1
|
Huang X, Wang T, Wang L, Sun Y, Zhang Z, Zhang Y. Two-point immobilization of M3 muscarinic receptor: a method for recognizing receptor antagonists in natural products. BMC Chem 2024; 18:94. [PMID: 38702791 PMCID: PMC11069257 DOI: 10.1186/s13065-024-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
In the investigation of active ingredients from natural products, current technologies relying on drug-target affinity recognition analysis face significant challenges. This is primarily due to their limited specificity and inability to provide downstream pharmacodynamic information, such as agonistic or antagonistic activity. In this study, a two-point method was developed by immobilizing M3 acetylcholine receptor (M3R) through the combination of the conformation-specific peptide BJ-PRO-13a and the HaloTag trap system. We systematically assessed the specificity of the immobilized M3R using known M3R antagonists (pirenzepine and atropine) and agonists (cevimeline and pilocarpine). By frontal analysis and nonlinear chromatography, the performance of immobilized M3R was evaluated in terms of binding kinetics and thermodynamics of four drugs to the immobilized M3R. Additionally, we successfully identified two M3R antagonists within an extract from Daturae Flos (DF), specifically hyoscyamine and scopolamine. Our findings demonstrate that this immobilization method effectively captures receptor-ligand binding interactions and can discern receptor agonists from antagonists. This innovation enhances the efficiency of receptor chromatography to determine binding-affinity in the development of new drugs, offering promise for the screening and characterization of active compounds, particularly within complex natural products.
Collapse
Affiliation(s)
- Xiaomin Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ting Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ludan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yantao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ziru Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Qu L, Li T, Cun S, Zheng X, Xiang M, Dong Y, Ji X, Bian L, Li Q, Zhao X. A chromatographic method for determining the interaction between a drug and two target proteins by fabricating a dual-heterogeneous surface. J Chromatogr A 2024; 1715:464606. [PMID: 38154257 DOI: 10.1016/j.chroma.2023.464606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Characterization of the drug-target interactions is pivotal throughout the whole procedure of drug development. Most of the current assays, particularly, chromatographic methods lack the capacity to reveal drug adsorption on the muti-target surface. To this end, we derived a reliable and workable mathematical equation for revealing drug bindings to dual targets on the heterogeneous surface starting from the mass balance equation. The derivatization relied on the correlation of drug injection amounts with their retention factors. Experimental validation was performed by determining the binding parameters of three canonical drugs on a heterogeneous surface, which was fabricated by fusing angiotensin receptor type I and type II receptors (AT1R and AT2R) at the terminuses of circularly permuted HaloTag (cpHaloTag) and immobilizing the whole fusion protein onto 6-bromohexanoic acid modified silica gel. We proved that immobilized AT1R-cpHalo-AT2R maintained the original ligand- and antibody-binding activities of the two receptors in three weeks. The association constants of valsartan, candesartan, and telmisartan to AT1R were (6.26±0.14) × 105, (9.66±0.71) × 105, and (3.17±0.03) × 105 L/mol. In the same column, their association constants to AT2R were (1.25±0.04) × 104, (2.30±0.08) × 104, and (8.51±0.06) × 103 L/mol. The patterns of the association constants to AT1R/AT2R (candesartan>valsartan>telmisartan) were in good line with the data by performing nonlinear chromatography on control columns containing immobilized AT1R or AT2R alone. This provided proof of the fact that the derivatization allowed the determination of drug bindings on the heterogeneous surface with the utilization of a single series of injections and linear regression. We reasoned that is simple enough to model the bindings of drug adsorption on commercially available adsorbents in fundamental or industrial fields, thus having the potential to become a universal method for analyzing the bindings of a drug to the heterogeneous surface containing multiple targets.
Collapse
Affiliation(s)
- Lejing Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ting Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sidi Cun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinxin Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Mingjuan Xiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuxuan Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xu Ji
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Qiao S, Ou Y, Liu L, Wang S, Bian L, Zhao X. Mathematical and experimental validation of an approach for simultaneously determining the binding parameters of two drugs to a receptor. J Chromatogr A 2022; 1685:463593. [DOI: 10.1016/j.chroma.2022.463593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
|
5
|
Semi-quantitatively Predicting the Residence Time of Three Natural Products on Endothelin Receptor A by Peak Profiling Using the Receptor Functionalized Macroporous Silica Gel as Stationary Phase. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Shayiranbieke A, Liang Q, Wang T, Ma J, Li G, Du X, Zhang G, Wang C, Zhao X. Development of immobilized beta1-adrenoceptor chromatography for rapid discovery of ligands specifically binding to the receptor from herbal extract. J Chromatogr A 2022; 1677:463298. [DOI: 10.1016/j.chroma.2022.463298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
|
7
|
Zheng X, Fan H, Song Z, Cheng P, Jiang H, Shi W, Xiao C, Wang J, Li Q, Yin G, Zhao X. Immobilized beta 2-adrenergic receptor: A powerful chromatographic platform for drug discovery and evaluation of drug-like property for natural products. J Chromatogr A 2021; 1659:462635. [PMID: 34731755 DOI: 10.1016/j.chroma.2021.462635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Drug discovery based on natural products like medicinal herbs remains challenging due to the technique limitations for rapidly screening and validating leads. To address the challenges, we employ the immobilized β2- adrenergic recepotor (β2-AR), an identified target of asthma, as the stationary phase in chromatographic column to screen compounds extracted from Stemonae Radix, Playtycodonis Radix, and Glycyrrhizae Radix et Rhizoma. To analyze binding properties of the extracted compounds to the immobilized receptors, we measured their retention behavior in the receptor chromatography and compared with six clinical asthma drugs. We identified tuberostemonine, platycodin D, and glycyrrhizic acid as the potential leads against asthma by our β2-AR chromatography coupled with mass spectrum (MS). The association constants of the three compounds to β2-AR were 2.85 × 10-5, 2.55 × 10-4, and 4.07 × 10-6 M with the dissociation rate constants of 6.91 ± 0.35, 11.88 ± 0.60, and 9.49 ± 0.64 min-1, respectively. Tuberostemonine, a pentacyclic Stemona alkaloids, presented the most optimum values of binding efficiency index (BEI) and surface efficiency index (SEI) as close to the diagonal of SEI-BEI optimization plane when it is compared with platycodin D, glycyrrhizic and the six clinical drugs. Our results suggest that tuberostemonine is a promising natural product to be developed for treating asthma because it exhibits better drug-like binding properties to β2-AR than the clinical drugs. As such, we demonstrate a chromatographic strategy to identify bioactive natural products based on the β2-AR immobilization, which can be widely adopted to screen natural products from mixture of herbal extracts.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hushuai Fan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ze Song
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Peixuan Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenhua Shi
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
8
|
Detection of membrane receptors on per tumor cell by nonimmobilized cell capillary electrophoresis and a mathematic model. Talanta 2021; 222:121425. [PMID: 33167195 DOI: 10.1016/j.talanta.2020.121425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/21/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Folate receptors (FRs) are a class of valuable therapeutic target which is highly expressed on a variety of cancers. The accurate detection of the expression of FRs in different cells is conducive to improve the accuracy of FR targeted tumor therapy. Herein, a method based on nonimmobilized cell capillary electrophoresis (NICCE) combined with a mathematic model to quantify FRs on each single tumor cell was developed. At first, we studied the interactions between FA and A549, HT-29, HepG2, and U87MG cells by NICCE respectively, and calculated the kinetic parameters (Ka, k', ka, and kd). Next, we established a mathematic model to accurately determine the number of moles of FRs on per A549, HT-29, HepG2, and U87MG cell for the first time, that were (10.44 ± 0.53) × 10-19 mol, (34.32 ± 1.33) × 10-19 mol, (337.14 ± 10.11) × 10-19 mol, and (37.31 ± 2.13) × 10-19 mol. Then, these re-sults were proved to be consistent with the results of enzyme-linked immunosorbent assay (ELISA). Therefore, this method is simple, rapid, sensitive, and without protein separation or purification, which is expected to achieve clinical detection of cell membrane receptor expression level of cell membrane receptors on a single cell, which may be greatly beneficial to further clinical diagnosis and therapy.
Collapse
|
9
|
Feng G, Yuan X, Li P, Tian R, Hou Z, Fu X, Chang Z, Wang J, Li Q, Zhao X. G protein-coupled receptor-in-paper, a versatile chromatographic platform to study receptor-drug interaction. J Chromatogr A 2020; 1637:461835. [PMID: 33383241 DOI: 10.1016/j.chroma.2020.461835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
High-performance affinity chromatography is limited by its high cost and high pressure. Paper is made up of porous fiber networks and has the properties of low cost, ease of fabrication, and biodegradable. Due to these advantages, herein, we immobilized beta2-adrenoceptor (β2-AR) onto the surface of the polytetrafluoroethylene membrane, a paper-based material, and constructed a G protein-coupled receptor (GPCR)-in-paper chromatographic platform. This platform was characterized by Fourier transform infrared spectroscopy, fluorescence analysis, X-ray photoelectron spectroscopy, and chromatographic studies. These morphological and elemental analysis showed that β2-AR was successfully immobilized on the paper surface. The specific drugs have good retentions on the GPCR-in-paper chromatographic platform. The association constants of salbutamol, terbutaline and bambuterol to β2-AR were calculated to be 2.02 × 104 M-1, 1.15 × 104 M-1, 1.75 × 104 M-1 by adsorption energy distribution, which were in good line with the values from frontal analysis, zonal elution and previous literatures. We demonstrated that the GPCR-in-paper platform was cost-effective, easy to be modified for protein immobilization, and applicable in the receptor-drug interaction analysis. We believe such a platform sheds new light on paper chromatography for receptor-drug interaction analysis and other applications.
Collapse
Affiliation(s)
- Gangjun Feng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ping Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Tian
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhaoling Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Gao J, Chang Z, Tian R, Li P, Ahmad F, Jia X, Liang Q, Zhao X. Reversible and site-specific immobilization of β 2-adrenergic receptor by aptamer-directed method for receptor-drug interaction analysis. J Chromatogr A 2020; 1622:461091. [PMID: 32376022 DOI: 10.1016/j.chroma.2020.461091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Immobilized protein makes a profound impact on the development of assays for drug discovery, diagnosis and in vivo biological interaction analysis. Traditional methods are enormously challenged by the G-protein coupled receptor ascribed to the loss of receptor functions. We introduced a β2-adrenergic receptor (β2-AR) aptamer into the immobilization of the receptor. This was achieved by mixing the receptor conjugated silica gel with cell lysates containing the receptor. We found that the aptamer-directed method makes immobilized β2-AR good stability in seven days and high specificity of ligand recognition at the subtype receptor level. Feasibility of the immobilized β2-AR in drug-receptor interaction analysis was evaluated by injection amount-dependent method, nonlinear chromatography, and peak decay analysis. Salbutamol, methoxyphenamine, ephedrine hydrochloride, clorprenaline, tulobuterol, bambuterol, propranolol and ICI 118551 bound to the receptor through one type of binding sites. The association constants presented good agreement within the three methods but exhibited clear differences from the data by radio-ligand binding assay. Regarding these results, we concluded that the aptamer-directed method will probably become an alternative for reversible and site-specific immobilization of GPCRs directly from complex matrices; the immobilized receptor is qualitative for drug-receptor interaction analysis.
Collapse
Affiliation(s)
- Juan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Zhongman Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Rui Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Ping Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Faizan Ahmad
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China
| | - Xiaoni Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China; Department of Pharmacy, Xi'an Mental Health Center, Xi'an 710061, China
| | - Qi Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China; College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Ministry of Life Sciences and Medicine, Northwest University, Xi'an710069, China.
| |
Collapse
|
11
|
Lecas L, Dugas V, Demesmay C. Affinity Chromatography: A Powerful Tool in Drug Discovery for Investigating Ligand/membrane Protein Interactions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1749852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucile Lecas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vincent Dugas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Claire Demesmay
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
12
|
Biomimetic cell-cell adhesion capillary electrophoresis for studying Gu-4 antagonistic interaction between cell membrane receptor and ligands. Talanta 2020; 207:120259. [DOI: 10.1016/j.talanta.2019.120259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023]
|
13
|
Moment analysis of peak broadening in affinity capillary electrophoresis and electrokinetic chromatography. J Chromatogr A 2020; 1609:460451. [DOI: 10.1016/j.chroma.2019.460451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022]
|
14
|
de Moraes MC, Cardoso CL, Cass QB. Solid-Supported Proteins in the Liquid Chromatography Domain to Probe Ligand-Target Interactions. Front Chem 2019; 7:752. [PMID: 31803714 PMCID: PMC6873629 DOI: 10.3389/fchem.2019.00752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ligand-target interactions play a central role in drug discovery processes because these interactions are crucial in biological systems. Small molecules-proteins interactions can regulate and modulate protein function and activity through conformational changes. Therefore, bioanalytical tools to screen new ligands have focused mainly on probing ligand-target interactions. These interactions have been evaluated by using solid-supported proteins, which provide advantages like increased protein stability and easier protein extraction from the reaction medium, which enables protein reuse. In some specific approaches, precisely in the ligand fishing assay, the bioanalytical method allows the ligands to be directly isolated from complex mixtures, including combinatorial libraries and natural products extracts without prior purification or fractionation steps. Most of these screening assays are based on liquid chromatography separation, and the binding events can be monitored through on-line or off-line methods. In the on-line approaches, solid supports containing the immobilized biological target are used as chromatographic columns most of the time. Several terms have been used to refer to such approaches, such as weak affinity chromatography, high-performance affinity chromatography, on-flow activity assays, and high-performance liquid affinity chromatography. On the other hand, in the off-line approaches, the binding event occurs outside the liquid chromatography system and may encompass affinity and activity-based assays in which the biological target is immobilized on magnetic particles or monolithic silica, among others. After the incubation step, the supernatant or the eluate from the binding assay is analyzed by liquid chromatography coupled to various detectors. Regardless of the selected bioanalytical approach, the use of solid supported proteins has significantly contributed to the development of automated and reliable screening methods that enable ligands to be isolated and characterized in complex matrixes without purification, thereby reducing costs and avoiding time-laborious steps. This review provides a critical overview of recently developed assays.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Laboratório SINCROMA, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói, Brazil
| | - Carmen Lucia Cardoso
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Quezia Bezerra Cass
- Separare, Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
15
|
Iftekhar S, Ovbude ST, Hage DS. Kinetic Analysis by Affinity Chromatography. Front Chem 2019; 7:673. [PMID: 31681727 PMCID: PMC6813734 DOI: 10.3389/fchem.2019.00673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Important information on chemical processes in living systems can be obtained by the rates at which these biological interactions occur. This review will discuss several techniques based on traditional and high-performance affinity chromatography that may be used to examine the kinetics of biological reactions. These methods include band-broadening measurements, techniques for peak fitting, split-peak analysis, peak decay studies, and ultrafast affinity extraction. The general principles and theory of each method, as applied to the determination of rate constants, will be discussed. The applications of each approach, along with its advantages and limitations, will also be considered.
Collapse
Affiliation(s)
| | | | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
16
|
Wu R, Li C, Sun X, Zhang S, Liang C, Jiang Y, Hu X, Yan Y, Ling X. Rapid screening of anti-tumor metastasis drugs targeting integrin macrophage antigen-1 using immobilized cell capillary electrophoresis. Analyst 2018; 143:4981-4989. [PMID: 30225497 DOI: 10.1039/c8an01411f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this research a method called immobilized cell capillary electrophoresis (ICCE) was established under approximately physiological conditions for rapid screening of anti-tumor metastasis drugs targeting integrin macrophage antigen-1 (MAC-1). In this method, separation and purification of the target receptors on cell membranes was unnecessary, thus, maintaining their natural conformation and bioactivity. MAC-1-, CD11b-, or CD18-overexpressing HEK293 cells (human embryonic kidney) were cultured and immobilized on the inner wall of capillaries as stationary phase, and their interactions with lactosyl derivative Gu-4 (positive control)/dimethylsulfoxide (DMSO; negative control) were studied using ICCE. Using this method, 29 phenylethanoid glycosides from Cistanches Herba were screened, and the binding kinetic parameters (K, ka, kd, and k') of active compounds were calculated, and the specific subunits of MAC-1 were determined. Then, molecular docking studies were performed to discover the direct interaction sites between active compounds and MAC-1, and the order of Glide-calculated Emodel value obtained from the molecular docking study is consistent with that of the binding constants obtained using ICCE. Finally, pharmaceutical efficacy assays in vitro and in vivo were carried out to show that the anti-tumor metastasis activity of the active compound had better pharmaceutical efficacy and lower toxic side effects. The method was verified to be valid and practical for further use, and it is expected that it will be transferred to capillary array electrophoresis for use in high-throughput drug screening.
Collapse
Affiliation(s)
- Ruijun Wu
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu R, Li C, Li C, Ren J, Sun X, Zhang S, Zou J, Ling X. Rapid screening of multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis. Anal Chim Acta 2018; 1045:152-161. [PMID: 30454570 DOI: 10.1016/j.aca.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022]
Abstract
As there are more target categories on tumor cells/tissues than on receptor-overexpressing cells, and tumor tissues can better simulate TME, we established a new method of screening multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis under approximately tumor physiological environment. In this method, the natural structure and active conformation of the target proteins on tumor cells/tissues can be well maintained without separation and purification. Therefore, we successfully used this method to study the interactions between the Aidi injection (ADI)/its main components and tumor cells/tissues by optimizing a series of experimental conditions, discovered seven components with binding activity to A549 cells, five of them with specific interaction to tumor tissues, and calculated the binding kinetic parameters (K, ka, kd, and k'). Then, antitumor activity assays in vitro and in vivo were carried out to discover a new drug combination with higher targeting, better pharmaceutical efficacy, and lower toxic side effects. Finally, molecular docking studies were performed to investigate the potential target groups of the interactions between the effective drug combination and A549 cells/tissues. In summary, the method was verified to be valid and feasible, and can be easily transferred to a capillary array electrophoresis for high-throughput drug screening.
Collapse
Affiliation(s)
- Ruijun Wu
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Chen Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Cong Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jinyu Ren
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaozhi Sun
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Sufang Zhang
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Juncheng Zou
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaomei Ling
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
18
|
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70:621-660. [PMID: 29945898 PMCID: PMC6020109 DOI: 10.1124/pr.117.015198] [Citation(s) in RCA: 680] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.
Collapse
Affiliation(s)
- Panos Zanos
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Jaclyn N Highland
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edson X Albuquerque
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
19
|
Binding kinetics of five drugs to beta2-adrenoceptor using peak profiling method and nonlinear chromatography. J Chromatogr A 2018; 1538:17-24. [DOI: 10.1016/j.chroma.2018.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/27/2017] [Accepted: 01/11/2018] [Indexed: 01/21/2023]
|
20
|
Miyabe K, Suzuki N. Moment Analysis Theory for Size Exclusion Capillary Electrochromatography with Chemical Reaction of Intermolecular Interaction. ANAL SCI 2017; 33:1147-1154. [PMID: 28993589 DOI: 10.2116/analsci.33.1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New moment equations were developed for size exclusion capillary electrochromatography (SECEC), in which intermolecular chemical reactions simultaneously took place. They explain how the first absolute and second central moments of elution peaks are correlated with some fundamental equilibrium and kinetic parameters of mass transfer and chemical reaction in SECEC column. In order to demonstrate the effectiveness of the moment equations, they were used to predict chromatographic behavior under hypothetical SECEC conditions. It was quantitatively studied how the association and dissociation rate constants of intermolecular interaction affected the position and spreading of elution peaks. It was indicated that both the intermolecular reaction kinetics and axial dispersion of solute molecules in a capillary column had a predominant contribution to the band broadening.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University
| | - Nozomu Suzuki
- Department of Chemistry, Faculty of Science, Rikkyo University
| |
Collapse
|
21
|
Sacramento AS, Moreira FT, Guerreiro JL, Tavares AP, Sales MGF. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Kong D, Chen Z. Evaluation of the interaction between hydroxyapatite and bisphosphonate by nonlinear capillary electrochromatography. J Sep Sci 2017; 40:2030-2036. [DOI: 10.1002/jssc.201700028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Deying Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Beijing China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
23
|
Zhang Y, Zeng K, Wang J, Gao H, Nan Y, Zheng X. Identifying the antiasthmatic target of doxofylline using immobilized β2 -adrenoceptor based high-performance affinity chromatography and site-directed molecular docking. J Mol Recognit 2016; 29:492-8. [PMID: 27173639 DOI: 10.1002/jmr.2549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/28/2016] [Accepted: 04/06/2016] [Indexed: 01/16/2023]
Abstract
As a xanthine derivative, doxofylline is believed to be dominant for fighting against asthma in practice. Unlike other xanthines, the antiasthmatic effects of doxofylline lack any definite proof of target and mediating mechanism according to previous reports. In this work, the interaction between doxofylline and β2 -AR was investigated by high performance affinity chromatography using frontal analysis and nonlinear model. The methodology involved the immobilization of β2 -AR on the silica gel by a random linking method, the determination of the binding parameters by frontal analysis and nonlinear chromatography and the exploration of the binding mechanism by site-directed molecular docking. The association constant for doxofylline binding to immobilized β2 -AR was determined to be 7.70 × 10(4) M(-1) by nonlinear chromatography and 5.91 × 10(4) M(-1) by frontal analysis. Ser(169) and Ser(173) were the binding sites for the receptor-drug interaction on which hydrogen bond was believed to be the main driven force during the interaction. These results indicated that the antiasthmatic effects of doxofylline may be behind the mediating mechanism of β2 -AR. High performance affinity chromatography based on immobilized receptor has potential to become an alternative for drug target confirmation and drug-receptor interaction analysis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haiyang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yefei Nan
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
24
|
Miyabe K, Kamiya S. Kinetic Study of the Intermolecular Interaction between 2-Phenoxypropionic Acid and β-Bromo-cyclodextrin Affixed on the Stationary Phase by Liquid Chromatography. ANAL SCI 2015; 31:743-9. [PMID: 26256595 DOI: 10.2116/analsci.31.743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intermolecular interaction between 2-phenoxypropionic acid and β-bromo-cyclodextrin affixed on the stationary phase surface in a chiral HPLC system was studied by the moment analysis method. At first, pulse response and peak parking experiments were conducted to measure some parameters concerning the column geometry, adsorption equilibrium, and mass-transfer kinetics. Then, the first absolute moment (μ1) and second central moment (μ2') of the elution peaks were analyzed by the moment equations, which were developed by assuming that the reaction kinetics between the solute molecules and the functional ligands can be represented by the Langmuir-type rate equation. Finally, the flow-rate dependence of HETP calculated from μ1 and μ2' was analyzed by using the values of the parameters to determine the association and dissociation rate constants of the intermolecular interaction. It was demonstrated that the combination of the chromatographic experiments and moment analysis is one of the effective strategies for the kinetic study of intermolecular interactions.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University
| | | |
Collapse
|
25
|
Comparison of zonal elution and nonlinear chromatography in determination of the interaction between seven drugs and immobilised β2-adrenoceptor. J Chromatogr A 2015; 1401:75-83. [DOI: 10.1016/j.chroma.2015.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
26
|
Screening bioactive compounds from Ligusticum chuanxiong by high density immobilized human umbilical vein endothelial cells. Anal Bioanal Chem 2015; 407:5783-92. [DOI: 10.1007/s00216-015-8764-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023]
|
27
|
Abstract
Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods.
Collapse
Affiliation(s)
- David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, 704 Hamilton Hall, 639 N 12 Street, Lincoln, NE, 68588-0304, USA,
| | | |
Collapse
|
28
|
Miyabe K. Moment equations for chromatography based on Langmuir type reaction kinetics. J Chromatogr A 2014; 1356:171-9. [DOI: 10.1016/j.chroma.2014.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
|
29
|
Exploring drug–protein interactions using the relationship between injection volume and capacity factor. J Chromatogr A 2014; 1339:137-44. [DOI: 10.1016/j.chroma.2014.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/15/2022]
|
30
|
Ng E, Schriemer DC. Emerging challenges in ligand discovery: new opportunities for chromatographic assay. Expert Rev Proteomics 2014; 2:891-900. [PMID: 16307518 DOI: 10.1586/14789450.2.6.891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ligand discovery initiatives are facing interesting challenges as ever-increasing numbers of proteins are entering screening programs. As an answer to steady pressure to improve performance in drug discovery, ligand discovery can expect to play an expanded role in generating small molecules as probes to help uncover the function of novel proteins. Chromatographic assay formats can offer new entry points into standard interaction characterization (binding and rate constants) as well as powerful, scaleable methods for compound screening. This review presents recent advancements in chromatographic assay technology, with a particular focus on frontal affinity chromatography as a platform technology for interaction analysis.
Collapse
Affiliation(s)
- Ella Ng
- University of Calgary, SAMS Centre for Proteomics, Department of Biochemistry & Molecular Biology, Health Sciences Center, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | | |
Collapse
|
31
|
Bupropion and Bupropion Analogs as Treatments for CNS Disorders. ADVANCES IN PHARMACOLOGY 2014; 69:177-216. [DOI: 10.1016/b978-0-12-420118-7.00005-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
de Moraes MC, Vanzolini KL, Cardoso CL, Cass QB. New trends in LC protein ligand screening. J Pharm Biomed Anal 2014; 87:155-66. [DOI: 10.1016/j.jpba.2013.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
33
|
Vanzolini KL, Jiang Z, Zhang X, Vieira LCC, Corrêa AG, Cardoso CL, Cass QB, Moaddel R. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: a new tool for plant extract ligand screening. Talanta 2013; 116:647-52. [PMID: 24148457 PMCID: PMC3826612 DOI: 10.1016/j.talanta.2013.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer's disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand.
Collapse
Affiliation(s)
- Kenia Lourenço Vanzolini
- Departamento de Química, Universidade Federal de São Carlos, caixa postal 676, São Carlos 13565-905, Brazil
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Zhengjin Jiang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Xiaoqi Zhang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | | | - Arlene Gonçalvez Corrêa
- Departamento de Química, Universidade Federal de São Carlos, caixa postal 676, São Carlos 13565-905, Brazil
| | - Carmen Lucia Cardoso
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 SP, Brazil
| | - Quezia Bezerra Cass
- Departamento de Química, Universidade Federal de São Carlos, caixa postal 676, São Carlos 13565-905, Brazil
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
34
|
Yakufu P, Qi H, Li M, Ling X, Chen W, Wang Y. CCR4 expressing cells cultured adherently on a capillary wall and formaldehyde fixed as the stationary phase for ligand screening by ACE. Electrophoresis 2013. [DOI: 10.1002/elps.201200376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pazilaiti Yakufu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Hui Qi
- Center for Human Disease Genomics and Department of Medical Immunology of School of Basic Medical Science; Peking University; Beijing; P. R. China
| | - Meina Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Xiaomei Ling
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Wenjing Chen
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Ying Wang
- Center for Human Disease Genomics and Department of Medical Immunology of School of Basic Medical Science; Peking University; Beijing; P. R. China
| |
Collapse
|
35
|
Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng X. Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal 2012; 69:93-105. [PMID: 22305083 DOI: 10.1016/j.jpba.2012.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered.
Collapse
Affiliation(s)
- David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sanghvi M, Moaddel R, Wainer IW. The development and characterization of protein-based stationary phases for studying drug-protein and protein-protein interactions. J Chromatogr A 2011; 1218:8791-8. [PMID: 21704318 PMCID: PMC3183392 DOI: 10.1016/j.chroma.2011.05.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/28/2011] [Accepted: 05/21/2011] [Indexed: 12/19/2022]
Abstract
Protein-based liquid chromatography stationary phases are used in bioaffinity chromatography for studying drug-protein interactions, the determination of binding affinities, competitive and allosteric interactions, as well as for studying protein-protein interactions. This review addresses the development and characterization of protein-based stationary phase, and the application of these phases using frontal and zonal chromatography techniques. The approach will be illustrated using immobilized heat shock protein 90α and the immobilized estrogen related receptor stationary phases. In addition, the review discusses the use of the protein-coated magnetic beads for ligand and protein fishing as well as for the identification of unknown ligands from cellular or botanical extracts.
Collapse
Affiliation(s)
- Mitesh Sanghvi
- Gerontology Research Center, National institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Ruin Moaddel
- Gerontology Research Center, National institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Irving W. Wainer
- Gerontology Research Center, National institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
Cell membrane chromatography competitive binding analysis for characterization of α1A adrenoreceptor binding interactions. Anal Bioanal Chem 2011; 400:3625-33. [DOI: 10.1007/s00216-011-5026-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/01/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
|
38
|
Mazzini F, Nuti E, Petri A, Rossello A. Immobilization of matrix metalloproteinase 8 (MMP-8) for online drug screening. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:756-62. [DOI: 10.1016/j.jchromb.2011.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
39
|
Jonker N, Kool J, Irth H, Niessen WMA. Recent developments in protein-ligand affinity mass spectrometry. Anal Bioanal Chem 2010; 399:2669-81. [PMID: 21058031 PMCID: PMC3043251 DOI: 10.1007/s00216-010-4350-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/16/2010] [Accepted: 10/17/2010] [Indexed: 11/27/2022]
Abstract
This review provides an overview of direct and indirect technologies to screen protein–ligand interactions with mass spectrometry. These technologies have as a key feature the selection or affinity purification of ligands in mixtures prior to detection. Specific fields of interest for these technologies are metabolic profiling of bioactive metabolites, natural extract screening, and the screening of libraries for bioactives, such as parallel synthesis libraries and small combichem libraries. The review addresses the principles of each of the methods discussed, with a focus on developments in recent years, and the applicability of the methods to lead generation and development in drug discovery. Schematic view of the principle of filtration based 96-well affinity selection MS binding assays ![]()
Collapse
Affiliation(s)
- Niels Jonker
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Sanghvi M, Moaddel R, Frazier C, Wainer IW. Synthesis and characterization of liquid chromatographic columns containing the immobilized ligand binding domain of the estrogen related receptor alpha and estrogen related receptor gamma. J Pharm Biomed Anal 2010; 53:777-80. [PMID: 20542653 PMCID: PMC2932438 DOI: 10.1016/j.jpba.2010.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/13/2010] [Accepted: 05/15/2010] [Indexed: 11/18/2022]
Abstract
The ligand binding domains of the estrogen related receptors, ERRalpha and ERRgamma were covalently immobilized onto the surface of an aminopropyl silica liquid chromatography stationary phase to create the ERRalpha-silica and ERRgamma-silica columns and onto the surface of open tubular capillaries to create the ERRalpha-OT and ERRgamma-OT columns. The ERR-silica and ERR-OT columns were characterized using frontal chromatographic techniques with diethylstibesterol and the binding affinities, K(d) values, to the immobilized receptors were consistent with the values obtained by a radioligand binding assay. The ERRgamma-silica column was also characterized using non-linear chromatographic techniques using a series of tamoxifen derivatives. The relative K(d) values obtained for the derivatives were consistent with the relative ability of the compounds to inhibit the cellular proliferation of the human-derived T98G glioma cell line, expressed as IC(50) values. The results indicate that the columns containing immobilized ERRalpha and ERRgamma can be created and used to characterize the binding of compounds to the immobilized receptors and that the relative retention of compounds on these columns reflects the magnitude of their inhibitory activity.
Collapse
Affiliation(s)
- M Sanghvi
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| | | | | | | |
Collapse
|
41
|
Arias HR, Rosenberg A, Targowska-Duda KM, Feuerbach D, Yuan XJ, Jozwiak K, Moaddel R, Wainer IW. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states. Int J Biochem Cell Biol 2010; 42:1525-35. [PMID: 20684041 DOI: 10.1016/j.biocel.2010.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hupp AM, McGuffin VL. COMPARISON OF THEORETICAL METHODS FOR EXTRACTING RETENTION FACTORS AND RATE CONSTANTS IN LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2010. [DOI: 10.1080/10826076.2010.503785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amber M. Hupp
- a Department of Chemistry , Michigan State University , East Lansing, Michigan, USA
| | - Victoria L. McGuffin
- a Department of Chemistry , Michigan State University , East Lansing, Michigan, USA
| |
Collapse
|
43
|
Zhao X, Nan Y, Xiao C, Zheng J, Zheng X, Wei Y, Zhang Y. Screening the bioactive compounds in aqueous extract of Coptidis rhizoma which specifically bind to rabbit lung tissues beta2-adrenoceptor using an affinity chromatographic selection method. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2029-34. [PMID: 20561827 DOI: 10.1016/j.jchromb.2010.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/18/2010] [Accepted: 05/26/2010] [Indexed: 12/23/2022]
Abstract
A receptor affinity chromatographic selection method was developed for screening the bioactive compounds binding to beta(2)-adrenoceptor (beta(2)-AR) in Coptidis rhizome. The bioactive compounds were analyzed by molecular recognition with a beta(2)-AR affinity column. The retention compounds eluted from the beta(2)-AR column were separated online with reverse-phase high-performance liquid chromatography by column switching technology, and identified by a coupled ion-trap mass spectrometer. Four compounds were screened as the bioactive compounds of Coptidis rhizome and identified as 2,9,10-trimethoxy-3-hydroxyl-protoberberine (jateorhizine), 2,3-methylenedioxy-9-methoxy-protoberberine, 2,3,9,10-tetramethoxy-protoberberine (palmatine) and 2,3-methylenedioxy-9,10-dimethoxy-protoberberine (berberine). The association constants of jatrorrhizine, palmatine and berberine to the beta(2)-AR were determined by the zonal elution method with standards. Berberine and palmatine had only one type of binding site on the immobilized beta(2)-AR. Their association constants were (2.28+/-0.11)x10(4)/M and (3.00+/-0.10)x10(4)/M, respectively. Jatrorrhizine had at least two type of binding sites on the immobilized beta(2)-AR, and the corresponding association constants were (2.20+/-0.09)x10(-4)/M and (6.78+/-0.001)x10(5)/M.
Collapse
Affiliation(s)
- Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Kool J, de Kloe GE, Bruyneel B, de Vlieger JS, Retra K, Wijtmans M, van Elk R, Smit AB, Leurs R, Lingeman H, de Esch IJ, Irth H. Online Fluorescence Enhancement Assay for the Acetylcholine Binding Protein with Parallel Mass Spectrometric Identification. J Med Chem 2010; 53:4720-30. [DOI: 10.1021/jm100230k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Gerdien E. de Kloe
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Ben Bruyneel
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Jon S. de Vlieger
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Kim Retra
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rene van Elk
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - August B. Smit
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Rob Leurs
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Henk Lingeman
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Hubertus Irth
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
45
|
Investigation of calcium antagonist–L-type calcium channel interactions by a vascular smooth muscle cell membrane chromatography method. Anal Bioanal Chem 2010; 397:1947-53. [DOI: 10.1007/s00216-010-3730-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
46
|
Arias HR, Rosenberg A, Feuerbach D, Targowska-Duda KM, Maciejewski R, Jozwiak K, Moaddel R, Glick SD, Wainer IW. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1153-63. [PMID: 20303928 DOI: 10.1016/j.bbamem.2010.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/28/2022]
Abstract
The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (+/-)-epibatidine-induced AChR Ca(2+) influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [(3)H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6') and valine (position 13') rings, and (c) inhibits [(3)H]TCP, [(3)H]ibogaine, and [(3)H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arias HR, Rosenberg A, Targowska-Duda KM, Feuerbach D, Jozwiak K, Moaddel R, Wainer IW. Tricyclic antidepressants and mecamylamine bind to different sites in the human alpha4beta2 nicotinic receptor ion channel. Int J Biochem Cell Biol 2010; 42:1007-18. [PMID: 20223294 DOI: 10.1016/j.biocel.2010.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/18/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
The interaction of tricyclic antidepressants with the human (h) alpha4beta2 nicotinic acetylcholine receptor in different conformational states was compared with that for the noncompetitive antagonist mecamylamine by using functional and structural approaches. The results established that: (a) [(3)H]imipramine binds to halpha4beta2 receptors with relatively high affinity (K(d)=0.83+/-0.08 microM), but imipramine does not differentiate between the desensitized and resting states, (b) although tricyclic antidepressants inhibit (+/-)-epibatidine-induced Ca(2+) influx in HEK293-halpha4beta2 cells with potencies that are in the same concentration range as that for (+/-)-mecamylamine, tricyclic antidepressants inhibit [(3)H]imipramine binding to halpha4beta2 receptors with affinities >100-fold higher than that for (+/-)-mecamylamine. This can be explained by our docking results where imipramine interacts with the leucine (position 9') and valine (position 13') rings by van der Waals contacts, whereas mecamylamine interacts electrostatically with the outer ring (position 20'), (c) van der Waals interactions are in agreement with the thermodynamic results, indicating that imipramine interacts with the desensitized and resting receptors by a combination of enthalpic and entropic components. However, the entropic component is more important in the desensitized state, suggesting local conformational changes. In conclusion, our data indicate that tricyclic antidepressants and mecamylamine efficiently inhibit the ion channel by interacting at different luminal sites. The high proportion of protonated mecamylamine calculated at physiological pH suggests that this drug can be attracted to the channel mouth before binding deeper within the receptor ion channel finally blocking ion flux.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Schiel JE, Hage DS. Kinetic studies of biological interactions by affinity chromatography. J Sep Sci 2009; 32:1507-22. [PMID: 19391173 DOI: 10.1002/jssc.200800685] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This paper will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this paper and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered.
Collapse
Affiliation(s)
- John E Schiel
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | |
Collapse
|
49
|
Arias HR, Gumilar F, Rosenberg A, Targowska-Duda KM, Feuerbach D, Jozwiak K, Moaddel R, Wainer IW, Bouzat C. Interaction of bupropion with muscle-type nicotinic acetylcholine receptors in different conformational states. Biochemistry 2009; 48:4506-18. [PMID: 19334677 DOI: 10.1021/bi802206k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion (a) inhibits epibatidine-induced Ca(2+) influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with approximately 100-fold higher potency compared to that in the open state, (c) increases the desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits binding of [(3)H]TCP and [(3)H]imipramine to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/alpha-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy-driven process, and (f) interacts with a binding domain located between the serine (position 6') and valine (position 13') rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively, our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schiel JE, Ohnmacht CM, Hage DS. Measurement of drug-protein dissociation rates by high-performance affinity chromatography and peak profiling. Anal Chem 2009; 81:4320-33. [PMID: 19422253 PMCID: PMC3443976 DOI: 10.1021/ac9000404] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate at which a drug or other small solute interacts with a protein is important in understanding the biological and pharmacokinetic behavior of these agents. One approach that has been developed for examining these rates involves the use of high-performance affinity chromatography (HPAC) and estimates of band-broadening through peak profiling. Previous work with this method has been based on a comparison of the statistical moments for a retained analyte versus nonretained species at a single, high flow rate to obtain information on stationary phase mass transfer. In this study an alternative approach was created that allows a broad range of flow rates to be used for examining solute-protein dissociation rates. Chromatographic theory was employed to derive equations that could be used with this approach on a single column, as well as with multiple columns to evaluate and correct for the impact of stagnant mobile phase mass transfer. The interaction of L-tryptophan with human serum albumin was used as a model system to test this method. A dissociation rate constant of 2.7 (+/-0.2) s(-1) was obtained by this approach at pH 7.4 and 37 degrees C, which was in good agreement with previous values determined by other methods. The techniques described in this report can be applied to other biomolecular systems and should be valuable for the determination of drug-protein dissociation rates.
Collapse
Affiliation(s)
- John E Schiel
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, USA
| | | | | |
Collapse
|