1
|
Beigtan M, Haddadnezhad M, Weon BM. Altering Mechanical and Dissolution Properties of Coffee Deposit by Adding Glucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15188-15195. [PMID: 39004894 DOI: 10.1021/acs.langmuir.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Glucose modifies the mechanical stability of coffee films and facilitates their dissolution dynamics at the microscale, rendering glucose-coffee a valuable natural biomaterial system for studying pharmaceutical applications. We show the glucose-dependent inhibition of crack propagation during the evaporation of glucose-coffee droplets. The addition of glucose increases the hardness, stiffness, and shear modulus of films, as measured by surface nanomechanical testing. The glucose-coffee film dissolves faster and more evenly than the pure coffee film through interfaces. The water penetrates through well-dissolved glucose channels. The modified mechanical properties and adjustable dissolution time, coupled with edibility, position the glucose-modified coffee as an excellent candidate for developing pharmaceutical inks for personalized medicine droplet-based printing.
Collapse
Affiliation(s)
- Mohadese Beigtan
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
2
|
Cheng Y, Bi X, Xu Y, Liu Y, Li J, Du G, Lv X, Liu L. Artificial intelligence technologies in bioprocess: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2023; 369:128451. [PMID: 36503088 DOI: 10.1016/j.biortech.2022.128451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Bioprocess control and optimization are crucial for tapping the metabolic potential of microorganisms, and which have made great progress in the past decades. Combination of the current control and optimization technologies with the latest computer-based strategies will be a worth expecting way to improve bioprocess further. Recently, artificial intelligence (AI) emerged as a data-driven technique independent of the complex interactions used in mathematical models and has been gradually applied in bioprocess. In this review, firstly, AI-guided modeling approaches of bioprocess are discussed, which are widely applied to optimize critical process parameters (CPPs). Then, AI-assisted rapid detection and monitoring technologies employed in bioprocess are summarized. Next, control strategies according to the above two technologies in bioprocess are analyzed. Lastly, current research gaps and future perspectives on AI-guided optimization and control technologies are discussed. This review provides theoretical guidance for developing AI-guided bioprocess optimization and control technologies.
Collapse
Affiliation(s)
- Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Allert MJ, Hellinga HW. Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation. Biochemistry 2022; 61:276-293. [PMID: 35084821 DOI: 10.1021/acs.biochem.1c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate assignment of protein function from sequence remains a fascinating and difficult challenge. The periplasmic-binding protein (PBP) superfamily present an interesting case of function prediction because they are both ubiquitous in prokaryotes and tend to diversify through gene duplication "explosions" that can lead to large numbers of paralogs in a genome. An engineered version of the moderately thermostable glucose-binding PBP from Escherichia coli has been used successfully as a reagentless fluorescent biosensor both in vitro and in vivo. To develop more robust sensors that meet the challenges of real-world applications, we report the discovery of thermostable homologues that retain a glucose-mediated conformationally coupled fluorescence response. Accurately identifying a glucose-binding PBP homologue among closely related paralogs is challenging. We demonstrate that a structure-based method that filters sequences by residues that bind glucose in an archetype structure is highly effective. Using fully sequenced bacterial genomes, we found that this filter reduced high paralog numbers to single hits in a genome, consistent with the accurate separation of glucose binding from other functions. We expressed engineered proteins for eight homologues, chosen to represent different degrees of sequence identity, and tested their glucose-mediated fluorescence responses. We accurately predicted the presence of glucose binding down to 31% sequence identity. We have also successfully identified suitable candidates for next-generation robust, fluorescent glucose sensors.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Reardon KF. Practical monitoring technologies for cells and substrates in biomanufacturing. Curr Opin Biotechnol 2021; 71:225-230. [PMID: 34482018 DOI: 10.1016/j.copbio.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Precise control over bioreactor operation is desired for optimal productivity and product quality, and there is an increased drive to automation in biomanufacturing. All of these goals require sensors, not only of the basic parameters of temperature, pH, and dissolved oxygen, but of the biomass and substrate concentrations, which directly determine the outcome of the bioprocess. While there are many innovative sensing concepts for biomass and substrate concentrations, this review focuses on sensors that are in-line with the bioreactor, providing data continuously without the removal of sample from the system. The discussion emphasizes the requirements of industry for these sensors, including performance, ease of use, and cost. As the bioeconomy grows, advances in sensing technologies will be needed to achieve the automation of the future for a wider array of bioreactors.
Collapse
Affiliation(s)
- Kenneth F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA; OptiEnz Sensors LLC, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Keller JP, Marvin JS, Lacin H, Lemon WC, Shea J, Kim S, Lee RT, Koyama M, Keller PJ, Looger LL. In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep 2021; 35:109284. [PMID: 34161775 DOI: 10.1016/j.celrep.2021.109284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/06/2020] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 μM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.
Collapse
Affiliation(s)
- Jacob P Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Soomin Kim
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Richard T Lee
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA; The Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
6
|
Tankasala D, Linnes JC. Noninvasive glucose detection in exhaled breath condensate. Transl Res 2019; 213:1-22. [PMID: 31194942 PMCID: PMC6783357 DOI: 10.1016/j.trsl.2019.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/02/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023]
Abstract
Two-thirds of patients with diabetes avoid regularly monitoring their blood glucose levels because of the painful and invasive nature of current blood glucose detection. As an alternative to blood sample collection, exhaled breath condensate (EBC) has emerged as a promising noninvasive sample from which to monitor glucose levels. However, this dilute sample matrix requires sensors capable of detecting glucose with high resolution at nanomolar and micromolar concentrations. Recent developments in EBC collection methods and highly sensitive glucose biosensors provide a path toward enabling robust and sensitive glucose detection in EBC. This review addresses current and emerging EBC collection and glucose sensing modalities capable of quantifying glucose in EBC samples. We highlight the opportunities and challenges for development and integration of EBC glucose detection systems that will enable clinically robust and accurate EBC glucose measurements for improved glycemic control.
Collapse
Affiliation(s)
- Divya Tankasala
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
7
|
Zhang E, Liu L, Lv F, Wang S. Design and Synthesis of Reactive Perylene Tetracarboxylic Diimide Derivatives for Rapid Cell Imaging. ACS OMEGA 2018; 3:8691-8696. [PMID: 31459000 PMCID: PMC6644429 DOI: 10.1021/acsomega.8b01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 05/25/2023]
Abstract
A new water-soluble reactive perylene tetracarboxylic diimide derivative (PDI-pfp) is designed and synthesized that can realize fast imaging of the endoplasmic reticulum in living cells. The PDI-pfp comprises three functional moieties: perylene tetracarboxylic diimide as fluorescent backbone, poly(ethylene glycol) for providing good water disperse ability, and pentafluorophenol active ester as the reactive group under physiological condition. On the basis of covalent reaction between the active ester group of PDI-pfp and amine groups on cytomembrane, PDI-pfp can rapidly interact with cytomembrane, followed by uptake by living MCF-7 cells within 1 min and also exhibit low cell cytotoxicity. Furthermore, it is proved that PDI-pfp acts as a universal imaging agent for other types of cells. This fluorescent probe is of great potential for the application in the rapid imaging of organelles in cells.
Collapse
Affiliation(s)
- Endong Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China
- College
of Chemistry, University of Chinese Academy
of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China
- College
of Chemistry, University of Chinese Academy
of Sciences, Beijing 100049, P. R. China
| | - Fengting Lv
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China
- College
of Chemistry, University of Chinese Academy
of Sciences, Beijing 100049, P. R. China
| | - Shu Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China
- College
of Chemistry, University of Chinese Academy
of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Brown S, Zambrana PN, Ge X, Bagdure D, Stinchcomb AL, Rao G, Tolosa L. Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor. Anal Bioanal Chem 2018; 410:7249-7260. [PMID: 30171282 DOI: 10.1007/s00216-018-1336-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022]
Abstract
There is a need for blood glucose monitoring techniques that eliminate the painful and invasive nature of current methods, while maintaining the reliability and accuracy of established medical technology. This research aims to ultimately address these shortcomings in critically ill pediatric patients. Presented in this work is an alternative, minimally invasive technique that uses microneedles (MN) for the collection of transdermal glucose (TG). Due to their comparable skin properties, diffusion studies were performed on full thickness Yucatan miniature pig skin mounted to an in-line diffusion flow cell and on different skin sites of human subjects. Collected TG samples were measured with a L255C mutant of the E. coli glucose-binding protein (GBP) with an attached fluorescent probe. The binding constant (Kd = 0.67 μM) revealed the micromolar sensitivity and high selectivity of the his-tagged GBP biosensor for glucose, making it suitable for TG measurements. In both the animal and human models, skin permeability and TG diffusion across the skin increased with MN application. For intact and MN-treated human skin, a significant positive linear correlation (r > 0.95, p < 0.01) existed between TG and BG. The micromolar sensitivity of GBP minimized the volume required for interstitial fluid glucose analysis allowing MN application time (30 s) to be shortened compared to other studies. This time reduction can help in eliminating skin irritation issues and improving practical use of the technique by caregivers in the hospital. In addition, the his-tagged optical biosensor used in this work can be immobilized and used with a portable sensing fluorometer device at the point of care (POC) making this minimally invasive technology more ideal for use in the pediatric intensive care unit. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sheniqua Brown
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Paige N Zambrana
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Dayanand Bagdure
- Department of Pediatrics, University of Maryland Medical Center, 110 S Paca Street, Baltimore, MD, 21201, USA
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Govind Rao
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Leah Tolosa
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
9
|
Mujahid A, Mustafa G, Dickert FL. Label-Free Bioanalyte Detection from Nanometer to Micrometer Dimensions-Molecular Imprinting and QCMs †. BIOSENSORS 2018; 8:E52. [PMID: 29865200 PMCID: PMC6022876 DOI: 10.3390/bios8020052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Abstract
Modern diagnostic tools and immunoassay protocols urges direct analyte recognition based on its intrinsic behavior without using any labeling indicator. This not only improves the detection reliability, but also reduces sample preparation time and complexity involved during labeling step. Label-free biosensor devices are capable of monitoring analyte physiochemical properties such as binding sensitivity and selectivity, affinity constants and other dynamics of molecular recognition. The interface of a typical biosensor could range from natural antibodies to synthetic receptors for example molecular imprinted polymers (MIPs). The foremost advantages of using MIPs are their high binding selectivity comparable to natural antibodies, straightforward synthesis in short time, high thermal/chemical stability and compatibility with different transducers. Quartz crystal microbalance (QCM) resonators are leading acoustic devices that are extensively used for mass-sensitive measurements. Highlight features of QCM devices include low cost fabrication, room temperature operation, and most importantly ability to monitor extremely low mass shifts, thus potentially a universal transducer. The combination of MIPs with quartz QCM has turned out as a prominent sensing system for label-free recognition of diverse bioanalytes. In this article, we shall encompass the potential applications of MIP-QCM sensors exclusively label-free recognition of bacteria and virus species as representative micro and nanosized bioanalytes.
Collapse
Affiliation(s)
- Adnan Mujahid
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria.
- Institute of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan.
| | - Ghulam Mustafa
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, H-10, Islamabad 44000, Pakistan.
| | - Franz L Dickert
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria.
| |
Collapse
|
10
|
Fonin AV, Golikova AD, Zvereva IA, D'Auria S, Staiano M, Uversky VN, Kuznetsova IM, Turoverov KK. Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. Int J Mol Sci 2017; 18:E2008. [PMID: 28925982 PMCID: PMC5618657 DOI: 10.3390/ijms18092008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022] Open
Abstract
The ability of d-glucose/d-galactose-binding protein (GGBP) to reversibly interact with its ligands, glucose and galactose, makes this protein an attractive candidate for sensing elements of glucose biosensors. This potential is largely responsible for attracting researchers to study the conformational properties of this protein. Previously, we showed that an increase in the fluorescence intensity of the fluorescent dye 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN) is linked to the holo-form of the GGBP/H152C mutant in solutions containing sub-denaturing concentrations of guanidine hydrochloride (GdnHCl). It was hypothesized that low GdnHCl concentrations might lead to compaction of the protein, thereby facilitating ligand binding. In this work, we utilize BADAN fluorescence spectroscopy, intrinsic protein UV fluorescence spectroscopy, and isothermal titration calorimetry (ITC) to show that the sub-denaturing GdnHCl concentrations possess osmolyte-like stabilizing effects on the structural dynamics, conformational stability, and functional activity of GGBP/H152C and the wild type of this protein (wtGGBP). Our data are consistent with the model where low GdnHCl concentrations promote a shift in the dynamic distribution of the protein molecules toward a conformational ensemble enriched in molecules with a tighter structure and a more closed conformation. This promotes the increase in the configurational complementarity between the protein and glucose molecules that leads to the increase in glucose affinity in both GGBP/H152C and wtGGBP.
Collapse
Affiliation(s)
- Alexander V Fonin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Alexandra D Golikova
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Irina A Zvereva
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Sabato D'Auria
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Maria Staiano
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Irina M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, 195251 St. Petersburg, Russia.
| |
Collapse
|
11
|
Tiangco C, Andar A, Quarterman J, Ge X, Sevilla F, Rao G, Stinchcomb A, Bunge A, Tolosa L. Measuring transdermal glucose levels in neonates by passive diffusion: an in vitro porcine skin model. Anal Bioanal Chem 2017; 409:3475-3482. [PMID: 28283718 DOI: 10.1007/s00216-017-0289-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/28/2017] [Indexed: 11/30/2022]
Abstract
Current glucose monitoring techniques for neonates rely heavily on blood glucose monitors which require intermittent blood collection through skin-penetrating pricks on the heel or fingers. This procedure is painful and often not clinically conducive, which presents a need for a noninvasive method for monitoring glucose in neonates. Our motivation for this study was to develop an in vitro method for measuring passive diffusion of glucose in premature neonatal skin using a porcine skin model. Such a model will allow us to initially test new devices for noninvasive glucose monitoring without having to do in vivo testing of newborns. The in vitro model is demonstrated by comparing uncompromised and tape-stripped skin in an in-line flow-through diffusion apparatus with glucose concentrations that mimic the hypo-, normo-, and hyper-glycemic conditions in the neonate (2.0, 5.0, and 20 mM, respectively). Transepidermal water loss (TEWL) of the tape-stripped skin was approximately 20 g m-2 h-1, which closely mimics TEWL for neonatal skin at about 190 days post-conceptional age. The tape-stripped skin showed a >15-fold increase in glucose diffusion compared to the uncompromised skin. The very small concentrations of collected glucose were measured with a highly selective and highly sensitive fluorescent glucose biosensor based on the glucose binding protein (GBP). The demonstrated method of glucose determination is noninvasive and painless, which makes it especially desirable for glucose testing in neonates and children. This study is an important step towards an in vitro model for noninvasive real-time glucose monitoring that may be easily transferred to the clinic for glucose monitoring in neonates. Graphical Abstract Glucose diffusion through model skin was measured using an in-line flow-through diffusion apparatus with glucose solutions mimicking hypo-, normo- and hyperglycemia in the neonate. Phosphate buffered saline was added to the top chamber and the glucose that diffused through the model skin into the buffer was measured using a fluorescent glucose binding protein biosensor.
Collapse
Affiliation(s)
- Cristina Tiangco
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,The Graduate School, University of Santo Tomas, España Boulevard, 1015, Manila, Philippines
| | - Abhay Andar
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Juliana Quarterman
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Xudong Ge
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Fortunato Sevilla
- The Graduate School, University of Santo Tomas, España Boulevard, 1015, Manila, Philippines
| | - Govind Rao
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Audra Stinchcomb
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Annette Bunge
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Leah Tolosa
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
12
|
Gu W, Gong S, Zhou Y, Xia Y. Ratiometric sensing of metabolites using dual-emitting ZnS:Mn 2+ quantum dots as sole luminophore via surface chemistry design. Biosens Bioelectron 2016; 90:487-493. [PMID: 27825880 DOI: 10.1016/j.bios.2016.10.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 11/18/2022]
Abstract
We herein present an effective and versatile platform for ratiometric sensing of metabolites using intrinsically dual-emitting ZnS:Mn2+ quantum dots (QDs) as sole reporter. To avoid notoriously non-specific interactions, a special triple-layer "filter screen" around the inorganic QD core is rationally constructed, which is made of oleic acid, cetyltrimethyl ammonium bromide and bio-enzymes. In the presence of the analytes, the in-situ enzymatic H2O2 molecules diffuse and pass through the "filter screen" along the molecule interspace, which then reacts with the inorganic core and leads to more dramatically quenching of the Mn2+ emission. The ratiometric signal readout is so distinct that can be observed by naked eyes (from orange to violet). In contrast, various coexisting bio-molecules, due to larger size, are well prevented from penetrating the filter screen by steric hindrance effect. So, various potential interfering substances do not disturb the assay. Under optimal conditions, five kinds of the corresponding substrates, namely glucose, cholesterol, lactate, xanthine and uric acid are well quantified by the emission intensity ratio of I470/I615, and the linear ranges are 0.1-200µM, 0.1-200µM, 1-200µM, 1-200µM and 1-200µM, respectively. The detection limits can even reach quasi-picomole levels. Because of favorable analytical performances (excellent selectivity, appropriate sensitivity and broad linear range), the proposed system can direct assay the analytes in blood without any sample pre-treatment.
Collapse
Affiliation(s)
- Wenliang Gu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Wuhu 241000, China
| | - Suqin Gong
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Wuhu 241000, China
| | - Yunlong Zhou
- Wenzhou Institute of Biomaterials and Engineering, CNITECH.CAS-Wenzhou Medical University, Wenzhou, Zhejiang 325011, China.
| | - Yunsheng Xia
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Wuhu 241000, China.
| |
Collapse
|
13
|
El-Sayed MMH, Brown SR, Mupparapu K, Tolosa L. The effect of pH on the glucose response of the glucose-galactose binding protein L255C labeled with Acrylodan. Int J Biol Macromol 2016; 86:282-7. [PMID: 26812111 DOI: 10.1016/j.ijbiomac.2016.01.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/16/2022]
Abstract
The glucose-galactose binding protein (GGBP) is used as an optical biosensor in medical and bioprocess applications. This paper investigates the effect of pH on the behavior of GGBP-L255C labeled with Acrylodan for the purpose of finding the optimum conditions for sensing purposes as well as for protein preparation, purification and storage. The Acrylodan-GGBP fluorescence response in absence and presence of glucose was measured under varying buffer and pH conditions. Dissociation constants (Kd) and Gibbs free energies (ΔG) for the protein-glucose binding were calculated. Binding was found to be energetically favored at slightly acidic to neutral conditions, specifically close to the pI of GBP (∼ 5.0). Minimal fluorescence response to glucose was exhibited at pH 3.0 accompanied by a blue shift in the steady state fluorescence spectrum. In contrast, an almost 45% response to glucose was shown at pH 4.5-9.0 with a 13-nm red shift. Frequency domain lifetime measurements and quenching with KI suggest that at highly acidic conditions both the glucose-free and the glucose-bound protein are in a conformation distinct from those observed at higher pH values.
Collapse
Affiliation(s)
- Mayyada M H El-Sayed
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Sheniqua R Brown
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - KarunaSri Mupparapu
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
14
|
Chen G, Qiu J, Xu J, Fang X, Liu Y, Liu S, Wei S, Jiang R, Luan T, Zeng F, Zhu F, Ouyang G. A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chem Sci 2015; 7:1487-1495. [PMID: 29910906 PMCID: PMC5975936 DOI: 10.1039/c5sc03992d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022] Open
Abstract
An ultrasensitive SPME probe based on phenylboronic acid functionalized CNTs is applied for direct in vitro or in vivo recognition of carbohydrates in biofluids as well as semi-solid biotissues.
Carbohydrates are known to be involved in a wide range of biological and pathological processes. However, due to the presence of multiple hydroxyl groups, carbohydrate recognition is a particular challenge. Herein, we reported an ultrasensitive solid-phase microextraction (SPME) probe based on phenylboronic acid (PBA) functionalized carbon nanotubes (CNTs) for direct in vitro or in vivo recognition of carbohydrates in biofluids as well as semi-solid biotissues. The coating of the proposed probe possessed a 3D interconnected porous architecture formed by the stacking of CNTs. As a result, the binding capacity toward carbohydrates was excellent. The proposed approach was demonstrated to be much superior to most carbohydrate sensors, including higher sensitivity, wider linear range, and excellent qualitative ability in multi-carbohydrate systems. Thus, this approach opens up new avenues for the facile and efficient recognition of carbohydrates for important applications such as glycomics.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Xu'an Fang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Yan Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Songbo Wei
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Ruifen Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Feng Zeng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry , School of Chemistry and Chemical Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China . ; ; ; Tel: +86-020-84110845
| |
Collapse
|
15
|
Stepanenko OV, Fonin AV, Stepanenko OV, Staiano M, D'Auria S, Kuznetsova IM, Turoverov KK. Tryptophan residue of the D-galactose/D-glucose-binding protein from E. Coli localized in its active center does not contribute to the change in intrinsic fluorescence upon glucose binding. J Fluoresc 2014; 25:87-94. [PMID: 25501855 DOI: 10.1007/s10895-014-1483-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022]
Abstract
Changes of the characteristics of intrinsic tryptophan fluorescence of the wild type of D-galactose/D-glucose-binding protein from Escherichia coli (GGBPwt) induced by D-glucose binding were examined by the intrinsic UV-fluorescence of proteins, circular dyhroism in the near-UV region, and acrylamide-induced fluorescence quenching. The analysis of the different characteristics of GGBPwt and its mutant form GGBP-W183A together with the analysis of the microenvironment of tryptophan residues of GGBPwt revealed that Trp 183, which is directly involved in sugar binding, has the least influence on the provoked by D-glucose blue shift and increase in the intensity of protein intrinsic fluorescence in comparison with other tryptophan residues of GGBP.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave., 4, 194064, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Fonin AV, Stepanenko OV, Povarova OI, Volova CA, Philippova EM, Bublikov GS, Kuznetsova IM, Demchenko AP, Turoverov KK. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ 2014; 2:e275. [PMID: 24711960 PMCID: PMC3970809 DOI: 10.7717/peerj.275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
The mutant form GGBP/H152C of the D-glucose/D-galactose-binding protein with the solvatochromic dye BADAN linked to cysteine residue Cys 152 can be used as a potential base for a sensitive element of glucose biosensor system. We investigated the influence of various external factors on the physical-chemical properties of GGBP/H152C-BADAN and its complex with glucose. The high affinity (Kd = 8.5 µM) and high binding rate of glucose make GGBP/H152C-BADAN a good candidate to determine the sugar content in biological fluids extracted using transdermal techniques. It was shown that changes in the ionic strength and pH of solution within the physiological range did not have a significant influence on the fluorescent characteristics of GGBP/H152C-BADAN. The mutant form GGBP/H152C has relatively low resistance to denaturation action of GdnHCl and urea. This result emphasizes the need to find more stable proteins for the creation of a sensitive element for a glucose biosensor system.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Catherine A Volova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biology, St. Petersburg State University , St. Petersburg , Russia
| | - Elizaveta M Philippova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Physical Electronics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| | - Grigory S Bublikov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biophysics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine , Kiev , Ukraine
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biophysics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| |
Collapse
|
17
|
Woo HC, Tolosa L, El-Metwally D, Viscardi RM. Glucose monitoring in neonates: need for accurate and non-invasive methods. Arch Dis Child Fetal Neonatal Ed 2014; 99:F153-7. [PMID: 24065727 DOI: 10.1136/archdischild-2013-304682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neonatal hypoglycaemia can lead to devastating consequences. Thus, constant, accurate and safe glucose monitoring is imperative in neonatal care. However, point-of-care (POC) devices for glucose testing currently used for neonates were originally designed for adults and do not address issues specific to neonates. This review will address currently available monitoring options and describe new methodologies for non-invasive glucose monitoring in newborns.
Collapse
Affiliation(s)
- Hyung Chul Woo
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, , Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
18
|
Kostov Y, Ge X, Rao G, Tolosa L. Portable system for the detection of micromolar concentrations of glucose. MEASUREMENT SCIENCE & TECHNOLOGY 2014; 25:025701. [PMID: 24587594 PMCID: PMC3934490 DOI: 10.1088/0957-0233/25/2/025701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glucose in non-invasively collected biofluids is generally in the micromolar range and thus, requires sensing methodologies capable of measuring glucose at these levels. Here, we present a small fluorometer system that can quantify glucose in the range of 0-5 μM with resolution of ~0.07 μM. It relies on the glucose binding protein (GBP) fluorescently labeled with two fluorophores. Fluorescence signals from the dual-labeled GBP are utilized in a ratiometric mode, making the measurements insensitive to variations in protein concentration and other systematic errors. Fluorescence is quantified by a miniature, dedicated ratiometric fluorometer that is powered via USB. Concentration is calculated using an ultra-mobile personal computer (UMPC). The whole system is designed to be pocket sized suitable for point-of-care or bedside applications. Test results suggest that the system is a promising tool for accurate measurements of low glucose concentrations (0.1-10 μM) in biological samples.
Collapse
Affiliation(s)
- Yordan Kostov
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore MD, 21250
| |
Collapse
|
19
|
Deacon LJ, Billones H, Galyean AA, Donaldson T, Pennacchio A, Iozzino L, D'Auria S, Dattelbaum JD. Tryptophan-scanning mutagenesis of the ligand binding pocket in Thermotoga maritima arginine-binding protein. Biochimie 2013; 99:208-14. [PMID: 24370478 DOI: 10.1016/j.biochi.2013.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
Abstract
The Thermotoga maritima arginine binding protein (TmArgBP) is a member of the periplasmic binding protein superfamily. As a highly thermostable protein, TmArgBP has been investigated for the potential to serve as a protein scaffold for the development of fluorescent protein biosensors. To establish a relationship between structural dynamics and ligand binding capabilities, we constructed single tryptophan mutants to probe the arginine binding pocket. Trp residues placed around the binding pocket reveal a strong dependence on fluorescence emission of the protein with arginine for all but one of the mutants. Using these data, we calculated dissociation constants of 1.9-3.3 μM for arginine. Stern-Volmer quenching analysis demonstrated that the protein undergoes a large conformational change upon ligand binding, which is a common feature of this protein superfamily. While still active at room temperature, time-resolved intensity and anisotropy decay data suggest that the protein exists as a highly rigid structure under these conditions. Interestingly, TmArgBP exists as a dimer at room temperature in both the presence and absence of arginine, as determined by asymmetric flow field flow fractionation (AF4) and supported by native gel-electrophoresis and time-resolved anisotropy. Our data on dynamics and stability will contribute to our understanding of hyperthermophilic proteins and their potential biotechnological applications.
Collapse
Affiliation(s)
- Lindsay J Deacon
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| | - Hilbert Billones
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| | - Anne A Galyean
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Teraya Donaldson
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| | - Anna Pennacchio
- Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Luisa Iozzino
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA; Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | |
Collapse
|
20
|
Zhang J, Landry MP, Barone PW, Kim JH, Lin S, Ulissi ZW, Lin D, Mu B, Boghossian AA, Hilmer AJ, Rwei A, Hinckley AC, Kruss S, Shandell MA, Nair N, Blake S, Şen F, Şen S, Croy RG, Li D, Yum K, Ahn JH, Jin H, Heller DA, Essigmann JM, Blankschtein D, Strano MS. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. NATURE NANOTECHNOLOGY 2013; 8:959-68. [PMID: 24270641 PMCID: PMC5051352 DOI: 10.1038/nnano.2013.236] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 10/10/2013] [Indexed: 05/18/2023]
Abstract
Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.
Collapse
Affiliation(s)
- Jingqing Zhang
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nai J, Wang S, Bai Y, Guo L. Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3147-52. [PMID: 23554292 DOI: 10.1002/smll.201203076] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/06/2013] [Indexed: 05/21/2023]
Abstract
Inspired by Pearson's hard and soft acid-base (HSAB) principle, uniform amorphous Ni(OH)2 nanoboxes with intact shell structures and various sizes are quickly fabricated by deliberately selecting S2O3(2-) as the coordinating etchant toward Cu2O templates and optimizing the reaction conditions. It is found that not only the solvent system but also the employing of a surfactant is vital for the fabrication of the nanoboxes. Ni(OH)2 nanoboxes, as an example, demonstrate an improved electrochemical sensing ability for glucose, which might be due to their amorphous and hollow structural features.
Collapse
Affiliation(s)
- Jianwei Nai
- School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | | | | | | |
Collapse
|
22
|
Pickup JC, Khan F, Zhi ZL, Coulter J, Birch DJS. Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein. J Diabetes Sci Technol 2013; 7:62-71. [PMID: 23439161 PMCID: PMC3692217 DOI: 10.1177/193229681300700108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.
Collapse
Affiliation(s)
- John C Pickup
- Diabetes Research Group, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Ge X, Rao G, Kostov Y, Kanjananimmanont S, Viscardi RM, Woo H, Tolosa L. Detection of trace glucose on the surface of a semipermeable membrane using a fluorescently labeled glucose-binding protein: a promising approach to noninvasive glucose monitoring. J Diabetes Sci Technol 2013; 7:4-12. [PMID: 23439155 PMCID: PMC3692211 DOI: 10.1177/193229681300700102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Our motivation for this study was to develop a noninvasive glucose sensor for low birth weight neonates. We hypothesized that the underdeveloped skin of neonates will allow for the diffusion of glucose to the surface where it can be sampled noninvasively. On further study, we found that measurable amounts of glucose can also be collected on the skin of adults. METHOD Cellulose acetate dialysis membrane was used as surrogate for preterm neonatal skin. Glucose on the surface was collected by saline-moistened swabs and analyzed with glucose-binding protein (GBP). The saline-moistened swab was also tested in the neonatal intensive care unit. Saline was directly applied on adult skin and collected for analysis with two methods: GBP and high-performance anion-exchange chromatography (HPAEC). RESULTS The amount of glucose on the membrane surface was found (1) to accumulate with time but gradually level off, (2) to be proportional to the swab dwell time, and (3) the concentration of the glucose solution on the opposite side of the membrane. The swab, however, failed to absorb glucose on neonatal skin. On direct application of saline onto adult skin, we were able to measure by HPAEC and GBP the amount of glucose collected on the surface. Blood glucose appears to track transdermal glucose levels. CONCLUSIONS We were able to measure trace amounts of glucose on the skin surface that appear to follow blood glucose levels. The present results show modest correlation with blood glucose. Nonetheless, this method may present a noninvasive alternative to tracking glucose trends.
Collapse
Affiliation(s)
- Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Yordan Kostov
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Sunsanee Kanjananimmanont
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Rose M. Viscardi
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hyung Woo
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
24
|
Hsieh HV, Sherman DB, Andaluz SA, Amiss TJ, Pitner JB. Fluorescence resonance energy transfer glucose sensor from site-specific dual labeling of glucose/galactose binding protein using ligand protection. J Diabetes Sci Technol 2012; 6:1286-95. [PMID: 23294773 PMCID: PMC3570868 DOI: 10.1177/193229681200600607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Site-selective modification of proteins at two separate locations using two different reagents is highly desirable for biosensor applications employing fluorescence resonance energy transfer (FRET), but few strategies are available for such modification. To address this challenge, sequential selective modification of two cysteines in glucose/galactose binding protein (GGBP) was demonstrated using a technique we call "ligand protection." METHOD In this technique, two cysteines were introduced in GGBP and one cysteine is rendered inaccessible by the presence of glucose, thus allowing sequential attachment of two different thiol-reactive reagents. The mutant E149C/A213C/L238S was first labeled at E149C in the presence of the ligand glucose. Following dialysis and removal of glucose, the protein was labeled with a second dye, either Texas Red (TR) C5 bromoacetamide or TR C2 maleimide, at the second site, A213C. RESULTS Changes in glucose-dependent fluorescence were observed that were consistent with FRET between the nitrobenzoxadiazole and TR fluorophores. Comparison of models and spectroscopic properties of the C2 and C5 TR FRET constructs suggests the greater rigidity of the C2 linker provides more efficient FRET. CONCLUSIONS The ligand protection strategy provides a simple method for labeling GGBP with two different fluorophores to construct FRET-based glucose sensors with glucose affinity within the human physiological glucose range (1-30 mM). This general strategy may also have broad utility for other protein-labeling applications.
Collapse
Affiliation(s)
- Helen V Hsieh
- BD Technologies, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
25
|
Colorimetric detection of glucose and an assay for acetylcholinesterase with amine-terminated polydiacetylene vesicles. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4505-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Singh N, Jang DO. Tetrapodal receptors for selective fluorescent sensing of AMP: analyte-induced conformational restriction to persuade fluorescence enhancement. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Jeffery CJ. Engineering periplasmic ligand binding proteins as glucose nanosensors. NANO REVIEWS 2011; 2:NANO-2-5743. [PMID: 22110874 PMCID: PMC3215197 DOI: 10.3402/nano.v2i0.5743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 12/21/2022]
Abstract
Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Yoon H, Ahn JH, Barone PW, Yum K, Sharma R, Boghossian AA, Han JH, Strano MS. Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Yoon H, Ahn JH, Barone PW, Yum K, Sharma R, Boghossian AA, Han JH, Strano MS. Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator. Angew Chem Int Ed Engl 2011; 50:1828-31. [DOI: 10.1002/anie.201006167] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/13/2010] [Indexed: 02/05/2023]
|
30
|
Saxl T, Khan F, Ferla M, Birch D, Pickup J. A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 2011; 136:968-72. [DOI: 10.1039/c0an00430h] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
|
32
|
Sakaguchi-Mikami A, Taniguchi A, Sode K, Yamazaki T. Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Biotechnol Bioeng 2010; 108:725-33. [PMID: 21404246 DOI: 10.1002/bit.23006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/14/2010] [Accepted: 10/20/2010] [Indexed: 01/29/2023]
Abstract
A novel transcriptional regulator responding to glucose was designed with a substrate-binding protein (SBP) as a probe towards intracellular sensing system for glucose in mammalian cells. A chimeric protein of an SBP for glucose (GBP) and a LacI-type regulator, LacI (SLCP(GL) ), was designed, constructed and characterized using Escherichia coli recombinant protein. We report that SLCP(GL) has a glucose-specific binding ability and an operator-sequence specific DNA-binding ability. The loss of its DNA-binding ability in the presence of glucose suggests a role as a transcriptional regulator in vitro. The glucose-dependent gene regulation function of SLCP(GL) in cells was investigated using mammalian cells co-transfected with SLCP(GL) and Lac operator-fused luciferase gene constructs. The luciferase activity of the transfected cells increased with the glucose concentration in the medium, showing that the expression of the luciferase gene is regulated by SLCP(GL) , which can dissociate from DNA in a glucose concentration-dependent manner. Therefore, we demonstrated that SLCP(GL) functions as a glucose-sensitive transcriptional regulator in mammalian cells. These results reveal the possibility of developing an SBP-based regulator as a probe of intracellular sensing and gene regulation system for mammalian cells in response to a desired ligands depending on the SBP ligand specificity.
Collapse
Affiliation(s)
- Akane Sakaguchi-Mikami
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki, Tsukuba, 305-0044 Ibaraki, Japan
| | | | | | | |
Collapse
|
33
|
Cella LN, Chen W, Myung NV, Mulchandani A. Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. J Am Chem Soc 2010; 132:5024-6. [PMID: 20334381 PMCID: PMC3292278 DOI: 10.1021/ja100503b] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report for the first time single-walled carbon nanotube (SWNT)-based chemiresistive affinity sensors for highly sensitive and selective detection of small and/or weakly charged or uncharged molecules using a displacement format. The detection of glucose, a small, weakly charged molecule, by displacement of plant lectin (concavalin A) bound to a polysaccharide (dextran) immobilized on SWNTs with picomolar sensitivity and selectivity over other sugars and human serum proteins is demonstrated as a proof of concept.
Collapse
Affiliation(s)
- Lakshmi N. Cella
- Department of Chemical and Environmental Engineering; University of California, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program; University of California, Riverside, CA 92521, USA
| | - Wilfred Chen
- Department of Chemical and Environmental Engineering; University of California, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program; University of California, Riverside, CA 92521, USA
| | - Nosang V. Myung
- Department of Chemical and Environmental Engineering; University of California, Riverside, CA 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering; University of California, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program; University of California, Riverside, CA 92521, USA
| |
Collapse
|
34
|
Khan F, Saxl TE, Pickup JC. Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem 2010; 399:39-43. [DOI: 10.1016/j.ab.2009.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 11/27/2022]
|
35
|
The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. J Fluoresc 2010; 20:1099-128. [DOI: 10.1007/s10895-010-0644-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
|
36
|
Lam H, Kostov Y, Rao G, Tolosa L. A luminescence lifetime assisted ratiometric fluorimeter for biological applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:124302. [PMID: 20059156 PMCID: PMC2803713 DOI: 10.1063/1.3264106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system--a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.
Collapse
Affiliation(s)
- Hung Lam
- Department of Chemical and Biochemical Engineering, Center of Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
37
|
Synthesis of novel bispyrene diamines and their application as ratiometric fluorescent probes for detection of DNA. Biosens Bioelectron 2009; 24:3442-7. [DOI: 10.1016/j.bios.2009.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 11/23/2022]
|
38
|
Liu H, Qian X, Wang S, Li Y, Song Y, Zhu D. Ultra-sensitivity glucose sensor based on field emitters. NANOSCALE RESEARCH LETTERS 2009; 4:1141-5. [PMID: 20596378 PMCID: PMC2894112 DOI: 10.1007/s11671-009-9372-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/02/2009] [Indexed: 05/09/2023]
Abstract
A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA) was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 μM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures.
Collapse
Affiliation(s)
- Huibiao Liu
- CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, People’s Republic of China
| | - Xuemin Qian
- CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, People’s Republic of China
- School of Physical Science and Technology, Suzhou University, 215006, Suzhou, Jiangsu, People’s Republic of China
| | - Shu Wang
- CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, People’s Republic of China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, People’s Republic of China
| | - Yinglin Song
- School of Physical Science and Technology, Suzhou University, 215006, Suzhou, Jiangsu, People’s Republic of China
| | - Daoben Zhu
- CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, People’s Republic of China
| |
Collapse
|
39
|
Taneoka A, Sakaguchi-Mikami A, Yamazaki T, Tsugawa W, Sode K. The construction of a glucose-sensing luciferase. Biosens Bioelectron 2009; 25:76-81. [PMID: 19559587 DOI: 10.1016/j.bios.2009.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/18/2022]
Abstract
A novel luminescence-based glucose-sensing molecule was created by combining a galactose-/glucose-binding protein (GGBP) with luciferase. The glucose-sensing luciferase (GlcLuc) was constructed using a GGBP fused with a large domain and a small domain of Firefly luciferase (Lluc and Sluc). The luminescence intensity-based analysis with E. coli recombinant protein showed that the GlcLuc had luciferase activity in glucose or galactose in a concentration-dependent manner (K(d)=3.9 microM for glucose and 11 microM for galactose), and that the increase in the activity saturated within one minute after the injection of the ligands. These results indicated that the conformation change of the GGBP moiety following the ligand binding effectively induced the reconstitution of the GGBP-fused split luciferase. The Asp459Asn mutation, which was expected to lead to a glucose specific binding ability, was then introduced into the GlcLuc. The GlcLuc mutant showed the luciferase activity increasing only with the increase of glucose concentration, but not with that of galactose. Our results demonstrate that the GGBP fused with a split luciferase, which is reconstituted rapidly and specifically in the presence of glucose, provides a novel glucose-sensing system based on luminescence and may also contribute to the construction of luminescence-based sensing molecules for other substrates using other PBPs.
Collapse
Affiliation(s)
- Atsushi Taneoka
- Graduate School of Technology, Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
40
|
Ehrick JD, Luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG, Daunert S. Glucose Responsive Hydrogel Networks Based on Protein Recognition. Macromol Biosci 2009; 9:864-8. [DOI: 10.1002/mabi.200800337] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Iijima I, Hohsaka T. Position-Specific Incorporation of Fluorescent Non-natural Amino Acids into Maltose-Binding Protein for Detection of Ligand Binding by FRET and Fluorescence Quenching. Chembiochem 2009; 10:999-1006. [DOI: 10.1002/cbic.200800703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Saxl T, Khan F, Matthews DR, Zhi ZL, Rolinski O, Ameer-Beg S, Pickup J. Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosens Bioelectron 2009; 24:3229-34. [PMID: 19442507 DOI: 10.1016/j.bios.2009.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/26/2009] [Accepted: 04/06/2009] [Indexed: 01/14/2023]
Abstract
We aimed to develop microsensors for eventual glucose monitoring in diabetes, based on fluorescence lifetime changes in glucose/galactose-binding protein (GBP) labelled with the environmentally sensitive fluorophore dye, badan. A mutant of GBP was labelled with badan near the binding site, the protein adsorbed to microparticles of CaCO(3) as templates and encapsulated in alternating nano-layers of poly-L-lysine and heparin. We used fluorescence lifetime imaging (FLIM) with two-photon excitation and time-correlated single-photon counting to visualize the lifetime changes in the capsules. Addition of glucose increased the mean lifetime of GBP-badan by a maximum of approximately 2 ns. Analysis of fluorescence decay curves was consistent with two GBP states, a short-lifetime component (approximately 0.8 ns), likely representing the open form of the protein with no bound glucose, and a long-lifetime component (approximately 3.1 ns) representing the closed form with bound glucose and where the lobes of GBP have closed round the dye creating a more hydrophobic environment. FLIM demonstrated that increasing glucose increased the fractional proportion of the long-lifetime component. We conclude that fluorescence lifetime-based glucose sensing using GBP encapsulated with nano-engineered layer-by-layer films is a glucose monitoring technology suitable for development in diabetes management.
Collapse
Affiliation(s)
- Tania Saxl
- Metabolic Unit, King's College London School of Medicine, Guy's Hospital, London, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tolosa L. On the design of low-cost fluorescent protein biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 116:143-57. [PMID: 19347267 DOI: 10.1007/10_2008_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
There is a large body of knowledge on proteins and their ligands that is available to the sensor researcher for the successful design of fluorescent biosensors. Chemically synthesized receptors rarely match the sensitivity and selectivity of proteins.Additionally, proteins are easily produced and manipulated through recombinant protein techniques. Although limitations exist in the prediction of signal response of proteins labeled with fluorescent probes, thoughtful experimentation can lead to useful, highly responsive fluorescent protein assays. Conversion of these assays into sensor devices may require additional manipulation of the fluorescence properties of the labeled proteins. We have shown that this can be achieved by a second fluorophore serving as a reference for ratiometric measurements. The choice of reference is contingent on the low-cost, miniaturized design of the device. Accordingly, the reference fluorophore is excitable with the same LED as the signal transducing probe and has a fluorescence decay lifetime that is orders of magnitude longer.Alternating illumination with intensity modulated light at two frequencies allows for ratiometric sensing without the need for bulky filter wheels while collecting the signals over a wide range of emission wavelengths. The result is a simple optoelectronics design that is cost-effective and small enough to be portable.In summary, the process of designing protein-based fluorescent biosensors for practical applications requires the systematic collaboration of a cross-disciplinary group of molecular biologists, chemists and engineers.
Collapse
Affiliation(s)
- Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD21050, USA
| |
Collapse
|
44
|
Lam H, Kostov Y, Rao G, Tolosa L. Low-cost optical lifetime assisted ratiometric glutamine sensor based on glutamine binding protein. Anal Biochem 2008; 383:61-7. [PMID: 18786501 DOI: 10.1016/j.ab.2008.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/21/2008] [Accepted: 08/07/2008] [Indexed: 11/16/2022]
Abstract
Here we report a reagentless fluorescence sensing technique for glutamine in the submicromolar range based on the glutamine binding protein (QBP). The S179C mutant is labeled with the short-lived acrylodan (lifetime<5ns) and the long-lived tris(dibenzoylmethane) mono(5-amino-1,10-phenanthroline)europium(III) (lifetime > 300 micros) at the -SH and the N-terminal positions, respectively. In the presence of glutamine the fluorescence of acrylodan is quenched, while the fluorescence of europium complex remains constant. In this report we describe an innovative technique, the so called lifetime assisted ratiometric sensing to discriminate the two fluorescence signals using minimal optics and power requirements. This method exploits the large difference between the fluorescence lifetimes of the two fluorophores to isolate the individual fluorescence from each other by alternating the modulation frequency of the excitation light between 300 Hz and 10 kHz. The result is a ratiometric optical method that does not require expensive and highly attenuating band pass filters for each of the dyes, but only one long pass filter for both. Thus, the signal to noise ratio is enhanced, and at the same time, the optical setup is simplified. The end product is a simple sensing device suitable for low-cost applications such as point-of-care diagnostics or in-the-field analysis.
Collapse
Affiliation(s)
- Hung Lam
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
45
|
Tang B, Cao L, Xu K, Zhuo L, Ge J, Li Q, Yu L. A New Nanobiosensor for Glucose with High Sensitivity and Selectivity in Serum Based on Fluorescence Resonance Energy Transfer (FRET) between CdTe Quantum Dots and Au Nanoparticles. Chemistry 2008; 14:3637-44. [DOI: 10.1002/chem.200701871] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Stein EW, Singh S, McShane MJ. Microscale Enzymatic Optical Biosensors Using Mass Transport Limiting Nanofilms. 2. Response Modulation by Varying Analyte Transport Properties. Anal Chem 2008; 80:1408-17. [DOI: 10.1021/ac701738e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erich W. Stein
- Biomedical Engineering Program and Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, and Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| | - Saurabh Singh
- Biomedical Engineering Program and Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, and Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| | - Michael J. McShane
- Biomedical Engineering Program and Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, and Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
47
|
|
48
|
Khan F, Gnudi L, Pickup JC. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: A comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies. Biochem Biophys Res Commun 2008; 365:102-6. [DOI: 10.1016/j.bbrc.2007.10.129] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
|
49
|
Ge X, Lam H, Modi SJ, LaCourse WR, Rao G, Tolosa L. Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol 2007; 1:864-72. [PMID: 19885158 PMCID: PMC2769676 DOI: 10.1177/193229680700100610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The glucose binding protein (GBP) is one of many soluble binding proteins found in the periplasmic space of gram-negative bacteria. These proteins are responsible for chemotactic responses and active transport of chemical species across the membrane. Upon ligand binding, binding proteins undergo a large conformational change, which is the basis for converting these proteins into optical biosensors. METHODS The GBP biosensor was prepared by attaching a polarity-sensitive fluorescent probe to a single cysteine mutation at a site on the protein that is allosterically responsive to glucose binding. The fluorescence response of the resulting sensor was validated against high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection. Finally, a simple fluorescence reader was built using a lifetime-assisted ratiometric technique. RESULTS The GBP assay has a linear range of quantification of 0.100-2.00 microM and a sensitivity of 0.164 microM(-1) under the specified experimental conditions. The comparison between GBP and HPAEC readings for nine blind samples indicates that there is no statistical difference between the analytical results of the two methods at the 95% confidence level. Although the methods of fluorescence detection are based on different principles, the response of the homemade device to glucose concentrations was comparable to the response of the larger and more expensive tabletop fluorescence spectrophotometer. CONCLUSIONS A glucose binding protein labeled with a polarity-sensitive probe can be used for measuring micromolar amounts of glucose. Using a lifetime-assisted ratiometric technique, a low-cost GBP-based micromolar glucose monitor could be built.
Collapse
Affiliation(s)
- Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Hung Lam
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Swati J. Modi
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - William R. LaCourse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
50
|
Abstract
Glucose/galactose binding protein (GGBP) functions in two different larger systems of proteins used by enteric bacteria for molecular recognition and signaling. Here we report on the thermodynamics of conformational equilibrium distributions of GGBP. Three fluorescence components appear at zero glucose concentration and systematically transition to three components at high glucose concentration. Fluorescence anisotropy correlations, fluorescent lifetimes, thermodynamics, computational structure minimization, and literature work were used to assign the three components as open, closed, and twisted conformations of the protein. The existence of three states at all glucose concentrations indicates that the protein continuously fluctuates about its conformational state space via thermally driven state transitions; glucose biases the populations by reorganizing the free energy profile. These results and their implications are discussed in terms of the two types of specific and nonspecific interactions GGBP has with cytoplasmic membrane proteins.
Collapse
Affiliation(s)
- Troy C Messina
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|