: 10.1007/s00216-021-03797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022]
Abstract
Two-dimensional separations provide a simple way to increase the resolution and peak capacity of complex protein separations. The feasibility of a recently developed instrumental approach for two-dimensional separations of proteins was evaluated. The approach is based on the general principle of two-dimensional gel electrophoresis. In the first dimension, semi-preparative strong anion exchange high-performance liquid chromatography is utilized and fractions are collected by means of a fraction collector. They are subsequently analyzed in the second dimension with microchip capillary electrophoresis sodium dodecyl sulfate. Microchip capillary electrophoresis provides the necessary speed (approximately 1 min/fraction) for short analysis. In this study, three different samples were investigated. Different constructs of soluble guanylyl cyclase were expressed in Sf9-cells using the baculovirus expression system. Cell lysates were analyzed and the resulting separations were compared. In our experimental setup, the soluble guanylyl cyclase was identified among hundreds of other proteins in these cell lysates, indicating its potential for screening, process control, or analysis. The results were validated by immunoblotting. Samples from Chinese hamster ovary cell culture before and after a purification step were investigated and approximately 9% less impurities could be observed. The separation patterns obtained for human plasma are closely similar to patterns obtained with two-dimensional gel electrophoresis and a total of 218 peaks could be observed. Overall, the approach was well applicable to all samples and, based on these results, further directions for improvements were identified. .
Collapse
Affiliation(s)
- Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Christin Elgert
- Technische Universität Braunschweig, Institute of Pharmacology, Toxicology and Clinical Pharmacy, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Sönke Behrends
- Technische Universität Braunschweig, Institute of Pharmacology, Toxicology and Clinical Pharmacy, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, 38106, Braunschweig, Germany.
| |
Collapse
|
7
|
Price CA, Jospin G, Brownell K, Eisen JA, Laraia B, Epel ES. Differences in gut microbiome by insulin sensitivity status in Black and White women of the National Growth and Health Study (NGHS): A pilot study. PLoS One 2022; 17:e0259889. [PMID: 35045086 PMCID: PMC8769296 DOI: 10.1371/journal.pone.0259889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of overweight and obesity is greatest amongst Black women in the U.S., contributing to disproportionately higher type 2 diabetes prevalence compared to White women. Insulin resistance, independent of body mass index, tends to be greater in Black compared to White women, yet the mechanisms to explain these differences are not completely understood. The gut microbiome is implicated in the pathophysiology of obesity, insulin resistance and cardiometabolic disease. Only two studies have examined race differences in Black and White women, however none characterizing the gut microbiome based on insulin sensitivity by race and sex. Our objective was to determine if gut microbiome profiles differ between Black and White women and if so, determine if these race differences persisted when accounting for insulin sensitivity status. In a pilot cross-sectional analysis, we measured the relative abundance of bacteria in fecal samples collected from a subset of 168 Black (n = 94) and White (n = 74) women of the National Growth and Health Study (NGHS). We conducted analyses by self-identified race and by race plus insulin sensitivity status (e.g. insulin sensitive versus insulin resistant as determined by HOMA-IR). A greater proportion of Black women were classified as IR (50%) compared to White women (30%). Alpha diversity did not differ by race nor by race and insulin sensitivity status. Beta diversity at the family level was significantly different by race (p = 0.033) and by the combination of race plus insulin sensitivity (p = 0.038). Black women, regardless of insulin sensitivity, had a greater relative abundance of the phylum Actinobacteria (p = 0.003), compared to White women. There was an interaction between race and insulin sensitivity for Verrucomicrobia (p = 0.008), where among those with insulin resistance, Black women had four fold higher abundance than White women. At the family level, we observed significant interactions between race and insulin sensitivity for Lachnospiraceae (p = 0.007) and Clostridiales Family XIII (p = 0.01). Our findings suggest that the gut microbiome, particularly lower beta diversity and greater Actinobacteria, one of the most abundant species, may play an important role in driving cardiometabolic health disparities of Black women, indicating an influence of social and environmental factors on the gut microbiome.
Collapse
Affiliation(s)
- Candice A. Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Guillaume Jospin
- Genome Center, University of California Davis, Davis, CA, United States of America
| | - Kristy Brownell
- Center for Obesity Assessment, Study and Treatment, University of California, San Francisco, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California Davis, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Barbara Laraia
- Center for Obesity Assessment, Study and Treatment, University of California, San Francisco, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco, CA, United States of America
| |
Collapse
|
8
|
Pursuing High-Resolution Structures of Nicotinic Acetylcholine Receptors: Lessons Learned from Five Decades. Molecules 2021; 26:molecules26195753. [PMID: 34641297 PMCID: PMC8510392 DOI: 10.3390/molecules26195753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Since their discovery, nicotinic acetylcholine receptors (nAChRs) have been extensively studied to understand their function, as well as the consequence of alterations leading to disease states. Importantly, these receptors represent pharmacological targets to treat a number of neurological and neurodegenerative disorders. Nevertheless, their therapeutic value has been limited by the absence of high-resolution structures that allow for the design of more specific and effective drugs. This article offers a comprehensive review of five decades of research pursuing high-resolution structures of nAChRs. We provide a historical perspective, from initial structural studies to the most recent X-ray and cryogenic electron microscopy (Cryo-EM) nAChR structures. We also discuss the most relevant structural features that emerged from these studies, as well as perspectives in the field.
Collapse
|
9
|
Maldonado-Hernández R, Quesada O, Colón-Sáez JO, Lasalde-Dominicci JA. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies. Anal Biochem 2020; 610:113887. [PMID: 32763308 DOI: 10.1016/j.ab.2020.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of β-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-β-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-β-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.
Collapse
Affiliation(s)
- Rafael Maldonado-Hernández
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - José O Colón-Sáez
- Pharmaceutical Sciences, University of Puerto Rico Medical Science Campus, Puerto Rico
| | - José A Lasalde-Dominicci
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Puerto Rico.
| |
Collapse
|
10
|
Zrehen A, Ohayon S, Huttner D, Meller A. On-chip protein separation with single-molecule resolution. Sci Rep 2020; 10:15313. [PMID: 32943759 PMCID: PMC7498591 DOI: 10.1038/s41598-020-72463-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
Accurate identification of both abundant and rare proteins hinges on the development of single-protein sensing methods. Given the immense variation in protein expression levels in a cell, separation of proteins by weight would improve protein classification strategies. Upstream separation facilitates sample binning into smaller groups while also preventing sensor overflow, as may be caused by highly abundant proteins in cell lysates or clinical samples. Here, we scale a bulk analysis method for protein separation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), to the single-molecule level using single-photon sensitive widefield imaging. Single-molecule sensing of the electrokinetically moving proteins is achieved by in situ polymerization of the PAGE in a low-profile fluidic channel having a depth of only ~ 0.6 µm. The polyacrylamide gel restricts the Brownian kinetics of the proteins, while the low-profile channel ensures that they remain in focus during imaging, allowing video-rate monitoring of single-protein migration. Calibration of the device involves separating a set of Atto647N-covalently labeled recombinant proteins in the size range of 14-70 kDa, yielding an exponential dependence of the proteins' molecular weights on the measured mobilities, as expected. Subsequently, we demonstrate the ability of our fluidic device to separate and image thousands of proteins directly extracted from a human cancer cell line. Using single-particle image analysis methods, we created detailed profiles of the separation kinetics of lysine and cysteine -labeled proteins. Downstream coupling of the device to single-protein identification sensors may provide superior protein classification and improve our ability to analyze complex biological and medical protein samples.
Collapse
Affiliation(s)
- Adam Zrehen
- Technion Israel Institute of Technology, Haifa, Israel
| | - Shilo Ohayon
- Technion Israel Institute of Technology, Haifa, Israel
| | - Diana Huttner
- Technion Israel Institute of Technology, Haifa, Israel
| | - Amit Meller
- Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
11
|
Wang D, Nowak C, Mason B, Katiyar A, Liu H. Analytical artifacts in characterization of recombinant monoclonal antibody therapeutics. J Pharm Biomed Anal 2020; 183:113131. [DOI: 10.1016/j.jpba.2020.113131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/12/2023]
|
12
|
Ouimet CM, D'Amico CI, Kennedy RT. Droplet sample introduction to microchip gel and zone electrophoresis for rapid analysis of protein-protein complexes and enzymatic reactions. Anal Bioanal Chem 2019; 411:6155-6163. [PMID: 31300857 DOI: 10.1007/s00216-019-02006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
Abstract
Electrophoresis has demonstrated utility as tool for screening of small molecule modulators of protein-protein interactions and enzyme targets. Screening of large chemical libraries requires high-throughput separations. Such fast separation can be accessed by microchip electrophoresis. Here, microchip gel electrophoresis separations of proteins are achieved in 2.6 s with 1200 V/cm and 3-mm separation lengths. However, such fast separations can still suffer from limited overall throughput from sample introduction constraints. Automated introduction of microfluidic droplets has been demonstrated to overcome this limitation. Most devices for coupling microfluidic droplets to microchip electrophoresis are only compatible with free-solution separations. Here, we present a device that is compatible with coupling droplets to gel and free-solution electrophoresis. In this device, automated sample introduction is based on a novel mechanism of carrier phase separation using the difference in density of the carrier phase and the running buffer. This device is demonstrated for microchip gel electrophoresis and free-solution electrophoresis separations of protein-protein interaction and enzyme samples, respectively. Throughputs of about 10 s per sample are achieved and over 1000 separations are demonstrated without reconditioning of the device. Graphical abstract.
Collapse
Affiliation(s)
- Claire M Ouimet
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA
| | - Cara I D'Amico
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5632, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA. .,Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
13
|
Reardon HT, Herbst RA, Henry CL, Herbst DM, Ngo N, Cisar JS, Weber OD, Niphakis MJ, O’Neill GP. Quantification of In Vivo Target Engagement Using Microfluidic Activity-Based Protein Profiling. SLAS Technol 2019; 24:489-498. [DOI: 10.1177/2472630319852303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accurate measurement of drug–target interactions in vivo is critical for both preclinical development and translation to clinical studies, yet many assays rely on indirect measures such as biomarkers associated with target activity. Activity-based protein profiling (ABPP) is a direct method of quantifying enzyme activity using active site-targeted small-molecule covalent probes that selectively label active but not inhibitor-bound enzymes. Probe-labeled enzymes in complex proteomes are separated by polyacrylamide gel electrophoresis and quantified by fluorescence imaging. To accelerate workflows and avoid imaging artifacts that make conventional gels challenging to quantify, we adapted protocols for a commercial LabChip GXII microfluidic instrument to permit electrophoretic separation of probe-labeled proteins in tissue lysates and plasma, and quantification of fluorescence (probe/protein labeling ratio of 1:1). Electrophoretic separation on chips occurred in 40 s per sample, and instrument software automatically identified and quantified peaks, resulting in an overall time savings of 3–5 h per 96-well sample plate. Calculated percent inhibition was not significantly different between the two formats. Chip performance was consistent between chips and sample replicates. Conventional gel imaging was more sensitive but required five times higher sample volume than microfluidic chips. Microfluidic chips produced results comparable to those of gels but with much lower sample consumption, facilitating assay miniaturization for scarce biological samples. The time savings afforded by microfluidic electrophoresis and automatic quantification has allowed us to incorporate microfluidic ABPP early in the drug discovery workflow, enabling routine assessments of tissue distribution and engagement of targets and off-targets in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Nhi Ngo
- Abide Therapeutics, San Diego, CA, USA
| | - Justin S. Cisar
- Abide Therapeutics, San Diego, CA, USA
- Janssen Research & Development, Spring House, PA
| | | | | | | |
Collapse
|
14
|
Meyer S, Clarke C, dos Santos RO, Bishop D, Krieger MA, Blanes L. Developing self-generated calibration curves using a capillary-driven wax-polyester lab on a chip device and thermal gates. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Kecskemeti A, Gaspar A. Particle-based immobilized enzymatic reactors in microfluidic chips. Talanta 2018; 180:211-228. [DOI: 10.1016/j.talanta.2017.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
16
|
Neugrodda C, Gastl M, Becker T. Protein Profile Characterization of Hop (Humulus LupulusL.) Varieties. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2014-0629-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Christoph Neugrodda
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Martina Gastl
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Thomas Becker
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
17
|
Engel NY, Weiss VU, Wenz C, Glück S, Rüfer A, Kratzmeier M, Marchetti-Deschmann M, Allmaier G. Microchip capillary gel electrophoresis combined with lectin affinity enrichment employing magnetic beads for glycoprotein analysis. Anal Bioanal Chem 2017; 409:6625-6634. [PMID: 28932887 PMCID: PMC5670189 DOI: 10.1007/s00216-017-0615-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 01/30/2023]
Abstract
Due to the constant search for reliable methods to investigate glycoproteins in complex biological samples, an alternative approach combining affinity enrichment with rapid and sensitive analysis on-a-chip is presented. Glycoproteins were specifically captured by lectin-coated magnetic beads, eluted by competitive sugars, and investigated with microchip capillary gel electrophoresis (MCGE), i.e., CGE-on-a-chip. We compared our results to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) data, which turned out to be in very good agreement. While SDS-PAGE offers the possibility of subsequent mass spectrometric analysis of captured and separated analytes, MCGE scores with time savings, higher throughput, and lower sample consumption as well as quality control (QC) and process analytical technology (PAT) applicability. Due to these advantages, a lectin-based glycoprotein capture protocol can easily be optimized. In our case, two different types of magnetic beads were tested and compared regarding lectin binding. The selectivity of our strategy was demonstrated with a set of model glycoproteins, as well as with human serum and serum depleted from high-abundance proteins. The specificity of the capturing method was investigated revealing to a certain degree an unspecific binding between each sample and the beads themselves, which has to be considered for any specific enrichment and data interpretation. In addition, two glycoproteins from Trichoderma atroviride, a fungus with mycoparasitic activity and only barely studied glycoproteome, were enriched by means of a lectin and so identified for the first time. Glycoproteins from biological samples were detected by microchip capillary gel electrophoresis after lectin affinity enrichment using magnetic beads and elution with respective competitive monosaccharides ![]()
Collapse
Affiliation(s)
- Nicole Y Engel
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, 1060, Vienna, Austria
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, 1060, Vienna, Austria
| | - Christian Wenz
- Agilent Technologies, Hewlett-Packard-Straße 8, 76337, Waldbronn, Germany
| | - Susanne Glück
- Agilent Technologies, Hewlett-Packard-Straße 8, 76337, Waldbronn, Germany
| | - Andreas Rüfer
- Agilent Technologies, Hewlett-Packard-Straße 8, 76337, Waldbronn, Germany
| | - Martin Kratzmeier
- Agilent Technologies, Hewlett-Packard-Straße 8, 76337, Waldbronn, Germany
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, 1060, Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, 1060, Vienna, Austria.
| |
Collapse
|
18
|
Abdel-Sayed P, Yamauchi KA, Gerver RE, Herr AE. Fabrication of an Open Microfluidic Device for Immunoblotting. Anal Chem 2017; 89:9643-9648. [PMID: 28825964 DOI: 10.1021/acs.analchem.7b02406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Given the wide adoption of polydimethylsiloxane (PDMS) for the rapid fabrication of microfluidic networks and the utility of polyacrylamide gel electrophoresis (PAGE), we develop a technique for fabrication of PAGE molecular sieving gels in PDMS microchannel networks. In developing the fabrication protocol, we trade-off constraints on materials properties of these two polymer materials: PDMS is permeable to O2 and the presence of O2 inhibits the polymerization of polyacrylamide. We present a fabrication method compatible with performing PAGE protein separations in a composite PDMS-glass microdevice, that toggles from an "enclosed" microchannel for PAGE and blotting to an "open" PA gel lane for immunoprobing and readout. To overcome the inhibitory effects of O2, we coat the PDMS channel with a 10% benzophenone solution, which quenches the inhibiting effect of O2 when exposed to UV, resulting in a PAGE-in-PDMS device. We then characterize the PAGE separation performance. Using a ladder of small-to-mid mass proteins (Trypsin Inhibitor (TI); Ovalbumin (OVA); Bovine Serum Albumin (BSA)), we observe resolution of the markers in <60 s, with separation resolution exceeding 1.0 and CVs of 8.4% for BSA-OVA and 2.4% for OVA-TI, with comparable reproducibility to glass microdevice PAGE. We show that benzophenone groups incorporated into the gel through methacrylamide can be UV-activated multiple times to photocapture protein. PDMS microchannel network is reversibly bonded to a glass slide allowing direct access to separated proteins and subsequent in situ diffusion-driven immunoprobing and total protein Sypro red staining. We see this PAGE-in-PDMS fabrication technique as expanding the application and use of microfluidic PAGE without the need for a glass microfabrication infrastructure.
Collapse
Affiliation(s)
- Philippe Abdel-Sayed
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Kevin A Yamauchi
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Rachel E Gerver
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
19
|
Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Ko SH, Chandra D, Ouyang W, Kwon T, Karande P, Han J. Nanofluidic device for continuous multiparameter quality assurance of biologics. NATURE NANOTECHNOLOGY 2017; 12:804-812. [PMID: 28530715 DOI: 10.1038/nnano.2017.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Process analytical technology (PAT) is critical for the manufacture of high-quality biologics as it enables continuous, real-time and on-line/at-line monitoring during biomanufacturing processes. The conventional analytical tools currently used have many restrictions to realizing the PAT of current and future biomanufacturing. Here we describe a nanofluidic device for the continuous monitoring of biologics' purity and bioactivity with high sensitivity, resolution and speed. Periodic and angled nanofilter arrays served as the molecular sieve structures to conduct a continuous size-based analysis of biologics. A multiparameter quality monitoring of three separate commercial biologic samples within 50 minutes has been demonstrated, with 20 µl of sample consumption, inclusive of dead volume in the reservoirs. Additionally, a proof-of-concept prototype system, which integrates an on-line sample-preparation system and the nanofluidic device, was demonstrated for at-line monitoring. Thus, the system is ideal for on-site monitoring, and the real-time quality assurance of biologics throughout the biomanufacturing processes.
Collapse
Affiliation(s)
- Sung Hee Ko
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Divya Chandra
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Wei Ouyang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Taehong Kwon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre 138602, Singapore
| |
Collapse
|
21
|
Gutzweiler L, Gleichmann T, Tanguy L, Koltay P, Zengerle R, Riegger L. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale. Electrophoresis 2017; 38:1764-1770. [DOI: 10.1002/elps.201700001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Ludwig Gutzweiler
- Laboratory for MEMS Applications; IMTEK - Department of Microsystems Engineering; University of Freiburg; Freiburg Germany
- Hahn-Schickard; Freiburg Germany
| | - Tobias Gleichmann
- Laboratory for MEMS Applications; IMTEK - Department of Microsystems Engineering; University of Freiburg; Freiburg Germany
| | - Laurent Tanguy
- Hahn-Schickard; Freiburg Germany
- PMB-Alcen; Peynier France
| | - Peter Koltay
- Laboratory for MEMS Applications; IMTEK - Department of Microsystems Engineering; University of Freiburg; Freiburg Germany
- BioFluidix GmbH; Freiburg Germany
| | - Roland Zengerle
- Laboratory for MEMS Applications; IMTEK - Department of Microsystems Engineering; University of Freiburg; Freiburg Germany
- Hahn-Schickard; Freiburg Germany
- FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies; University of Freiburg; Freiburg Germany
| | - Lutz Riegger
- Laboratory for MEMS Applications; IMTEK - Department of Microsystems Engineering; University of Freiburg; Freiburg Germany
- BioFluidix GmbH; Freiburg Germany
| |
Collapse
|
22
|
Capillary Electrophoresis Chips for Fingerprinting Endotoxin Chemotypes and Subclasses. Methods Mol Biol 2017. [PMID: 28478566 DOI: 10.1007/978-1-4939-6958-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Endotoxins (lipopolysaccharides, LPS; lipooligosaccharides, LOS) are components of the envelope of Gram-negative bacteria. These molecules, responsible for both advantageous and harmful biological activity of these microorganisms, are highly immunogenic and directly involved in numerous bacterial diseases in humans, such as Gram-negative sepsis. The characterization of endotoxins is of importance, since their physiological and pathophysiological effects depend on their chemical structure. The differences among the LPS from different bacterial serotypes and their mutants include variations mainly within the composition and length or missing of their O-polysaccharide chains. Microchip electrophoretic methodology enables the structural characterization of LPS molecules from several bacteria and the quantitative evaluation of components of endotoxin extracts. The improved microchip electrophoretic method is based on the direct labeling of endotoxins by covalent binding of a fluorescent dye. The classification of the S-type LPSs can be done according to their electrophoretic profiles, which are characteristics of the respective bacterial strains. According to the number, distribution, and the relative amounts of components in an endotoxin extract, it is possible to differentiate between the S-type endotoxins from different Gram-negative bacterial strains. The microchip electrophoresis affords high-resolution separation of pure and partially purified (e.g., obtained from whole-cell lysate) S and R endotoxins. This microchip technique provides a new, standardizable, fast, and sensitive method for the detection of endotoxins and for the quantitative evaluation of components of an endotoxin extract.
Collapse
|
23
|
Abstract
Microfluidics has become an important tool for the commercial product development in diagnostics. This article will focus on current technical demands during the development process such as material and integration challenges. Furthermore, we present data on the diagnostics market as well as examples of microfluidics-enabled systems currently under commercial development or already on the market.
Collapse
Affiliation(s)
- Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany.
| | - Claudia Gärtner
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747, Jena, Germany
| |
Collapse
|
24
|
Popescu L, Robu AC, Zamfir AD. Sustainable Nanosystem Development for Mass Spectrometry. SUSTAINABLE NANOSYSTEMS DEVELOPMENT, PROPERTIES, AND APPLICATIONS 2017. [DOI: 10.4018/978-1-5225-0492-4.ch014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, considerable efforts are invested into development of sustainable nanosystems as front end technology for either Electrospray Ionization (ESI) or Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS). Since their first introduction in MS, nanofluidics demonstrated a high potential to discover novel biopolymer species. These systems confirmed the unique ability to offer structural elucidation of molecular species, which often represent valuable biomarkers of severe diseases. In view of these major advantages of nanofluidics-MS, this chapter reviews the strategies, which allowed a successful development of nanotechnology for MS and the applications in biological and clinical research. The first part will be dedicated to the principles and technical developments of advanced nanosystems for electrospray and MALDI MS. The second part will highlight the most important applications in clinical proteomics and glycomics. Finally, this chapter will emphasize that advanced nanosystems-MS has real perspectives to become a routine method for early diagnosis of severe pathologies.
Collapse
Affiliation(s)
- Laurentiu Popescu
- West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania
| | - Adrian C. Robu
- West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania
| | - Alina D. Zamfir
- Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania & Aurel Vlaicu University of Arad, Romania
| |
Collapse
|
25
|
Sanders BJ, Kim DC, Dunn RC. Recent Advances in Microscale Western Blotting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7002-7013. [PMID: 28392839 PMCID: PMC5383213 DOI: 10.1039/c6ay01947a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Western blotting is a ubiquitous tool used extensively in the clinical and research settings to identify proteins and characterize their levels. It has rapidly become a mainstay in research laboratories due to its specificity, low cost, and ease of use. The specificity arises from the orthogonal processes used to identify proteins. Samples are first separated based on size and then probed with antibodies specific for the protein of interest. This confirmatory approach helps avoid pitfalls associated with antibody cross-reactivity and specificity issues. While the technique has evolved since its inception, the last decade has witnessed a paradigm shift in Western blotting technology. The introduction of capillary and microfluidic platforms has significantly decreased time and sample requirements while enabling high-throughput capabilities. These advances have enabled Western analysis down to the single cell level in highly parallel formats, opening vast new opportunities for studying cellular heterogeneity. Recent innovations in microscale Western blotting are surveyed, and the potential for enhancing detection using advances in label-free biosensing is briefly discussed.
Collapse
Affiliation(s)
- Brittany J Sanders
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Daniel C Kim
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Robert C Dunn
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| |
Collapse
|
26
|
Ouimet CM, Shao H, Rauch JN, Dawod M, Nordhues B, Dickey CA, Gestwicki JE, Kennedy RT. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis. Anal Chem 2016; 88:8272-8. [PMID: 27434096 DOI: 10.1021/acs.analchem.6b02126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.
Collapse
Affiliation(s)
- Claire M Ouimet
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States
| | - Jennifer N Rauch
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Bryce Nordhues
- Department of Molecular Medicine, University of South Florida , 4001 E. Fletcher Ave., MDC 36, Tampa, Florida 33613, United States
| | - Chad A Dickey
- Department of Molecular Medicine, University of South Florida , 4001 E. Fletcher Ave., MDC 36, Tampa, Florida 33613, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan , 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Jin S, Furtaw MD, Chen H, Lamb DT, Ferguson SA, Arvin NE, Dawod M, Kennedy RT. Multiplexed Western Blotting Using Microchip Electrophoresis. Anal Chem 2016; 88:6703-10. [PMID: 27270033 DOI: 10.1021/acs.analchem.6b00705] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.
Collapse
Affiliation(s)
- Shi Jin
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Michael D Furtaw
- LI-COR Biosciences , 4647 Superior Street, Lincoln, Nebraska 68504, United States
| | - Huaxian Chen
- LI-COR Biosciences , 4647 Superior Street, Lincoln, Nebraska 68504, United States
| | - Don T Lamb
- LI-COR Biosciences , 4647 Superior Street, Lincoln, Nebraska 68504, United States
| | - Stephen A Ferguson
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Natalie E Arvin
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Vecchione R, Pitingolo G, Falanga AP, Guarnieri D, Netti PA. Confined Gelatin Dehydration as a Viable Route To Go Beyond Micromilling Resolution and Miniaturize Biological Assays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12075-12081. [PMID: 27140285 DOI: 10.1021/acsami.6b04128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nowadays, microfluidic channels of a few tens of micrometers are required and widely used in many fields, especially for surface-processing applications and miniaturization of biological assays. Herein, we selected micromilling as a low-cost technology and proposed an approach capable of overcoming its limitations; in fact, microstructures below 20-30 μm in depth are difficult to obtain, and the manufacturing error is rather high, as it is inversely proportional to the depth. Indeed, the proposed method uses a confined dehydration process of a patterned gelatin substrate fabricated via replica molding onto a micromilled poly(methyl methacrylate) substrate to produce a gelatin master with demonstrated final micrometric features down to 3 μm for the channel depth and, in specific configurations, down to 5 μm for the channel width. Finally, we demonstrated the ability to flux liquids in miniaturized microfluidic devices and fabricated and tested-as an example-micrometric microstructures arrays connected via microchannels for biological assays.
Collapse
Affiliation(s)
- Raffaele Vecchione
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Gabriele Pitingolo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Andrea P Falanga
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Daniela Guarnieri
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II , Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy
| |
Collapse
|
29
|
Microfluidic chip-capillary electrophoresis device for the determination of urinary metabolites and proteins. Bioanalysis 2016; 7:907-22. [PMID: 25932524 DOI: 10.4155/bio.15.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microfluidic chip-CE (MC-CE) devices have caught recent attention for diagnostic applications in urine. This is due to the successes reported in handling real urine samples by integrating microfluidic chips (MC) with analyte enrichment and sample cleanup to CE with high separation efficiency and sensitive analyte detection. Here, we review the determination of urinary metabolites and proteins by MC-CE devices within the past 7 years. The application scope for MC-CE integrated devices was found to exceed the use of either technique alone, showing comparable performance to laser-induced fluorescence detection using less sensitive UV detectors, offering the flexibility to handle difficult urine samples with on-chip dilution and online standard addition and delivering enhanced performance as compared with commercial microfluidic chip electrophoresis chips.
Collapse
|
30
|
Cai H, Song Y, Zhang J, Shi T, Fu Y, Li R, Mussa N, Li ZJ. Optimization of microchip-based electrophoresis for monoclonal antibody product quality analysis revealed needs for extra surfactants during denaturation. J Pharm Biomed Anal 2016; 120:46-56. [DOI: 10.1016/j.jpba.2015.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022]
|
31
|
Guszpit E, Krizkova S, Kepinska M, Rodrigo MAM, Milnerowicz H, Kopel P, Kizek R. Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:423. [PMID: 26543399 PMCID: PMC4624813 DOI: 10.1007/s11051-015-3226-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 05/12/2023]
Abstract
ABSTRACT Quantum dots (QDs) are fluorescence nanoparticles (NPs) with unique optic properties which allow their use as probes in chemical, biological, immunological, and molecular imaging. QDs linked with target ligands such as peptides or small molecules can be used as tumor biomarkers. These particles are a promising tool for selective, fast, and sensitive tagging and imaging in medicine. In this study, an attempt was made to use QDs as a marker for human metallothionein (MT) isoforms 1 and 2. Four kinds of CdTe QDs of different sizes bioconjugated with MT were analyzed using the chip-CE technique. Based on the results, it can be concluded that MT is willing to interact with QDs, and the chip-CE technique enables the observation of their complexes. It was also observed that changes ranging roughly 6-7 kDa, a value corresponding to the MT monomer, depend on the hydrodynamic diameters of QDs; also, the MT sample without cadmium interacted stronger with QDs than MT saturated with cadmium. Results show that MT is willing to interact with smaller QDs (blue CdTe) rather than larger ones QDs (red CdTe). To our knowledge, chip-CE has not previously been applied in the study of CdTe QDs interaction with MT. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Ewelina Guszpit
- />Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Sona Krizkova
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Marta Kepinska
- />Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Miguel Angel Merlos Rodrigo
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Halina Milnerowicz
- />Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Pavel Kopel
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Rene Kizek
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- />Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| |
Collapse
|
32
|
Conejero-Muriel M, Rodríguez-Ruiz I, Martínez-Rodríguez S, Llobera A, Gavira JA. McCLEC, a robust and stable enzymatic based microreactor platform. LAB ON A CHIP 2015; 15:4083-9. [PMID: 26334474 DOI: 10.1039/c5lc00776c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A microfluidic chip for cross-linked enzyme crystals (McCLEC) is presented and demonstrated to be a stable, reusable and robust biocatalyst-based device with very promising biotechnological applications. The cost-effective microfluidic platform allows in situ crystallization, cross-linking and enzymatic reaction assays on a single device. A large number of enzymatic reuses of the McCLEC platform were achieved and a comparative analysis is shown illustrating the efficiency of the process and its storage stability for more than one year.
Collapse
Affiliation(s)
- Mayte Conejero-Muriel
- Laboratorio de Estudios Cristalográficos, Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda de las Palmeras, 4, 18100 Armilla, Granada, Spain.
| | | | | | | | | |
Collapse
|
33
|
Challenges of glycoprotein analysis by microchip capillary gel electrophoresis. Electrophoresis 2015; 36:1754-8. [DOI: 10.1002/elps.201400510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
|
34
|
Sensitive detection of C-reactive protein in serum by immunoprecipitation–microchip capillary gel electrophoresis. Anal Biochem 2015; 478:102-6. [DOI: 10.1016/j.ab.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/01/2015] [Accepted: 03/06/2015] [Indexed: 11/22/2022]
|
35
|
Integrated development of up- and downstream processes supported by the Cherry-Tag™ for real-time tracking of stability and solubility of proteins. J Biotechnol 2015; 200:27-37. [DOI: 10.1016/j.jbiotec.2015.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/12/2015] [Accepted: 02/17/2015] [Indexed: 11/22/2022]
|
36
|
|
37
|
Hassan SU, Morgan H, Zhang X, Niu X. Droplet Interfaced Parallel and Quantitative Microfluidic-Based Separations. Anal Chem 2015; 87:3895-901. [DOI: 10.1021/ac504695w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sammer-ul Hassan
- Faculty
of Engineering and the Environment, University of Southampton, Southampton, U.K. SO17 1BJ
| | - Hywel Morgan
- Faculty
of Physical Sciences and Engineering, University of Southampton, Southampton, U.K. SO17 1BJ
- Institute
for Life Sciences, University of Southampton, Southampton, U.K. SO17 1BJ
| | - Xunli Zhang
- Faculty
of Engineering and the Environment, University of Southampton, Southampton, U.K. SO17 1BJ
- Institute
for Life Sciences, University of Southampton, Southampton, U.K. SO17 1BJ
| | - Xize Niu
- Faculty
of Engineering and the Environment, University of Southampton, Southampton, U.K. SO17 1BJ
- Institute
for Life Sciences, University of Southampton, Southampton, U.K. SO17 1BJ
| |
Collapse
|
38
|
Michels DA, Ip AY, Dillon TM, Brorson K, Lute S, Chavez B, Prentice KM, Brady LJ, Miller KJ. Separation Methods and Orthogonal Techniques. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- David A. Michels
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Anna Y. Ip
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Thomas M. Dillon
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Kurt Brorson
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Scott Lute
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Brittany Chavez
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Ken M. Prentice
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Lowell J. Brady
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Karen J. Miller
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
39
|
Schwamb S, Puskeiler R, Wiedemann P. Monitoring of Cell Culture. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-10320-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
40
|
Gerver R, Herr AE. Microfluidic Western blotting of low-molecular-mass proteins. Anal Chem 2014; 86:10625-32. [PMID: 25268977 PMCID: PMC4222625 DOI: 10.1021/ac5024588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/30/2014] [Indexed: 12/01/2022]
Abstract
We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5-116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets.
Collapse
Affiliation(s)
- Rachel
E. Gerver
- University of California Berkeley
and University of California San
Francisco Graduate Program in Bioengineering, and Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Amy E. Herr
- University of California Berkeley
and University of California San
Francisco Graduate Program in Bioengineering, and Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Chung M, Kim D, Herr AE. Polymer sieving matrices in microanalytical electrophoresis. Analyst 2014; 139:5635-54. [DOI: 10.1039/c4an01179a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Kim D, Judy JW. Analysis of Donnan-dialyzer irreproducibility and experimental study of a microfluidic parallel-plate membrane-separation module for total analysis systems. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Kapil MA, Herr AE. Binding Kinetic Rates Measured via Electrophoretic Band Crossing in a Pseudohomogeneous Format. Anal Chem 2014; 86:2601-9. [DOI: 10.1021/ac403829z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Monica A. Kapil
- Department
of Bioengineering, University of California, Berkeley, California, 94706, United States
| | - Amy E. Herr
- Department
of Bioengineering, University of California, Berkeley, California, 94706, United States
| |
Collapse
|
44
|
Weiss VU, Reitschmidt S, Friesz V, Križaj I, Günter Allmaier, Marchetti-Deschmann M. Chip electrophoretic separation of highly homologous ammodytoxin isoforms: three neurotoxic phospholipases A2 of Vipera ammodytes ammodytes venom. Electrophoresis 2014; 35:2137-45. [PMID: 24431226 DOI: 10.1002/elps.201300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/14/2013] [Accepted: 12/24/2013] [Indexed: 11/10/2022]
Abstract
Ammodytoxins (Atxs), a group of Ca(2+) -dependent neurotoxic phospholipases A2 of Vipera ammodytes ammodytes venom, are mainly responsible for venom toxicity. Within the Atx group, LD50 values between three isoforms, A, B, and C are differing with AtxA exhibiting an LD50 value by an order of magnitude lower (more toxic) than the other two isoforms. This difference in toxicity justifies the necessity to prepare suitable antibodies and thus isoform separation to characterize the Atx content of Vipera ammodytes ammodytes venom is of importance. However, a high homology between the three Atx isoforms (differences in only two, respectively, three residues within the last 18 amino acids at the C-terminus, total length 122 residues) hindered the successful separation of isoforms to date. As the investigated phospholipases A2 were reported to exhibit differences in pI values, we concentrate with the current work on the separation of Atx isoforms after fluorescence labeling via chip electrophoresis on a commercially available instrument to build the basis for a fast and easy to handle screening method. In the course of our work, we were able to show that samples of AtxA, AtxB, and AtxC declared to be homogenous by standard analytical techniques consisted indeed of more than one isoform of which the relative amounts were calculated by using the newly developed method.
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
45
|
YAGI Y, KAKEHI K, HAYAKAWA T, SUZUKI S. Application of Microchip Electrophoresis Sodium Dodecyl Sulfate for the Evaluation of Change of Degradation Species of Therapeutic Antibodies in Stability Testing. ANAL SCI 2014; 30:483-8. [DOI: 10.2116/analsci.30.483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Shigeo SUZUKI
- Faculty of Pharmaceutical Sciences, Kinki University
| |
Collapse
|
46
|
Xu Z, Oleschuk RD. A fluorous porous polymer monolith photo-patterned chromatographic column for the separation of a flourous/fluorescently labeled peptide within a microchip. Electrophoresis 2013; 35:441-9. [DOI: 10.1002/elps.201300365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Zhenpo Xu
- Department of Chemistry; Queen's University; Kingston Ontario Canada
| | | |
Collapse
|
47
|
Ono K, Kaneda S, Fujii T. Single-step CE for miniaturized and easy-to-use system. Electrophoresis 2013; 34:903-10. [PMID: 23307534 DOI: 10.1002/elps.201200365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 11/04/2012] [Accepted: 11/04/2012] [Indexed: 11/06/2022]
Abstract
We developed a novel single-step capillary electrophoresis (SSCE) scheme for miniaturized and easy to use system by using a microchannel chip, which was made from the hydrophilic material polymethyl methacrylate (PMMA), equipped with a capillary stop valve. Taking the surface tension property of liquids into consideration, the capillary effect was used to introduce liquids and control capillary stop valves in a partial barrier structure in the wall of the microchannel. Through the combined action of stop valves and air vents, both sample plug formation for electrophoresis and sample injection into a separation channel were successfully performed in a single step. To optimize SSCE, different stop valve structures were evaluated using actual microchannel chips and the finite element method with the level set method. A partial barrier structure at the bottom of the channel functioned efficiently as a stop valve. The stability of stop valve was confirmed by a shock test, which was performed by dropping the microchannel chip to a floor. Sample plug deformation could be reduced by minimizing the size of the side partial barrier. By dissolving hydroxyl ethyl cellulose and using it as the sample solution, the EOF and adsorption of the sample into the PMMA microchannel were successfully reduced. Using this method, a 100-bp DNA ladder was concentrated; good separation was observed within 1 min. At a separation length of 5 mm, the signal was approximately 20-fold higher than a signal of original sample solution by field-amplified sample stacking effect. All operations, including liquid introduction and sample separation, can be completed within 2 min by using the SSCE scheme.
Collapse
Affiliation(s)
- Koichi Ono
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, Japan.
| | | | | |
Collapse
|
48
|
Microchip Electrophoretic Analysis of Phaseolin Patterns and Its Comparison with Currently Used SDS-PAGE Techniques. Chromatographia 2013. [DOI: 10.1007/s10337-013-2511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Poboży E, Filaber M, Koc A, Garcia-Reyes JF. Application of capillary electrophoretic chips in protein profiling of plant extracts for identification of genetic modifications of maize. Electrophoresis 2013; 34:2740-53. [DOI: 10.1002/elps.201300103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Ewa Poboży
- Department of Chemistry; University of Warsaw; Warsaw; Poland
| | - Monika Filaber
- Department of Chemistry; University of Warsaw; Warsaw; Poland
| | - Anna Koc
- Department of Chemistry; University of Warsaw; Warsaw; Poland
| | - Juan F. Garcia-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry; University of Jaén; Jaén; Spain
| |
Collapse
|
50
|
Azadi G, Chauhan A, Tripathi A. Dilution of protein-surfactant complexes: a fluorescence study. Protein Sci 2013; 22:1258-65. [PMID: 23868358 DOI: 10.1002/pro.2313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 11/11/2022]
Abstract
Dilution of protein-surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta-galactosidase as model proteins. The fluorescent signature of protein-surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein-surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein-SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein-surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics.
Collapse
Affiliation(s)
- Glareh Azadi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, 02912
| | | | | |
Collapse
|