1
|
Uyama M, Hama T. Controlling the formation of ionic complex vesicles through double-tailed surfactants. Int J Cosmet Sci 2024; 46:865-877. [PMID: 38802988 DOI: 10.1111/ics.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Liposomes are often used in cosmetics since they are naturally derived and have excellent texture enhancing capabilities. However, when preparing them by using phospholipids with unsaturated acyl groups, they easily suffer from oxidative degradation. Accordingly, hydrogenated phospholipids are preferred, however, it is difficult to prepare stable liposomes due to its high gel-liquid crystalline phase transition temperature. On the other hand, although dialkyl dimethyl ammonium type cationic surfactants are widely known to form vesicles, they have rarely been used for skincare products except for water-in-oil type emulsion creams stabilized by organically modified clay minerals. We decided to overcome all of the problems above through ionic complex vesicles formed by double-tailed cationic and anionic surfactants. METHODS Distearyl dimethyl ammonium chloride (DSAC) and sodium dilauramidoglutamide lysine (DLGL) were selected as cationic and anionic surfactants, respectively. Differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SWAXS) measurements were performed to confirm the DSAC/DLGL/water ternary phase diagram. Newly developed ionic complex vesicle formation was confirmed by cryogenic transmission electron microscopy (cryo-TEM). The adsorbed cosmetic film structure on the skin in vivo was evaluated through the polarized infrared external reflection (PIR-ER). Finally, a cosmetic lotion formula was developed and the vesicle size was determined by dynamic light scattering (DLS). RESULTS DSC and SWAXS data indicated that stable vesicles could be obtained at a molar ratio of DLGL to DSAC = 6:4. At this molar ratio, multi lamellar vesicles with diameters less than 100 nm were observed through cryo-TEM. PIR-ER data revealed that the developed vesicles formed a highly perpendicular orientation to the human skin surface. We have succeeded in formulating a cosmetic lotion containing developed vesicles with a mean diameter of 63.2 nm, which was stable over 1 month at 0, 37, and 50°C. CONCLUSIONS Our newly developed vesicles can be easily obtained through a coagulation process. Also, the adsorbed film structure supported by PIR-ER experiments implies that the developed lotion has an excellent texture that is the same as cosmetic lotions containing liposomes. Therefore, it's possible that this ionic complex vesicle could take the place of liposomes.
Collapse
Affiliation(s)
- Makoto Uyama
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | - Tetsuya Hama
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Shoji T, Iida M, Matsumoto M, Yuyama KI, Tsuboi Y. Measurements of Spontaneous and External Stimuli Molecular Release Processes from a Single Optically Trapped Poly(lactic- co-glycolic) Acid Microparticle and a Liposome Containing Gold Nanospheres. Anal Chem 2024. [PMID: 39078103 DOI: 10.1021/acs.analchem.3c05950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We investigated the single particle kinetics of the molecular release processes from two types of microcapsules used as drug delivery systems (DDS): biodegradable poly(lactic-co-glycolic) acid (PLGA) and a light-triggered-degradable liposome encapsulating gold nanospheres (liposome-GNP). To optimize the design of DDS capsules, it is highly desirable to develop a method for real-time monitoring of the release process. Using a combination of optical tweezers and confocal fluorescence microspectroscopy we successfully analyzed a single optically trapped PLGA particle and liposome-GNPs in solution. From temporal decay profiles of the fluorescence intensity, we determined the time constant τ of the release processes. We demonstrated that the release rate of spontaneously degradable microcapsules (PLGA) decreased with increasing size, while conversely, the release rate of external stimuli-degradable microcapsules (liposome-GNPs) increased in proportion to their size. This result is explained by the differences in the disruption mechanisms of the capsules, with PLGA undergoing hydrolysis and the GNPs in the liposome-GNP undergoing a photoacoustic effect under nanosecond pulsed laser irradiation. The present approach offers a way forward to an alternative microanalysis system for single drug delivery nanocarriers.
Collapse
Affiliation(s)
- Tatsuya Shoji
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Field of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Miyako Iida
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Mitsuhiro Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken-Ichi Yuyama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yasuyuki Tsuboi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Saunders C, de Villiers CA, Stevens MM. Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS J 2023; 25:94. [PMID: 37783923 DOI: 10.1208/s12248-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023] Open
Abstract
Nanoparticles can encapsulate a range of therapeutics, from small molecule drugs to sensitive biologics, to significantly improve their biodistribution and biostability. Whilst the regulatory approval of several of these nanoformulations has proven their translatability, there remain several hurdles to the translation of future nanoformulations, leading to a high rate of candidate nanoformulations failing during the drug development process. One barrier is that the difficulty in tightly controlling nanoscale particle synthesis leads to particle-to-particle heterogeneity, which hinders manufacturing and quality control, and regulatory quality checks. To understand and mitigate this heterogeneity requires advancements in nanoformulation characterisation beyond traditional bulk methods to more precise, single particle techniques. In this review, we compare commercially available single particle techniques, with a particular focus on single particle Raman spectroscopy, to provide a guide to adoption of these methods into development workflows, to ultimately reduce barriers to the translation of future nanoformulations.
Collapse
Affiliation(s)
- Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Camille A de Villiers
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
4
|
Jovanović AA, Balanč B, Volić M, Pećinar I, Živković J, Šavikin KP. Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3063. [PMID: 37687310 PMCID: PMC10489640 DOI: 10.3390/plants12173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
In the present study, rosehip (Rosa canina L.) extract was successfully encapsulated in phospholipid liposomes using a single-step procedure named the proliposome method. Part of the obtained liposomes was subjected to UV irradiation and non-treated (native) and UV-irradiated liposomes were further characterized in terms of encapsulation efficiency, chemical composition (HPLC analysis), antioxidant capacity, particle size, PDI, zeta potential, conductivity, mobility, and antioxidant capacity. Raman spectroscopy as well as DSC analysis were applied to evaluate the influence of UV irradiation on the physicochemical properties of liposomes. The encapsulation efficiency of extract-loaded liposomes was higher than 90%; the average size was 251.5 nm; the zeta potential was -22.4 mV; and the conductivity was found to be 0.007 mS/cm. UV irradiation did not cause a change in the mentioned parameters. In addition, irradiation did not affect the antioxidant potential of the liposome-extract system. Raman spectroscopy indicated that the extract was completely covered by the lipid membrane during liposome entrapment, and the peroxidation process was minimized by the presence of rosehip extract in liposomes. These results may guide the potential application of rosehip extract-loaded liposomes in the food, pharmaceutical, or cosmetic industries, particularly when liposomal sterilization is needed.
Collapse
Affiliation(s)
- Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Bojana Balanč
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (M.V.)
| | - Mina Volić
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (M.V.)
| | - Ilinka Pećinar
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Ž.); (K.P.Š.)
| | - Katarina P. Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Ž.); (K.P.Š.)
| |
Collapse
|
5
|
Tani Y, Ochiai K, Kaneta T. Optical collection of extracellular vesicles in a culture medium enhanced by interactions with gold nanoparticles. ANAL SCI 2022; 39:643-651. [PMID: 36334243 DOI: 10.1007/s44211-022-00207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Extracellular vesicles (EVs) exist in biological fluids such as blood, urine, and cerebrospinal fluid and are promising cancer biomarkers. Attempts to isolate and analyze trace EVs, however, have been a challenge for researchers studying their functions and secretion mechanisms, which has stymied the options for diagnostic application. This study demonstrated a collection of EVs that was enhanced by gold nanoparticles (AuNPs) via the use of optical force. The collection system consists of an inverted microscope equipped with a CCD camera, a square capillary connected with a PTFE tube, and an Nd:YAG laser that generates optical force. The laser beam was focused on a capillary wall in which a cell culture medium containing EVs flowed continuously. Control of the surface charges on both the capillary wall and the AuNPs achieved the collection and retention of EVs on the capillary wall. The positively charged capillary wall retained EVs even after the laser irradiation was halted due to the negative charges inherent on the surface of EVs. Conversely, positively charged AuNPs had a strong electrostatic interaction with EVs and enhanced the optical force acting on them, which made collecting them a much more efficient process.
Collapse
Affiliation(s)
- Yumeki Tani
- Department of Chemistry, Okayama University, Okayama, 700-8530, Japan
| | - Kenta Ochiai
- Department of Chemistry, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Kaneta
- Department of Chemistry, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
6
|
Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022; 14:4195. [PMID: 36236141 PMCID: PMC9572882 DOI: 10.3390/polym14194195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have shown great preventive potential in response to the novel coronavirus (COVID-19) pandemic. The lipid nanoparticle (LNP), as a non-viral vector with good safety and potency factors, is applied to mRNA delivery in the clinic. Among the recently FDA-approved SARS-CoV-2 mRNA vaccines, lipid-based nanoparticles have been shown to be well-suited to antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses. However, a design strategy for optimal mRNA-LNP vaccines has not been fully elaborated. In this review, we comprehensively and systematically discuss the research strategies for mRNA-LNP vaccines against COVID-19, including antigen and lipid carrier selection, vaccine preparation, quality control, and stability. Meanwhile, we also discuss the potential development directions for mRNA-LNP vaccines in the future. We also conduct an in-depth review of those technologies and scientific insights in regard to the mRNA-LNP field.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Masui K, Nawa Y, Tokumitsu S, Nagano T, Kawarai M, Tanaka H, Hamamoto T, Minoshima W, Tani T, Fujita S, Ishitobi H, Hosokawa C, Inouye Y. Detection of Glutamate Encapsulated in Liposomes by Optical Trapping Raman Spectroscopy. ACS OMEGA 2022; 7:9701-9709. [PMID: 35350315 PMCID: PMC8945065 DOI: 10.1021/acsomega.1c07206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 05/06/2023]
Abstract
The transmission of neuronal information is propagated through synapses by neurotransmitters released from presynapses to postsynapses. Neurotransmitters released from the presynaptic vesicles activate receptors on the postsynaptic membrane. Glutamate acts as a major excitatory neurotransmitter for synaptic vesicles in the central nervous system. Determining the concentration of glutamate in single synaptic vesicles is essential for understanding the mechanisms of neuronal activation by glutamate in normal brain functions as well as in neurological diseases. However, it is difficult to detect and quantitatively measure the concentration of glutamate in single synaptic vesicles owing to their small size, i.e., ∼40 nm. In this study, to quantitatively evaluate the concentrations of the contents in small membrane-bound vesicles, we developed an optical trapping Raman spectroscopic system that analyzes the Raman spectra of small objects captured using optical trapping. Using artificial liposomes encapsulating glutamate that mimic synaptic vesicles, we investigated whether spontaneous Raman scattered light of glutamate can be detected from vesicles trapped at the focus using optical forces. A 575 nm laser beam was used to simultaneously perform the optical trapping of liposomes and the detection of the spontaneous Raman scattered light. The intensity of Raman scattered light that corresponds to lipid bilayers increased with time. This observation suggested that the number of liposomes increased at the focal point. The number of glutamate molecules in the trapped liposomes was estimated from the calibration curve of the Raman spectra of glutamate solutions with known concentration. This method can be used to measure the number of glutamate molecules encapsulated in synaptic vesicles in situ.
Collapse
Affiliation(s)
- Kyoko Masui
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Graduate
School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka,
Suita, Osaka 5650871, Japan
| | - Yasunori Nawa
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shunsuke Tokumitsu
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Takahiro Nagano
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Makoto Kawarai
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Hirokazu Tanaka
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Tatsuki Hamamoto
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Graduate
School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka,
Suita, Osaka 5650871, Japan
| | - Wataru Minoshima
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Chemistry, Division of Molecular Materials Science, Graduate School
of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 5588585, Japan
| | - Tomomi Tani
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Satoshi Fujita
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Hidekazu Ishitobi
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Graduate
School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| | - Chie Hosokawa
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Chemistry, Division of Molecular Materials Science, Graduate School
of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 5588585, Japan
| | - Yasushi Inouye
- Advanced
Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 2-1, Yamadaoka,
Suita, Osaka 5650871, Japan
- Graduate
School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka,
Suita, Osaka 5650871, Japan
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1,
Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
8
|
Cawley JL, Blauch ME, Collins SM, Nice JB, Xie Q, Jordan LR, Brown AC, Wittenberg NJ. Nanoarrays of Individual Liposomes and Bacterial Outer Membrane Vesicles by Liftoff Nanocontact Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103338. [PMID: 34655160 PMCID: PMC8678320 DOI: 10.1002/smll.202103338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Analytical characterization of small biological particles, such as extracellular vesicles (EVs), is complicated by their extreme heterogeneity in size, lipid, membrane protein, and cargo composition. Analysis of individual particles is essential for illuminating particle property distributions that are obscured by ensemble measurements. To enable high-throughput analysis of individual particles, liftoff nanocontact printing (LNCP) is used to define hexagonal antibody and toxin arrays that have a 425 nm dot size, on average, and 700 nm periodicity. The LNCP process is rapid, simple, and does not require access to specialized nanofabrication tools. These densely packed, highly ordered arrays are used to capture liposomes and bacterial outer membrane vesicles on the basis of their surface biomarkers, with a maximum of one particle per array dot, resulting in densely packed arrays of particles. Despite the high particle density, the underlying antibody or toxin array ensured that neighboring individual particles are optically resolvable. Provided target particle biomarkers and suitable capture molecules are identified, this approach can be used to generate high density arrays of a wide variety of small biological particles, including other types of EVs like exosomes.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Megan E Blauch
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Shannon M Collins
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Justin B Nice
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| |
Collapse
|
9
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Zare M, Kitt JP, Wen X, Heider EC, Harris JM. Hybrid-Lipid Bilayers Induce n-Alkyl-Chain Order in Reversed-Phase Chromatographic Surfaces, Impacting their Shape Selectivity for Aromatic Hydrocarbon Partitioning. Anal Chem 2021; 93:4118-4125. [PMID: 33586951 DOI: 10.1021/acs.analchem.0c05467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shape selectivity is important in reversed-phase liquid chromatographic separations, where stationary phases are capable of separating geometric isomers, thereby resolving solutes based on their three-dimensional structure or shape rather than other chemical differences. Numerous chromatographic studies have been carried out using n-alkyl-chain-modified columns to understand how molecular shape affects retention. For polycyclic aromatic hydrocarbons (PAHs), it was found that planar compounds were selectively retained over nonplanar structures of comparable molecular weight on surfaces with longer n-alkyl chains, higher chain-density, or at lower temperatures, where selectivity likely arises with greater ordering of the n-alkyl chains. A limitation of these studies, however, is the small range of chain ordering that can be achieved and lack of a direct measure of the n-alkyl-chain order of the stationary phases. In this work, we employ a C18 stationary phase modified with a monolayer of phospholipid as a means of significantly varying the n-alkyl chain order. These hybrid-supported lipid bilayers, which have previously been employed as membrane-like stationary phases for measuring lipophilicity, provide a unique approach to control n-alkyl chain ordering by varying the acyl chain length and degree of unsaturation of the phospholipid modifier. The degree of alkyl-chain order of the resulting modified surfaces is determined from the ratio of trans- versus gauche-conformers, measured in situ within individual porous particles by confocal Raman microscopy. This methodology was also used to assess the affinity of these surfaces for planar versus nonplanar PAH molecules. The retention selectivity for the planar versus nonplanar compounds, thus determined, was found to vary significantly and systematically with the degree of order of the acyl/alkyl chains in the hybrid-supported lipid bilayers. The investigation also demonstrates the utility of confocal Raman microscopy for interrogating the impact of solute partitioning on stationary-phase structure within porous chromatographic particles.
Collapse
Affiliation(s)
- Maryam Zare
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, Utah 84112 United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, Utah 84112 United States
| | - Xin Wen
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, Utah 84112 United States
| | - Emily C Heider
- Department of Chemistry, Utah Valley University, 800 West University Parkway, Orem, Utah 84058 United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, Utah 84112 United States
| |
Collapse
|
11
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
12
|
Bryce DA, Kitt JP, Myres GJ, Harris JM. Confocal Raman Microscopy Investigation of Phospholipid Monolayers Deposited on Nitrile-Modified Surfaces in Porous Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4071-4079. [PMID: 32212663 DOI: 10.1021/acs.langmuir.0c00456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipid bilayers deposited on a variety of surfaces provide models for investigation of the lipid membrane structure and supports for biocompatible sensors. Hybrid-supported phospholipid bilayers (HSLBs) are stable membrane models for these investigations, typically prepared by self-assembly of a lipid monolayer over an n-alkane-modified surface. HSLBs have been prepared on n-alkyl chain-modified silica and used for lipophilicity-based chromatographic separations. The structure of these hybrid bilayers differs from vesicle membranes where the lipid head group spacing is greater due to interdigitation of the lipid acyl chains with the underlying n-alkyl chains bound to the silica surface. This interdigitated structure exhibits a broader melting transition at a higher temperature due to strong interactions between the lipid acyl chains and the immobile n-alkyl chains bound to silica. In the present work, we seek to reduce the interactions between a lipid monolayer and its supporting substrate by self-assembly of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on porous silica functionalized with nitrile-terminated surface ligands. The frequency of Raman scattering of the surface -C≡N stretching mode at the lipid-nitrile interface is consistent with an n-alkane-like environment and insensitive to lipid head group charge, indicating that the lipid acyl chains are in contact with the surface nitrile groups. The head group area of this lipid monolayer was determined from the within-particle phospholipid concentration and silica specific surface area and found to be 54 ± 2 Å2, equivalent to the head group area of a DMPC vesicle bilayer. The structure of these nitrile-supported phospholipid monolayers was characterized below and above their melting transition by confocal Raman microscopy and found to be nearly identical to DMPC vesicle bilayers. Their narrow gel-to-fluid-phase melting transition is equivalent to dispersed DMPC vesicles, suggesting that the acyl chain structure on the nitrile support mimics the outer leaflet structure of a vesicle membrane.
Collapse
Affiliation(s)
- David A Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
13
|
Dai Y, Bai S, Hu C, Chu K, Shen B, Smith ZJ. Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels. Anal Chem 2020; 92:5585-5594. [PMID: 32162516 DOI: 10.1021/acs.analchem.0c00607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological nanoparticles are important targets of study, yet their small size and tendency to aggregate makes their heterogeneity difficult to profile on a truly single-particle basis. Here we present a label-free system called 'Raman-enabled nanoparticle trapping analysis' (R-NTA) that optically traps individual nanoparticles, records Raman spectra and tracks particle motion to identify chemical composition, size, and refractive index. R-NTA has the unique capacity to characterize aggregation status and absolute chemical concentration at the single-particle level. We validate the method on NIST standards and liposomes, demonstrating that R-NTA can accurately characterize size and chemical heterogeneity, including determining combined morpho-chemical properties such as the number of lamellae in individual liposomes. Applied to extracellular vesicles (EVs), we find distinct differences between EVs from cancerous and noncancerous cells, and that knockdown of the TRPP2 ion channel, which is pathologically highly expressed in laryngeal cancer cells, leads the EVs to more closely resemble EVs from normal epithelial cells. Intriguingly, the differences in EV content are found in small subpopulations of EVs, highlighting the importance of single-particle measurements. These experiments demonstrate the power of the R-NTA system to measure and characterize the morpho-chemical heterogeneity of bionanoparticles.
Collapse
Affiliation(s)
- Yichuan Dai
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Suwen Bai
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Chuanzhen Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kaiqin Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Okotrub KA, Zykova VA, Adichtchev SV, Surovtsev NV. Deciphering the orientation of lipid molecules by principal component analysis of Raman mapping data. Analyst 2020; 145:1466-1472. [DOI: 10.1039/c9an01499c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Raman spectroscopy reveals the orientational ordering of dry and hydrated phospholipids.
Collapse
Affiliation(s)
- Konstantin A. Okotrub
- Institute of Automation and Electrometry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Valeriya A. Zykova
- Institute of Automation and Electrometry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Sergey V. Adichtchev
- Institute of Automation and Electrometry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Nikolay V. Surovtsev
- Institute of Automation and Electrometry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| |
Collapse
|
15
|
Collard L, Sinjab F, Notingher I. Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles. Biophys J 2019; 117:1589-1598. [PMID: 31587827 PMCID: PMC6839040 DOI: 10.1016/j.bpj.2019.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular plasma membrane deformability and stability is important in a range of biological processes. Changes in local curvature of the membrane affect the lateral movement of lipids, affecting the biophysical properties of the membrane. An integrated holographic optical tweezers and Raman microscope was used to investigate the effect of curvature gradients induced by optically stretching individual giant unilamellar vesicles (GUVs) on lipid packing and lateral segregation of cholesterol in the bilayer. The spatially resolved Raman analysis enabled detection of induced phase separation and changes in lipid ordering in individual GUVs. Using deuterated cholesterol, the changes in lipid ordering and phase separation were linked to lateral sorting of cholesterol in the stretched GUVs. Stretching the GUVs in the range of elongation factors 1-1.3 led to an overall decrease in cholesterol concentration at the edges compared to the center of stretched GUVs. The Raman spectroscopy results were consistent with a model of the bilayer accounting for cholesterol sorting in both bilayer leaflets, with a compositional asymmetry of 0.63 ± 0.04 in favor of the outer leaflet. The results demonstrate the potential of the integrated holographic optical tweezers-Raman technique to induce deformations to individual lipid vesicles and to simultaneously provide quantitative and spatially resolved molecular information. Future studies can extend to include more realistic models of cell membranes and potentially live cells.
Collapse
Affiliation(s)
- Liam Collard
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Faris Sinjab
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.
| |
Collapse
|
16
|
Tani Y, Kaneta T. Enhancement of optical force acting on vesicles via the binding of gold nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190293. [PMID: 31218066 PMCID: PMC6549964 DOI: 10.1098/rsos.190293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Here we found that gold nanoparticles (AuNPs) enhance the optical force acting on vesicles prepared from phospholipids via hydrophobic and electrostatic interactions. A laser beam was introduced into a cuvette filled with a suspension of vesicles and it accelerated them in its propagation direction via a scattering force. The addition of the AuNPs exponentially increased the velocity of the vesicles as their concentration increased, but polystyrene particles had no significant impact on velocity in the presence of AuNPs. To elucidate the mechanism of the increased velocity, the surface charges in the vesicles and the AuNPs were controlled; the surface charges of the vesicles were varied via the use of anionic, cationic and neutral phospholipids, whereas AuNPs with positive and negative charges were synthesized by coating with citrate ion and 4-dimethylaminopyridine, respectively. All vesicles increased the velocity at different degrees depending on the surface charge. The vesicles were accelerated more efficiently when their charges were opposite those of the AuNPs. These results suggested that hydrophobic and electrostatic interactions between the vesicles and the AuNPs enhanced the optical force. By accounting for the binding constant between the vesicles and the AuNPs, we proposed a model for the relationship between the concentration of the AuNPs and the velocity of the vesicles. Consequently, the increased velocity of the vesicles was attributed to the light scattering that was enhanced when AuNPs were adsorbed onto the vesicles.
Collapse
Affiliation(s)
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
17
|
Kruglik SG, Royo F, Guigner JM, Palomo L, Seksek O, Turpin PY, Tatischeff I, Falcón-Pérez JM. Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles. NANOSCALE 2019; 11:1661-1679. [PMID: 30620023 DOI: 10.1039/c8nr04677h] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The technique of Raman tweezers microspectroscopy (RTM) for the global biomolecular content characterization of a single extracellular vesicle (EV) or a small number of EVs or other nanoscale bioparticles in an aqueous dispersion in the difficult-to-access size range of near 100 nm is described in detail. The particularities and potential of RTM are demonstrated using the examples of DOPC liposomes, exosomes from human urine and rat hepatocytes, and a mixed sample of the transfection reagent FuGENE in diluted DNA solution. The approach of biomolecular component analysis for the estimation of the main biomolecular contributions (proteins, lipids, nucleic acids, carotenoids, etc.) is proposed and discussed. Direct Raman evidence for strong intra-sample biomolecular heterogeneity of individual optically trapped EVs, due to variable contributions from nucleic acids and carotenoids in some preparations, is reported. On the basis of the results obtained, we are making an attempt to convince the scientific community that RTM is a promising method of single-EV research; to our knowledge, it is the only technique available at the moment that provides unique information about the global biomolecular composition of a single vesicle or a small number of vesicles, thus being capable of unravelling the high diversity of EV subpopulations, which is one of the most significant urgent challenges to overcome. Possible RTM applications include, among others, searching for DNA biomarkers, cancer diagnosis, and discrimination between different subpopulations of EVs, lipid bodies, protein aggregates and viruses.
Collapse
Affiliation(s)
- Sergei G Kruglik
- Laboratoire Jean Perrin, Sorbonne Université, CNRS UMR 8237, 4 place Jussieu, Paris, 75005, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hill EH, Li J, Lin L, Liu Y, Zheng Y. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13252-13262. [PMID: 30350700 PMCID: PMC6246038 DOI: 10.1021/acs.langmuir.8b01979] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid vesicles are important biological assemblies, which are critical to biological transport processes, and vesicles prepared in the lab are a workhorse for studies of drug delivery, protein unfolding, biomolecular interactions, compartmentalized chemistry, and stimuli-responsive sensing. The current method of using optical tweezers for holding lipid vesicles in place for single-vesicle studies suffers from limitations such as high optical power, rigorous optics, and small difference in the refractive indices of vesicles and water. Herein, we report the use of plasmonic heating to trap vesicles in a temperature gradient, allowing long-range attraction, parallel trapping, and dynamic manipulation. The capabilities and limitations with respect to thermal effects on vesicle structure and optical spectroscopy are discussed. This simple approach allows vesicle manipulation using down to 3 orders of magnitude lower optical power and at least an order of magnitude higher trapping stiffness per unit power than traditional optical tweezers while using a simple optical setup. In addition to the benefit provided by the relaxation of these technical constraints, this technique can complement optical tweezers to allow detailed studies on thermophoresis of optically trapped vesicles and effects of locally generated thermal gradients on the physical properties of lipid vesicles. Finally, the technique itself and the large-scale collection of vesicles have huge potential for future studies of vesicles relevant to detection of exosomes, lipid-raft formation, and other areas relevant to the life sciences.
Collapse
Affiliation(s)
- Eric H. Hill
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Jingang Li
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Linhan Lin
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yaoran Liu
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Abstract
Enabling concurrent, high throughput analysis of single nanoparticles would greatly increase the capacity to study size, composition and inter and intra particle population variance with applications in a wide range of fields from polymer science to drug delivery. Here, we present a comprehensive platform for Single Particle Automated Raman Trapping Analysis (SPARTA) able to integrally analyse nanoparticles ranging from synthetic polymer particles to liposomes without any modification. With the developed highly controlled automated trapping process, single nanoparticles are analysed with high throughput and sensitivity to resolve particle mixtures, obtain detailed compositional spectra of complex particles, track sequential functionalisations, derive particle sizes and monitor the dynamics of click reactions occurring on the nanoparticle surface. The SPARTA platform opens up a wide range of new avenues for nanoparticle research through label-free integral high-throughput single particle analysis, overcoming key limitations in sensitivity and specificity of existing bulk analysis methods.
Collapse
|
20
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
21
|
Kitt JP, Bryce DA, Minteer SD, Harris JM. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles. Anal Chem 2018; 90:7048-7055. [PMID: 29757613 DOI: 10.1021/acs.analchem.8b01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| | - David A Bryce
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| | - Joel M Harris
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| |
Collapse
|
22
|
Suga K, Otsuka Y, Okamoto Y, Umakoshi H. Gel-Phase-like Ordered Membrane Properties Observed in Dispersed Oleic Acid/1-Oleoylglycerol Self-Assemblies: Systematic Characterization Using Raman Spectroscopy and a Laurdan Fluorescent Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2081-2088. [PMID: 29309161 DOI: 10.1021/acs.langmuir.7b04044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous dispersions of oleic acid (OA) and those modified with 1-oleoylglycerol (monoolein, MO) form various kinds of self-assembled structures: micelles, vesicles, oil-in-water (O/W) emulsions, hexagonal phases, and dispersed cubic phases. Conventionally, these self-assembled structures have been characterized using cryogenic transmission electron microscopy or X-ray diffraction spectroscopy. However, these methodologies require specialized treatment before they can be used, which may lead to the self-assemblies not adopting their true equilibrium state. Herein, we systematically characterized the self-assemblies composed of OA and MO in aqueous solution using Raman spectroscopy and fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). The OA/MO dispersions at pH 5.0 showed increased chain packing in comparison to the OA micelle at pH 11 or OA vesicle at pH 9.0, which were characterized by the intensity ratio of the Raman peaks at 2850 and 2890 cm-1, R = I2890/I2850. In the Laurdan fluorescence measurements, the obtained spectra were deconvoluted to two peak fractions (A1: λem= 490 nm; A2: λem = 440 nm), and the peak area ratio, A1/(A1 + A2), was defined as the membrane hydrophilicity Øm. The Øm value of the OA/MO dispersion at pH 5.0 was similar to that of the OA O/W emulsion, indicating that the membrane surfaces of these self-assemblies were relatively dehydrated compared to the OA micelle or OA vesicle. To categorize the type of self-assembly dispersion, a Cartesian diagram plot was systematically drawn: R on the x axis and Øm on the y axis, with the cross point at x = 1, y = 0.5. By comparing the membrane properties of the OA-based micelles, O/W emulsions, and dispersed cubic phases, we determined that the OA/MO dispersion at pH 5.0 possessed higher chain packing (R > 1) and a dehydrated membrane surface (Øm < 0.5), which is similar to that of the ordered membranes in gel phases. This characterization method can be useful in evaluating the ordered membrane properties in dispersed self-assemblies in aqueous media.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yoko Otsuka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
23
|
Uyama M, Inoue K, Kinoshita K, Miyahara R, Yokoyama H, Nakano M. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains. J Oleo Sci 2018; 67:67-75. [PMID: 29311523 DOI: 10.5650/jos.ess17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower Tm values have a greater ability to increase the fluidity.
Collapse
Affiliation(s)
| | | | | | | | - Hirokazu Yokoyama
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
24
|
Neal SL. Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy. APPLIED SPECTROSCOPY 2018; 72:102-113. [PMID: 28805070 DOI: 10.1177/0003702817729347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process, the results are consistent with the evolution of mixed phase bicelles (nanodisks) and small amounts of worm-like DMPC/DHPC aggregates, and perhaps DHPC micelles, at low temperature to suspensions of branched and entangled worm-like aggregates above the DMPC gel phase transition and perforated multi-lamellar aggregates at high temperature.
Collapse
Affiliation(s)
- Sharon L Neal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
25
|
Light Scattering By Optically-Trapped Vesicles Affords Unprecedented Temporal Resolution Of Lipid-Raft Dynamics. Sci Rep 2017; 7:8589. [PMID: 28819244 PMCID: PMC5561052 DOI: 10.1038/s41598-017-08980-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
A spectroscopic technique is presented that is able to identify rapid changes in the bending modulus and fluidity of vesicle lipid bilayers on the micrometer scale, and distinguish between the presence and absence of heterogeneities in lipid-packing order. Individual unilamellar vesicles have been isolated using laser tweezers and, by measuring the intensity modulation of elastic back-scattered light, changes in the biophysical properties of lipid bilayers were revealed. Our approach offers unprecedented temporal resolution and, uniquely, physical transformations of lipid bilayers can be monitored on a length scale of micrometers. As an example, the deformation of a membrane bilayer following the gel-to-fluid phase transition in a pure phospholipid vesicle was observed to take place across an interval of 54 ± 5 ms corresponding to an estimated full-width of only ~1 m°C. Dynamic heterogeneities in packing order were detected in mixed-lipid bilayers. Using a ternary mixture of lipids, the modulated-intensity profile of elastic back-scattered light from an optically-trapped vesicle revealed an abrupt change in the bending modulus of the bilayer which could be associated with the dissolution of ordered microdomains (i.e., lipid rafts). This occurred across an interval of 30 ± 5 ms (equivalent to ~1 m°C).
Collapse
|
26
|
Kitt JP, Bryce DA, Minteer SD, Harris JM. Raman Spectroscopy Reveals Selective Interactions of Cytochrome c with Cardiolipin That Correlate with Membrane Permeability. J Am Chem Soc 2017; 139:3851-3860. [PMID: 28221789 DOI: 10.1021/jacs.7b00238] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Permeabilization of the outer mitochondrial membrane is an integral step in apoptosis. The resulting release of pro-apoptotic signaling proteins leads to cell destruction through activation of the cysteine-aspartic protease (caspase) cascade. However, the mechanism of outer mitochondrial membrane (OMM) permeabilization remains unclear. It was recently shown that cytochrome c can induce pore formation in cardiolipin-containing phospholipid membranes, leading to large dextran and protein permeability. In this work, the interaction of cytochrome c with cardiolipin-containing phospholipid vesicles, serving as models of the OMM, is investigated to probe cytochrome c-induced permeability. Lipid vesicles having either a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixed-DPPC/cardiolipin membrane and containing a membrane-impermeable Raman tracer 3-nitrobenzenesulfonate (3-NBS) were optically trapped, translated into a solution containing cytochrome c, and monitored for 3-NBS leakage. Cytochrome-correlated leakage was observed only in cardiolipin-containing vesicles. Structural changes observed in the Raman spectra during permeabilization indicated acyl chain disordering along with decreased intensity of the cardiolipin cis-double-bond stretching modes. When the vesicle-associated cytochrome c Raman spectrum is compared with a spectrum in buffer, heme-resonance bands are absent, indicating loss of Met-80 coordination. To verify selective interactions of cytochrome c with cardiolipin, these experiments were repeated where the DPPC acyl chains were deuterated (D62-DPPC), allowing spectral resolution of the DPPC acyl chain response from that of cardiolipin. Interestingly, D62-DPPC acyl chains were unaffected by cytochrome c accumulation, while cardiolipin showed major changes in acyl chain structure. These results suggest that cytochrome-induced permeabilization proceeds through selective interaction of cytochrome c with cardiolipin, resulting in protein unfolding, where the unfolded form interacts with cardiolipin acyl chains within the bilayer to induce permeability.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - David A Bryce
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Reduction-responsive release property of egg phosphatidylcholine liposomes incorporating benzyl disulfide. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Wright AJ, Richens JL, Bramble JP, Cathcart N, Kitaev V, O'Shea P, Hudson AJ. Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap. NANOSCALE 2016; 8:16395-16404. [PMID: 27722713 DOI: 10.1039/c6nr05616d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a new technique for the study of model membranes on the length-scale of a single nano-sized liposome. Silver decahedral nanoparticles have been encapsulated by a model unilamellar lipid bilayer creating nano-sized lipid vesicles. The metal core has two roles (i) increasing the polarizability of vesicles, enabling a single vesicle to be isolated and confined in an optical trap, and (ii) enhancing Raman scattering from the bilayer, via the high surface-plasmon field at the sharp vertices of the decahedral particles. Combined this has allowed us to measure a Raman fingerprint from a single vesicle of 50 nm-diameter, containing just ∼104 lipid molecules in a bilayer membrane over a surface area of <0.01 μm2, equivalent to a volume of approximately 1 zepto-litre. Raman scattering is a weak and inefficient process and previous studies have required either a substantially larger bilayer area in order to obtain a detectable signal, or the tagging of lipid molecules with a chromophore to provide an indirect probe of the bilayer. Our approach is fully label-free and bio-compatible and, in the future, it will enable much more localized studies of the heterogeneous structure of lipid bilayers and of membrane-bound components than is currently possible.
Collapse
Affiliation(s)
- A J Wright
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - J L Richens
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC Canada, V6T 1Z3
| | - J P Bramble
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC Canada, V6T 1Z3
| | - N Cathcart
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - V Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - P O'Shea
- Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC Canada, V6T 1Z3
| | - A J Hudson
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
29
|
Kitt JP, Harris JM. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9033-9044. [PMID: 27493032 DOI: 10.1021/acs.langmuir.6b02309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Measuring lipid-membrane partitioning of small molecules is critical to predicting bioavailability and investigating molecule-membrane interactions. A stable model membrane for such studies has been developed through assembly of a phospholipid monolayer on n-alkane-modified surfaces. These hybrid bilayers have recently been generated within n-alkyl-chain (C18)-modified porous silica and used in chromatographic retention studies of small molecules. Despite their successful application, determining the structure of hybrid bilayers within chromatographic silica is challenging because they reside at buried interfaces within the porous structure. In this work, we employ confocal Raman microscopy to investigate the formation and temperature-dependent structure of hybrid-phospholipid bilayers in C18-modified, porous-silica chromatographic particles. Porous silica provides sufficient surface area within a confocal probe volume centered in an individual particle to readily measure, with Raman microscopy, the formation of an ordered hybrid bilayer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the surface C18 chains. The DMPC surface density was quantified from the relative Raman scattering intensities of C18 and phospholipid acyl chains and found to be ∼40% of a DMPC vesicle membrane. By monitoring Raman spectra acquired versus temperature, the bilayer main phase transition was observed to be broadened and shifted to higher temperature compared to a DMPC vesicle, in agreement with differential scanning calorimetry (DSC) results. Raman scattering of deuterated phospholipid was resolved from protonated C18 chain scattering, showing that the lipid acyl and C18 chains melt simultaneously in a single phase transition. The surface density of lipid in the hybrid bilayer, the ordering of both C18 and lipid acyl chains upon bilayer formation, and decoupling of C18 methylene C-H vibrations by deuterated lipid acyl chains all suggest an interdigitated acyl chain structure. The simultaneous melting of both layers is also consistent with an interdigitated structure, where immobility of surface-grafted C18 chains decreases the cooperativity and increases the melting temperature compared to a vesicle bilayer.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
30
|
Challagulla V, Nayar S, Walsh K, Fabbro L. Advances in techniques for assessment of microalgal lipids. Crit Rev Biotechnol 2016; 37:566-578. [PMID: 27417693 DOI: 10.1080/07388551.2016.1206058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microalgae are a varied group of organisms with considerable commercial potential as sources of various biochemicals, storage molecules and metabolites such as lipids, sugars, amino acids, pigments and toxins. Algal lipids can be processed to bio-oils and biodiesel. The conventional method to estimate algal lipids is based on extraction using solvents and quantification by gravimetry or chromatography. Such methods are time consuming, use hazardous chemicals and are labor intensive. For rapid screening of prospective algae or for management decisions (e.g. decision on timing of harvest), a rapid, high throughput, reliable, accurate, cost effective and preferably nondestructive analytical technique is desirable. This manuscript reviews the application of fluorescent lipid soluble dyes (Nile Red and BODIPY 505/515), nuclear magnetic resonance (NMR), Raman, Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopy for the assessment of lipids in microalgae.
Collapse
Affiliation(s)
- Vineela Challagulla
- a School of Medical and Applied Sciences , Central Queensland University , Rockhampton , QLD , Australia
| | - Sasi Nayar
- b South Australian Research and Development Institute - Aquatic Sciences , West Beach , South Australia , Australia
| | - Kerry Walsh
- a School of Medical and Applied Sciences , Central Queensland University , Rockhampton , QLD , Australia
| | - Larelle Fabbro
- a School of Medical and Applied Sciences , Central Queensland University , Rockhampton , QLD , Australia
| |
Collapse
|
31
|
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat Chem 2016; 8:881-9. [DOI: 10.1038/nchem.2537] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/27/2016] [Indexed: 11/09/2022]
|
32
|
Kula M, Rys M, Saja D, Tys J, Skoczowski A. Far-red dependent changes in the chemical composition ofSpirulina platensis. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Monika Kula
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Diana Saja
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Jerzy Tys
- The Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences; Lublin Poland
| | | |
Collapse
|
33
|
Matthews JR, Payne CM, Hafner JH. Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9893-9900. [PMID: 26302310 DOI: 10.1021/acs.langmuir.5b01203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and localized surface plasmon resonance sensing (LSPR) have been applied for a detailed analysis of lipid bilayers at the surface of gold nanorods. The spatial dependence of surface enhancement and the optical effects of the lipid phase transition confirm the presence of a bilayer membrane structure. Deuterated lipids exchanged rapidly between the nanorod surface and lipid vesicles in solution, suggesting a loosely bound, natural membrane structure. However, at a low solution concentration of lipid vesicles, the lipids on the gold nanorod surface convert to a nonbilayer structure, which could impact biological applications of these nanomaterials.
Collapse
Affiliation(s)
- James R Matthews
- Department of Physics and Astronomy and ‡Department of Chemistry, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Courtney M Payne
- Department of Physics and Astronomy and ‡Department of Chemistry, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Jason H Hafner
- Department of Physics and Astronomy and ‡Department of Chemistry, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Hardcastle CD, Harris JM. Confocal Raman Microscopy for pH-Gradient Preconcentration and Quantitative Analyte Detection in Optically Trapped Phospholipid Vesicles. Anal Chem 2015; 87:7979-86. [PMID: 26132552 DOI: 10.1021/acs.analchem.5b01905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a vesicle membrane to preserve a pH gradient, while allowing for diffusion of neutral molecules across the phospholipid bilayer, can provide the isolation and preconcentration of ionizable compounds within the vesicle interior. In this work, confocal Raman microscopy is used to observe (in situ) the pH-gradient preconcentration of compounds into individual optically trapped vesicles that provide sub-femtoliter collectors for small-volume samples. The concentration of analyte accumulated in the vesicle interior is determined relative to a perchlorate-ion internal standard, preloaded into the vesicle along with a high-concentration buffer. As a guide to the experiments, a model for the transfer of analyte into the vesicle based on acid-base equilibria is developed to predict the concentration enrichment as a function of source-phase pH and analyte concentration. To test the concept, the accumulation of benzyldimethylamine (BDMA) was measured within individual 1 μm phospholipid vesicles having a stable initial pH that is 7 units lower than the source phase. For low analyte concentrations in the source phase (100 nM), a concentration enrichment into the vesicle interior of (5.2 ± 0.4) × 10(5) was observed, in agreement with the model predictions. Detection of BDMA from a 25 nM source-phase sample was demonstrated, a noteworthy result for an unenhanced Raman scattering measurement. The developed model accurately predicts the falloff of enrichment (and measurement sensitivity) at higher analyte concentrations, where the transfer of greater amounts of BDMA into the vesicle titrates the internal buffer and decreases the pH gradient. The predictable calibration response over 4 orders of magnitude in source-phase concentration makes it suitable for quantitative analysis of ionizable compounds from small-volume samples. The kinetics of analyte accumulation are relatively fast (∼15 min) and are consistent with the rate of transfer of a polar aromatic molecule across a gel-phase phospholipid membrane.
Collapse
Affiliation(s)
- Chris D Hardcastle
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
35
|
Kitt JP, Bryce DA, Harris JM. Spatial filtering of a diode laser beam for confocal Raman microscopy. APPLIED SPECTROSCOPY 2015; 69:513-517. [PMID: 25741877 DOI: 10.1366/14-07671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
With the development of single-longitudinal mode diode lasers, there has been an increase in using these sources for Raman spectroscopy. This is largely due to the cost-effectiveness of diode lasers, which offer savings not only in initial capital cost, but also electrical, cooling, and replacement costs over time, when compared with ion lasers. The use of diode-lasers in confocal Raman microscopy has remained a challenge, however, due to poor transverse beam quality. In this work, we present the design and implementation of a simple spatial filter capable of adapting a single-mode diode laser source to confocal Raman microscopy, yielding comparable spatial resolution as a gas-ion laser beam for profiling and optical-trapping applications. For profiling applications, spatial filtering improved x,y resolution of the beam by a factor 10, which in turn increased optical-trapping forces by ~90 times and yielded sevenfold greater Raman scattering signal intensity from an optically trapped phospholipid vesicle.
Collapse
Affiliation(s)
- Jay P Kitt
- University of Utah, Department of Chemistry, 315 South 1400 East, Salt Lake City, UT 84112-0850 USA
| | | | | |
Collapse
|
36
|
Park S, Choi SQ, Song C, Kim MW, Choi MC. Surface charge effects on optical trapping of nanometer-sized lipid vesicles. SOFT MATTER 2014; 10:8406-8412. [PMID: 25130878 DOI: 10.1039/c4sm01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optical trapping of nanometer-sized lipid vesicles has been challenging due to the low refractive index contrast of the thin lipid bilayer to the aqueous medium. Using an "optical bottle", a recently developed technique to measure interactions of nanoparticles trapped by an infrared laser, we report, for the first time, quantitative measurements of the trapping energy of charged lipid vesicles. We found that the trapping energy increases with the relative amount of anionic lipids (DOPG) to neutral lipids (DOPC) in vesicles. Moreover, as monovalent salt is added into the exterior solution of vesicles, the trapping energy rapidly approaches zero, and this decrease in trapping energy strongly depends on the amount of anionic lipids in vesicles. A simple model with our experimental observations explains that the trapping energy of charged lipid vesicles is highly correlated with the surface charge density and electric double layer. In addition, we demonstrated selective trapping of a binary mixture of vesicles in different mole fractions of charged lipids, a strategy that has potential implications on charge selective vesicle sorting for engineering applications.
Collapse
Affiliation(s)
- Seongmin Park
- Department of Physics, KAIST, Daejeon, 305-701, Korea.
| | | | | | | | | |
Collapse
|
37
|
Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman Spectroscopy. J Bacteriol 2014; 196:3983-91. [PMID: 25157078 DOI: 10.1128/jb.01590-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Raman spectroscopy was used to study the time course of phenotypic responses of Escherichia coli (DH5α) to 1-butanol exposure (1.2% [vol/vol]). Raman spectroscopy is of interest for bacterial phenotyping because it can be performed (i) in near real time, (ii) with minimal sample preparation (label-free), and (iii) with minimal spectral interference from water. Traditional off-line analytical methodologies were applied to both 1-butanol-treated and control cells to draw correlations with Raman data. Here, distinct sets of Raman bands are presented that characterize phenotypic traits of E. coli with maximized correlation to off-line measurements. In addition, the observed time course phenotypic responses of E. coli to 1.2% (vol/vol) 1-butanol exposure included the following: (i) decreased saturated fatty acids levels, (ii) retention of unsaturated fatty acids and low levels of cyclopropane fatty acids, (iii) increased membrane fluidity following the initial response of increased rigidity, and (iv) no changes in total protein content or protein-derived amino acid composition. For most phenotypic traits, correlation coefficients between Raman spectroscopy and traditional off-line analytical approaches exceeded 0.75, and major trends were captured. The results suggest that near-real-time Raman spectroscopy is suitable for approximating metabolic and physiological phenotyping of bacterial cells subjected to toxic environmental conditions.
Collapse
|
38
|
Kula M, Rys M, Skoczowski A. Far-red light (720 or 740 nm) improves growth and changes the chemical composition ofChlorella vulgaris. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Monika Kula
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences Cracow Poland
| | - Magdalena Rys
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences Cracow Poland
| | | |
Collapse
|
39
|
Kühler P, Weber M, Lohmüller T. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8947-8952. [PMID: 24896979 DOI: 10.1021/am5023418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.
Collapse
Affiliation(s)
- Paul Kühler
- Photonics and Optoelectronics Group, Department of Physics and Center for NanoScience (CeNS), Ludwig Maximilian University München , Amalienstrasse 54, Munich 80799, Germany
| | | | | |
Collapse
|
40
|
Schaefer JJ, Crawford AC, Porter MD, Harris JM. Confocal Raman microscopy for investigating synthesis and characterization of individual optically trapped vinyl-polymerized surfactant particles. APPLIED SPECTROSCOPY 2014; 68:633-641. [PMID: 25014718 DOI: 10.1366/13-07337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small polymeric particles are increasingly employed as adsorbent materials, as molecular carriers, as delivery vehicles, and in preconcentration applications. The rational development of these materials requires in situ methods of analysis to characterize their synthesis, structure, and applications. Optical-trapping confocal Raman microscopy is a spectroscopic method capable of acquiring information at several stages of the development of such dispersed particulate materials. In the present study, an example material is developed and tested using confocal Raman microscopy for characterization at each stage of the process. Specifically, the method is used to investigate the synthesis, structure, and applications of individual polymeric surfactant particles produced by the vinyl polymerization of sodium 11-acrylamidoundecanoate (SAAU). The kinetics of polymerization can be monitored over time by measuring the loss of the acrylamide C=C functional groups using confocal Raman microscopy of particles optically trapped by the excitation laser, where, within the limits of detecting the vinyl functional group, the complete polymerization of the SAAU monomer was achieved. The polymerized SAAU particles are spherical, and they exhibit uniform access to water throughout their structure, as tested by the penetration of heavy water (D2O) and collection of spatially resolved Raman spectra from the interior of the particle. These porous particles contain hydrophobic domains that can be used to accumulate molecules for adsorption or carrier applications. This property was tested by using confocal Raman microscopy to measure the accumulation equilibria and kinetics of a model compound, dioxybenzone. The partitioning of this compound into the polymer surfactant could be determined on a quantitative basis using relative scattering cross sections of the SAAU monomer and the adsorbate. The study points out the utility of optical-trapping confocal Raman microscopy for investigating the synthesis, structure, and potential carrier applications of polymeric particle materials.
Collapse
Affiliation(s)
- Jonathan J Schaefer
- University of Utah, Department of Chemistry, 315 South 1400 East Salt Lake City, UT 84112 USA
| | | | | | | |
Collapse
|
41
|
Abstract
Liposome structures have a wide range of applications in biology, biochemistry, and biophysics. As a result, several methods for forming liposomes have been developed. This review provides a critical comparison of existing microfluidic technologies for forming liposomes and, when applicable, a comparison with their analogous macroscale counterparts. The properties of the generated liposomes, including size, size distribution, lamellarity, membrane composition, and encapsulation efficiency, form the basis for comparison. We hope that this critique will allow the reader to make an informed decision as to which method should be used for a given biological application.
Collapse
Affiliation(s)
- Dirk van Swaay
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Tatischeff I, Larquet E, Falcón-Pérez JM, Turpin PY, Kruglik SG. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles 2012; 1:19179. [PMID: 24009887 PMCID: PMC3760651 DOI: 10.3402/jev.v1i0.19179] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 09/23/2012] [Indexed: 12/12/2022] Open
Abstract
The joint use of 3 complementary techniques, namely, nanoparticle tracking analysis (NTA), cryo-electron microscopy (Cryo-EM) and Raman tweezers microspectroscopy (RTM), is proposed for a rapid characterisation of extracellular vesicles (EVs) of various origins. NTA is valuable for studying the size distribution and concentration, Cryo-EM is outstanding for the morphological characterisation, including observation of vesicle heterogeneity, while RTM provides the global chemical composition without using any exogenous label. The capabilities of this approach are evaluated on the example of cell-derived vesicles of Dictyostelium discoideum, a convenient general model for eukaryotic EVs. At least 2 separate species differing in chemical composition (relative amounts of DNA, lipids and proteins, presence of carotenoids) were found for each of the 2 physiological states of this non-pathogenic microorganism, that is, cell growth and starvation-induced aggregation. These findings demonstrate the specific potency of RTM. In addition, the first Raman spectra of human urinary exosomes are reported, presumably constituting the primary step towards Raman characterisation of EVs for the purpose of human diseases diagnoses.
Collapse
Affiliation(s)
- Irène Tatischeff
- Laboratoire Jean Perrin, FRE 3231 CNRS, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
43
|
Kaliaperumal V, Hamaguchi HO. Casting new physicochemical light on the fundamental biological processes in single living cells by using Raman microspectroscopy. CHEM REC 2012; 12:567-80. [PMID: 23129551 DOI: 10.1002/tcr.201200008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Indexed: 12/12/2022]
Abstract
This Personal Account highlights the capabilities of spontaneous Raman microspectroscopy for studying fundamental biological processes in a single living cell. Raman microspectroscopy provides time- and space-resolved vibrational Raman spectra that contain detailed information on the structure and dynamics of biomolecules in a cell. By using yeast as a model system, we have made great progress in the development of this methodology. The results that we have obtained so far are described herein with an emphasis placed on how three cellular processes, that is, cell-division, respiration, and cell-death, are traced and elucidated with the use of time- and space-resolved structural information that is extracted from the Raman spectra. For cell-division, compositional- and structural changes of various biomolecules are observed during the course of the whole cell cycle. For respiration, the redox state of mitochondrial cytochromes, which is inferred from the resonance Raman bands of cytochromes, is used to evaluate the respiration activity of a single cell, as well as that of isolated mitochondrial particles. Special reference is made to the "Raman spectroscopic signature of life", which is a characteristic Raman band at 1602 cm(-1) that is found in yeast cells. This signature reflects the cellular metabolic activity and may serve as a measure of mitochondrial dysfunction. For cell-death, "cross-talk" between the mitochondria and the vacuole in a dying cell is suggested.
Collapse
Affiliation(s)
- Venkatesh Kaliaperumal
- Department of Chemistry, School of Science, The University of Tokyo, Hongo 7-3-1 Tokyo,113-0033, Japan
| | | |
Collapse
|
44
|
Schaefer JJ, Ma C, Harris JM. Confocal Raman microscopy probing of temperature-controlled release from individual, optically-trapped phospholipid vesicles. Anal Chem 2012; 84:9505-12. [PMID: 23043532 DOI: 10.1021/ac302346n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control of permeability of phospholipid vesicle (liposome) membranes is critical to their applications in analytical sensing, in fundamental studies of chemistry in small volumes, and in encapsulation and release of payloads for site-directed drug delivery. Applications of liposome formulations in drug delivery often take advantage of the enhanced permeability of phospholipid membranes at their gel-to-fluid phase transition, where the release of encapsulated molecules can be initiated by an increase in temperature. Despite numerous successful liposome formulations for encapsulation and release methods to study the kinetics, this process has been limited to investigations of bulk vesicle dispersions, which provide little or no information about the vesicle membrane structure and its relationship to the kinetics of trans-membrane transport. In this work, confocal Raman microscopy is adapted to study temperature-dependent release of a model compound, 3-nitrobenzene sulfonate (3-NBS), from individual optically trapped phospholipid vesicles, while simultaneously monitoring structural changes in the vesicle membrane reported by vibrational modes of phospholipid acyl chains and the local environment of the encapsulated compound. The confocal geometry allows efficient excitation and collection of Raman scattering from a single vesicle, while optical trapping allows more than hour-long observations of the same vesicle. With window factor analysis to resolve component spectra, temperature-controlled release of 3-NBS through vesicle membranes composed of pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was measured and compared to transport through a lysolipid-containing membrane specifically formulated for efficient drug delivery.
Collapse
Affiliation(s)
- Jonathan J Schaefer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | |
Collapse
|
45
|
Wu H, Oliver AE, Ngassam VN, Yee CK, Parikh AN, Yeh Y. Preparation, characterization, and surface immobilization of native vesicles obtained by mechanical extrusion of mammalian cells. Integr Biol (Camb) 2012; 4:685-92. [PMID: 22543681 DOI: 10.1039/c2ib20022h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Native vesicles or "reduced protocells" derived by mechanical extrusion concentrate selected plasma membrane components, while downsizing complexities of whole cells. We illustrate this technique, characterize the physical-chemical properties of these reduced configurations of whole cells, and demonstrate their surface immobilization and patternability. This simple detergent-free vesicularized membrane preparation should prove useful in fundamental studies of cellular membranes, and may provide a means to engineer therapeutic cells and enable high-throughput devices containing near-native, functional proteolipidic assemblies.
Collapse
Affiliation(s)
- Huawen Wu
- Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kirchner SR, Ohlinger A, Pfeiffer T, Urban AS, Stefani FD, Deak A, Lutich AA, Feldmann J. Membrane composition of jetted lipid vesicles: a Raman spectroscopy study. JOURNAL OF BIOPHOTONICS 2012; 5:40-46. [PMID: 22147675 DOI: 10.1002/jbio.201100058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microfluidic jetting is a promising method to produce giant unilamellar phospholipid vesicles for mimicking living cells in biomedical studies. We have investigated the chemical composition of membranes of vesicles prepared using this approach by means of Raman scattering spectroscopy. The membranes of all jetted vesicles are found to contain residuals of the organic solvent decane used in the preparation of the initial planar membrane. The decane inclusions are randomly distributed over the vesicle surface area and vary in thickness from a few to several tens of nanometers. Our findings point out that the membrane properties of jetted vesicles may differ considerably from those of vesicles prepared by other methods and from those of living cells.
Collapse
Affiliation(s)
- Silke R Kirchner
- Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bendix PM, Oddershede LB. Expanding the optical trapping range of lipid vesicles to the nanoscale. NANO LETTERS 2011; 11:5431-7. [PMID: 22074221 DOI: 10.1021/nl203200g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Small unilamellar lipid vesicles with diameters down to 50 nm enclosing high refractive index sucrose cores can be optically trapped individually in three dimensions using a focused laser beam. Combined optical trapping and confocal microscopy allows for simultaneous quantitative measurements of the forces exerted on individual vesicles and of their size and shape. The position of individual vesicles in three dimensions is measured with nanometer spatial and ∼10 μs temporal resolution.
Collapse
Affiliation(s)
- Poul M Bendix
- Niels Bohr Institute, The University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen
| | | |
Collapse
|
48
|
Myers GA, Harris JM. Confocal Raman microscopy of pH-gradient-based 10 000-fold preconcentration of compounds within individual, optically trapped phospholipid vesicles. Anal Chem 2011; 83:6098-105. [PMID: 21740010 DOI: 10.1021/ac2012152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stable pH gradient established across the membrane of phospholipid vesicle can induce the accumulation of ionizable compounds from bulk solution into the vesicle interior. This pH-gradient vesicle loading process has previously been utilized to encapsulate drugs in pharmaceutical liposomal formulations. In the present work, this process is exploited to preconcentrate dilute analytes from free solution into phospholipid vesicles, which are then detected by optically trapping individual vesicles and measuring their contents using confocal Raman microscopy. The theory of accumulation, based on the acid-base ionization equilibria of the analyte, is developed to account for depletion of the source phase and the finite buffering capacity of the vesicle interior. The model predicts that, under appropriate conditions, enrichment factors of more than 4 orders of magnitude can be realized. To test the concept, experiments were performed measuring the accumulation of benzyldimethylamine into 600-nm phospholipid vesicles. Manipulation of vesicles by optical trapping allows accumulation within an individual vesicle to be characterized while varying the external solution conditions. A more than 10 000-fold enrichment of the analyte concentration inside the vesicle relative to the source phase is reported. The results suggest that pH-gradient loading could be exploited as a powerful preconcentration scheme for trace analysis using either Raman microscopy or other microspectroscopy techniques.
Collapse
Affiliation(s)
- Grant A Myers
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | |
Collapse
|
49
|
Chen X, Wen Y, Wang N, Gu K, Yang H. Uniform gold nanoarray formed by controlled IP6 micelles for chemical mapping. NANOTECHNOLOGY 2011; 22:205603. [PMID: 21444953 DOI: 10.1088/0957-4484/22/20/205603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A uniform Au nanoarray is successfully formed at an indium tin oxide (ITO) glass surface modified with well-distributed inositol hexakisphosphoric (IP(6)) micelle layers by controlling the pH of the medium at 10. When Rhodamine 6G (R6G) and 2-mercaptopyridine (2-MPy) are used as the Raman probes, the uniform Au nanoarray presents a sound surface enhanced Raman scattering (SERS) efficiency and a reproducible Raman signal in two dimensions. The relative standard deviation (RSD) of Raman intensities of R6G or 2-MPy on the uniform Au nanoarray recorded by point to point is less than 12%, which is beneficial to its application for chemical mapping or imaging. A case of Raman point-mapping for onion epidermis is demonstrated in the present work. A uniform IP(6)-Au nanoarray might be mass-produced by this protocol.
Collapse
Affiliation(s)
- Xiyao Chen
- Department of Chemistry, Shanghai Normal University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Heider EC, Barhoum M, Edwards K, Gericke KH, Harris JM. Structural Characterization of Individual Vesicles using Fluorescence Microscopy. Anal Chem 2011; 83:4909-15. [DOI: 10.1021/ac200632h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Emily C. Heider
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Moussa Barhoum
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Kyle Edwards
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Karl-Heinz Gericke
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|