Gómara B, García-Ruiz C, Marina ML. Enantioselective separation of the sunscreen agent 3-(4-methylbenzylidene)-camphor by electrokinetic chromatography: Quantitative analysis in cosmetic formulations.
Electrophoresis 2005;
26:3952-9. [PMID:
16217832 DOI:
10.1002/elps.200500080]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
3-(4-Methylbenzylidene)-camphor (MBC) is a chiral sunscreen agent used in cosmetic products. In this work, the enantioseparation of MBC has been performed by EKC and applied to the analysis of the MBC enantiomers in cosmetic creams. Different experimental conditions (type and concentration of the chiral selector, temperature, and sample solvent) have been optimized. Due to the neutral nature of this compound, anionic CD derivatives were investigated as chiral selectors. Carboxymethylated-beta-CD (CM-beta-CD) showed the highest chiral separation power, observing that a 15 mM concentration of this CD at a working temperature of 15 degrees C enabled to obtain the highest enantioresolution. However, under these conditions, tailing of peaks obtained for the enantiomers was observed. The addition of increasing concentrations of the neutral alpha-CD to CM-beta-CD at a 15 mM concentration in a 100 mM borate buffer at pH 9.0 improved the enantiomeric separation and decreased peak tailing. The use of DMF for the total dissolution of the cosmetic creams, and methanol:water (1:1 v/v) for appropriate dilution enabled to observe good shape and size for the peaks of the MBC enantiomers. After optimizing a method for the preconditioning of the capillary, the analytical characteristics of the chiral separation method for the analysis of MBC were investigated. Linearity, LODs and LOQs, precision (instrumental repeatability, method repeatability, intermediate precision), accuracy, and selectivity were evaluated. The method was applied to analyze MBC enantiomers contained in two commercial cosmetic creams containing racemic MBC and to study the skin absorption of this compound with time.
Collapse