1
|
Geißler D, Wegner KD, Fischer C, Resch-Genger U. Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection. Anal Chem 2024; 96:5078-5085. [PMID: 38498677 PMCID: PMC10993196 DOI: 10.1021/acs.analchem.3c03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current "gold standard" enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidin-functionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C-reactive protein (CRP), the analyte sensitivity achievable with optimized PSP systems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept.
Collapse
Affiliation(s)
| | | | | | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|
2
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
3
|
Shen B, Shen C, Zhu W, Yuan H. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin. Acta Pharm Sin B 2021; 11:978-988. [PMID: 33996410 PMCID: PMC8105875 DOI: 10.1016/j.apsb.2021.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, self-discriminating hybrid nanocrystals was utilized to explore the biological fate of quercetin hybrid nanocrystals (QT-HNCs) with diameter around 280 nm (QT-HNCs-280) and 550 nm (QT-HNCs-550) following oral and intravenous administration and the contribution of integral nanocrystals to oral bioavailability enhancement of QT was estimated by comparing the absolute exposure of integral QT-HNCs and total QT in the liver. Results showed that QT-HNCs could reside in vivo as intact nanocrystals for as long as 48 h following oral and intravenous administration. A higher accumulation of integral QT-HNCs in liver and lung was observed for both oral and intravenous administration of QT-HNCs. The particle size affects the absorption and biodistribution of integral QT-HNCs and total QT. As compared to QT-HNCs-550, QT-HNCs-280 with smaller particle size is more easily absorbed, but dissolves faster in vivo, leading to higher distribution of QT (146.90 vs. 117.91 h·μg/mL) but lower accumulation of integral nanocrystals (6.8 2e10 vs. 15.27e10 h·[p/s]/[µW/cm²]) in liver following oral administration. Due to its slower dissolution and enhanced recognition by RES, QT-HNCs-550 with larger diameter shows higher liver distribution for both of QT (1015.80 h·μg/mL) and integral nanocrystals (259.63e10 h·[p/s]/[µW/cm²]) than those of QT-HNCs-280 (673.82 & 77.66e10 h·[p/s]/[µW/cm²]) following intravenous administration. The absolute exposure of integral QT-HNCs in liver following oral administration of QT-HNCs are 8.78% for QT-HNCs-280 and 5.88% for QT-HNCs-550, while the absolute exposure of total QT for QT-HNCs-280 and QT-HNCs-550 are 21.80% and 11.61%, respectively. Owing to imprecise quantification method, a surprisingly high contribution of integral QT-HNCs to oral bioavailability enhancement of QT (40.27% for QT-HNCs-280 and 50.65% for QT-HNCs-550) was obtained. These results revealed significant difference in absorption and biodistrbution between integral nanocrystals and overall drugs following oral and intravenous administration of QT-HNCs, and provided a meaningful reference for the contribution of integral nanocrystals to overall bioavailability enhancement.
Collapse
Affiliation(s)
- Baode Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
- Key Lab of Modern Preparation of Traditional Chinese Medicine (TCM), Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Chengying Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| | - Weifeng Zhu
- Key Lab of Modern Preparation of Traditional Chinese Medicine (TCM), Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| |
Collapse
|
4
|
Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020; 11:328-355. [PMID: 32138595 PMCID: PMC7161543 DOI: 10.1080/21655979.2020.1736240] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
Collapse
Affiliation(s)
- Khalisanni Khalid
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
- Dalian SEM Bio-Engineering Technology Co., Ltd, Dalian, PR China
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chien Lye Chew
- Sime Darby Plantation Research (Formerly Known as Sime Darby Research), R&D Centre – Carey Island, Pulau Carey, Malaysia
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Univesiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Center for Urban Resource Sustainably, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia Lim
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev 2019; 143:115-133. [PMID: 31254558 DOI: 10.1016/j.addr.2019.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Nanocrystals show promise to deliver poorly water-soluble drugs to yield systemic exposure. However, our knowledge regarding the in vivo fate of nanocrystals is in its infancy, as nanocrystallization is simply viewed as an approach to enhance the dissolution of drug crystals. The dying crystal phenomenon inspired the development of hybrid nanocrystals by physically embedding fluorophores into the crystal lattice. This approach achieved concurrent therapy and bioimaging and is well-established to study pharmacokinetics and nanocrystal dissolution in vivo. Nanocrystals also offer the advantage of long-term durability in the body for interacting with biological tissues and cells. This review introduces the hybrid nanocrystal technique, including the theoretical concepts, preparation, and applications. We also discuss the latest development in self-discriminative hybrid nanocrystals utilizing environment-responsive probes. This review will stimulate further development and application of nanocrystal-based drug delivery systems for theranostic strategies.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Cao H, Fang X, Liu P, Li H, Chen W, Liu B, Kong J. Magnetic-Immuno-Loop-Mediated Isothermal Amplification Based on DNA Encapsulating Liposome for the Ultrasensitive Detection of P-glycoprotein. Sci Rep 2017; 7:9312. [PMID: 28839228 PMCID: PMC5571029 DOI: 10.1038/s41598-017-10133-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022] Open
Abstract
Determination of proteins, especially low-abundance proteins with high sensitivity and specificity, is essential for characterizing proteomes and studying their biochemical functions. Herein, a novel Magnetic-Immuno-Loop-Mediated Isothermal Amplification (Im-LAMP) based on DNA-encapsulating liposomes (liposome-Im- LAMP), was developed for trace amounts of proteins. To the best of our knowledge, this is our first report about the magnetic Im-LAMP approach based on liposomes encapsulated template DNA as the detection reagent. The DNA template was released from liposomes and then initiated an Im-LAMP reaction, generating the fluorescence signal with high sensitivity and rapidity. This technique was applied for the determination of P-glycoprotein as a model protein. It was demonstrated that the technique exhibited a dynamic response to P-glycoprotein ranging from 1.6*10−2 to 160 pg/ml with a greatly low detection limit of 5*10−3 pg/ml (5 fg/ml) which is substantially better than conventional enzyme-linked immunosorbent assays (ELISA). This ultra sensitivity was attributed to the LAMP reaction initiated by the enormous DNA targets encapsulated in liposomes. This magnetic liposome-Im–LAMP as an alternative approach is attractive for applications in other low-abundance proteins detection in clinical diagnostics.
Collapse
Affiliation(s)
- Hongmei Cao
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Xueen Fang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China.
| | - Peng Liu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai road, Shanghai, 200433, China
| | - Hua Li
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Weiwei Chen
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Baohong Liu
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Jilie Kong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China.
| |
Collapse
|
7
|
Liu C, Zhou Z, Zou L, Cao YC, Liu J, Lin Y. High Sensitivity Bacillus thuringiensis Cry1Ac Protein Detections Using Fluorescein Diacetate Nanoparticles. J Fluoresc 2015; 26:451-7. [PMID: 26642804 DOI: 10.1007/s10895-015-1731-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
A highly sensitive transgenic protein analysis method was proposed here based on fluorescein diacetate (FDA). First, FDA was prepared by the ball mill to harvest the nano-sized organic particles. Further examines showed that the FDA size can be controlled by the speed of centrifugation which can obtain FDA in well-distributed size. Cy3 antibody immobilization tests showed that the proteins can attach onto the FDA particles while keep bioactivities. FDA and Cry1Ac antibody immunoassay tests showed that when the FDA particle was in 150 nm, the linear range was 0.01 ng/L-30 μg/mL. And it has the lower detection limitation of 0.01 ng/L, which is 100 times more sensitive than the ELISA methods. These results indicate that the FDA related immunoassays are the promising approach in the transgenic analysis.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Zhen Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Linling Zou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Yuan-Cheng Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China.
| | - Jun'An Liu
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Kozitsina A, Svalova T, Malysheva N, Glazyrina Y, Matern A. A New Enzyme-Free Electrochemical Immunoassay forEscherichia coliDetection using Magnetic Nanoparticles. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1072824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review. Anal Chim Acta 2015; 877:19-32. [DOI: 10.1016/j.aca.2015.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
|
10
|
Hiltebrandt K, Pauloehrl T, Blinco JP, Linkert K, Börner HG, Barner-Kowollik C. λ-Orthogonal pericyclic macromolecular photoligation. Angew Chem Int Ed Engl 2015; 54:2838-43. [PMID: 25620295 DOI: 10.1002/anie.201410789] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 11/12/2022]
Abstract
A photochemical strategy enabling λ-orthogonal reactions is introduced to construct macromolecular architectures and to encode variable functional groups with site-selective precision into a single molecule by the choice of wavelength. λ-Orthogonal pericyclic reactions proceed independently of one another by the selection of functional groups that absorb light of specific wavelengths. The power of the new concept is shown by a one-pot reaction of equimolar quantities of maleimide with two polymers carrying different maleimide-reactive endgroups, that is, a photoactive diene (photoenol) and a nitrile imine (tetrazole). Under selective irradiation at λ=310-350 nm, any maleimide (or activated ene) end-capped compound reacts exclusively with the photoenol functional polymer. After complete conversion of the photoenol, subsequent irradiation at λ=270-310 nm activates the reaction of the tetrazole group with functional enes. The versatility of the approach is shown by λ-orthogonal click reactions of complex maleimides, functional enes, and polymers to the central polymer scaffold.
Collapse
Affiliation(s)
- Kai Hiltebrandt
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe (Germany); Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
| | | | | | | | | | | |
Collapse
|
11
|
Hiltebrandt K, Pauloehrl T, Blinco JP, Linkert K, Börner HG, Barner-Kowollik C. λ-Orthogonale Photochemie: Lichtinduzierte pericyclische Reaktionen an Makromolekülen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Wu K, Zhang Y, Yan M, Ge S, Yu J, Song X. An electrochemical immunoassay based on trepang-like gold electrodes and nanogold functionalized flower-like hierarchical carbon materials with improved sensitivity. NEW J CHEM 2015. [DOI: 10.1039/c4nj02336f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel electrochemical immunosensor based on a 3D-TG/G-PDDA modified electrode was designed for sensitive detection of CEA using AuNP functionalized FCM as a nanocarrier.
Collapse
Affiliation(s)
- Kaiqing Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yan Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Shenguang Ge
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xianrang Song
- Cancer Research Center
- Shandong Tumor Hospital
- Jinan 250117
- P. R. China
| |
Collapse
|
13
|
Nanosizing: “End-to-End” Formulation Strategy for Poorly Water-Soluble Molecules. DISCOVERING AND DEVELOPING MOLECULES WITH OPTIMAL DRUG-LIKE PROPERTIES 2015. [DOI: 10.1007/978-1-4939-1399-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
14
|
Würth C, Geißler D, Behnke T, Kaiser M, Resch-Genger U. Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 2014; 407:59-78. [DOI: 10.1007/s00216-014-8130-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
|
15
|
Dhawan S. Signal amplification systems in immunoassays: implications for clinical diagnostics. Expert Rev Mol Diagn 2014; 6:749-60. [PMID: 17009908 DOI: 10.1586/14737159.6.5.749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biomarkers in physiological specimens serve as useful sensors for clinical diagnosis. Accurate detection of specific markers is crucial for the diagnosis of disease, monitoring drug therapy and patient screening. In vitro immunoassays are probably the most common, simple and relatively inexpensive serological tools used in clinical laboratories for the diagnosis and management of disease. Despite continued efforts to improve the performance of immunoassays in the past three decades, there is a need for highly sensitive assays that can detect the lowest levels of disease markers with greater accuracy. This review summarizes recent advances made towards increasing the sensitivity of immunoassays by amplifying detection signals, with implications for the development of highly sensitive diagnostic systems; it also discusses the principles of related methodologies.
Collapse
Affiliation(s)
- Subhash Dhawan
- Center for Biologics Evaluation and Research, Immunopathogenesis Section, Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, 1401 Rockville Pike, Rockville, MD 20852-1448, USA.
| |
Collapse
|
16
|
|
17
|
Fery-Forgues S. Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications. NANOSCALE 2013; 5:8428-8442. [PMID: 23900346 DOI: 10.1039/c3nr02657d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The recently developed fluorescent organic nanocrystals and non-doped nanoparticles (FONs) occupy a special position among other nanoparticle systems that are used for studying a variety of fundamental processes in the life sciences. Understanding their particular photophysical behavior allows proper design of FONs. The usual preparation methods are described. It is shown that FONs lead to original applications as biochemical sensors and biolabels for immunoassays. They also show high potentialities for bio-imaging of cell cultures, drug-delivery control, angiography and in vivo bio-imaging of solid tumors.
Collapse
Affiliation(s)
- Suzanne Fery-Forgues
- CNRS, ITAV-USR 3505, Advanced Technology Institute in Life Sciences, 1 place Pierre Potier, Oncopole-BP 50624, 31106 Toulouse, France.
| |
Collapse
|
18
|
Hoffmann K, Behnke T, Drescher D, Kneipp J, Resch-Genger U. Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells. ACS NANO 2013; 7:6674-6684. [PMID: 23837453 DOI: 10.1021/nn4029458] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The increase in information content from bioassays and bioimaging requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement, thereby addressing current health and security concerns. For fluorescence techniques, an attractive alternative to commonly performed spectral or color multiplexing presents lifetime multiplexing and the discrimination between different fluorophores based on their fluorescence decay kinetics. This strategy relies on fluorescent labels with sufficiently different lifetimes that are excitable at the same wavelength and detectable within the same spectral window. Here, we report on lifetime multiplexing and discrimination with a set of nanometer-sized particles loaded with near-infrared emissive organic fluorophores chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics in suspension. Furthermore, as a first proof-of-concept, we describe bioimaging studies with 3T3 fibroblasts and J774 macrophages, incubated with mixtures of these reporters employing fluorescence lifetime imaging microscopy. These proof-of-concept measurements underline the potential of fluorescent nanoparticle reporters in fluorescence lifetime multiplexing, barcoding, and imaging for cellular studies, cell-based assays, and molecular imaging.
Collapse
Affiliation(s)
- Katrin Hoffmann
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Straße 11, 12489 Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Nourani S, Ghourchian H, Boutorabi SM. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Anal Biochem 2013; 441:1-7. [PMID: 23831477 DOI: 10.1016/j.ab.2013.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/11/2022]
Abstract
An electrochemical immunosensor was developed for the detection of hepatitis B surface antigen (HBsAg). The biotinylated hepatitis B surface antibody was immobilized on streptavidin magnetic nanoparticles and used for targeting the HBsAg. By the addition of horseradish peroxidase conjugated with secondary antibody (HRP-HBsAb), a sandwich-type immunoassay format was formed. Aminophenol as substrate for conjugated HRP was enzymatically changed into 3-aminophenoxazone (3-APZ). This electroactive enzymatic production (3-APZ) was transferred into an electrochemical cell and monitored by cyclic voltammetry. Under optimal conditions, the cathodic current response of 3-APZ, which was proportional to the HBsAg concentration, was measured by a glassy carbon electrode. The immunosensor response was linear toward HBsAg in the concentration range from 0.001 to 0.015 ng/ml with a detection limit of 0.9 pg/ml at a signal/noise ratio of 3.
Collapse
Affiliation(s)
- Sara Nourani
- Laboratory of Microanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
20
|
Gao ZD, Zhuang QL, Song YY, Lee K, Schmuki P. Signal Amplification Strategy Based on TiO2-Nanotube Layers and Nanobeads Carrying Quantum Dots for Electrochemiluminescent Immunosensors. ChemistryOpen 2013; 2:93-8. [PMID: 24551545 PMCID: PMC3703813 DOI: 10.1002/open.201300003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Indexed: 11/08/2022] Open
Abstract
Self-organized TiO2-nanotube layers can be used for immunoassay-type sensing in combination with amplifying CdTe labels in a direct and very sensitive electrochemiluminescent (ECL) configuration. Key properties for this method are the conductivity of the TiO2 nanotubes, and their transparency for light emitted from the CdTe labels at approximately 2.4 eV. To demonstrate the potential of this platform, we constructed a sandwich-type immunoassay onto the TiO2-nanotube wall with a layer of (3-aminopropyl)triethoxysilane as the cross-linker for antibody immobilization. For the counter part of the sandwich, we created an amplification system consisting of TiO2 nanobeads carrying the secondary antibody and multiple CdTe quantum dots (multiQD). For antigen (IgG) detection, we find that this combination of 3D transparent electrode with multiQD labels allows for an ECL detection limit of 0.05 pg mL(-1) and a linearity of the signal in the range of 0.1-10(8) pg mL(-1).
Collapse
Affiliation(s)
- Zhi-Da Gao
- College of Sciences, Northeastern University Shenyang 110004 (P. R. China) E-mail:
| | - Qian-Lan Zhuang
- College of Sciences, Northeastern University Shenyang 110004 (P. R. China) E-mail:
| | - Yan-Yan Song
- College of Sciences, Northeastern University Shenyang 110004 (P. R. China) E-mail:
| | - Kiyoung Lee
- Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremberg Martensstrasse 7, 91058 Erlangen (Germany) E-mail:
| | - Patrik Schmuki
- Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremberg Martensstrasse 7, 91058 Erlangen (Germany) E-mail:
| |
Collapse
|
21
|
Chan CPY, Mak WC, Cheung KY, Sin KK, Yu CM, Rainer TH, Renneberg R. Evidence-based point-of-care diagnostics: current status and emerging technologies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:191-211. [PMID: 23527548 DOI: 10.1146/annurev-anchem-062012-092641] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Point-of-care (POC) diagnostics brings tests nearer to the site of patient care. The turnaround time is short, and minimal manual interference enables quick clinical management decisions. Growth in POC diagnostics is being continuously fueled by the global burden of cardiovascular and infectious diseases. Early diagnosis and rapid initiation of treatment are crucial in the management of such patients. This review provides the rationale for the use of POC tests in acute coronary syndrome, heart failure, human immunodeficiency virus, and tuberculosis. We also consider emerging technologies that are based on advanced nanomaterials and microfluidics, improved assay sensitivity, miniaturization in device design, reduced costs, and high-throughput multiplex detection, all of which may shape the future development of POC diagnostics.
Collapse
Affiliation(s)
- Cangel Pui Yee Chan
- Accident and Emergency Medicine Academic Unit, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang X, Jeong YI, Moon BK, Zhang L, Kang DH, Kim I. Self-assembly of morphology-tunable architectures from tetraarylmethane derivatives for targeted drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3223-3233. [PMID: 23425332 DOI: 10.1021/la305069e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tetraarylmethane compounds consisting of two pyrogallol and two aniline units, namely, Ar2CAr'2 {Ar = 3,4,5-C6H2(OH)3 and Ar' = 3,5-R2-4-C6H2NH2 [R = Me (1), iPr (2)]} exhibit excellent self-assembly behavior. Compound 1 yields size-tunable hollow nanospheres (HNSs) with a narrow size distribution, and 2 yields various morphologies ranging from microtubules to microrods via self-assembly induced by hydrogen bonding and π-π stacking interactions. On the basis of the experimental results, a plausible mechanism for morphology tunability was proposed. As a means of utilizing the self-assembled HNSs for targeting controlled drug delivery, folic acid (FA) and rhodamine 6G (Rh6G) were grafted onto compound 1 to yield the FA-Rh6G-1 complex. The HNSs fabricated with FA-Rh6G-1 showed low cytotoxicity against human embryonic kidney 293T cells and CT26 colon carcinoma cells and good doxorubicin (DOX) loading capacity (9.6 wt %). The FA receptor-mediated endocytosis of FA-Rh6G-1 HNSs examined by using a confocal laser scanning microscope and a flow cytometer revealed that the uptake of FA-Rh6G-1 HNSs into CT26 cells was induced by FA receptor-mediated endocytosis. In vitro drug delivery tests showed that the DOX molecules were released from the resulting HNSs in a sustainable and pH-dependent manner, demonstrating a potential application for HNSs in targeted drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Xinhua Huang
- The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University, Pusan, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Patra A, Chandaluri CG, Radhakrishnan TP. Optical materials based on molecular nanoparticles. NANOSCALE 2012; 4:343-359. [PMID: 22159069 DOI: 10.1039/c1nr11313e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A major part of contemporary nanomaterials research is focused on metal and semiconductor nanoparticles, constituted of extended lattices of atoms or ions. Molecular nanoparticles assembled from small molecules through non-covalent interactions are relatively less explored but equally fascinating materials. Their unique and versatile characteristics have attracted considerable attention in recent years, establishing their identity and status as a novel class of nanomaterials. Optical characteristics of molecular nanoparticles capture the essence of their nanoscale features and form the basis of a variety of applications. This review describes the advances made in the field of fabrication of molecular nanoparticles, the wide spectrum of their optical and nonlinear optical characteristics and explorations of the potential applications that exploit their unique optical attributes.
Collapse
Affiliation(s)
- A Patra
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| | | | | |
Collapse
|
24
|
Feracci H, Gutierrez BS, Hempel W, Gil IS. Organic Nanoparticles. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Zhao WW, Ma ZY, Yu PP, Dong XY, Xu JJ, Chen HY. Highly Sensitive Photoelectrochemical Immunoassay with Enhanced Amplification Using Horseradish Peroxidase Induced Biocatalytic Precipitation on a CdS Quantum Dots Multilayer Electrode. Anal Chem 2011; 84:917-23. [DOI: 10.1021/ac203184g] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wei-Wei Zhao
- State Key
Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zheng-Yuan Ma
- State Key
Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Pei-Pei Yu
- State Key
Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao-Ya Dong
- State Key
Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Abstract
This article has a special focus on the broad range of innovative nanoprobes for signal amplification and new generations of bioassays. Advances in functionalizing gold nanoparticles with oligonucleotides speed up the development of a series of new nucleic acid assays. A biobarcode assay allows signal amplification by utilizing antibody-coated magnetic beads to concentrate the analytes and antibody-coated gold nanoparticle probes to carry a large number of oligonucleotides. Novel signal-amplification technologies, based on either new classes of nanoprobes consisting of releasable fluorophores or with aggregation-induced emission features, can also improve the sensitivity of bioassays. Advances in synthesis and biofunctionalization of quantum dots with unique properties have generated increasingly widespread applications in DNA sorting, multiplexing bioassays and fluorescence resonance energy transfer-based sensing. Ingenious nanoprobes in bioassays can offer PCR-like sensitivity, high selectivity, capacity for massive multiplexing, time efficiency and, most importantly, the ability to be performed at the point- of-care.
Collapse
|
27
|
Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011; 63:427-40. [PMID: 21223990 DOI: 10.1016/j.addr.2010.12.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/29/2010] [Indexed: 11/29/2022]
Abstract
A significant percentage of active pharmaceutical ingredients identified through discovery screening programs is poorly soluble in water. These molecules are often difficult to formulate using conventional approaches and are associated with innumerable formulation-related performance issues, e.g. poor bioavailability, lack of dose proportionality, slow onset of action and other attributes leading to poor patient compliance. In addition, for parenteral products, these molecules are generally administered with co-solvents and thus have many undesirable side effects. Wet media milling is one of the leading particle size reduction approaches that have been successfully used to formulate these problematic compounds. The approach is a water-based media milling process where micron-sized drug particles are shear-fractured into nanometer-sized particles. Nanoparticle dispersions are stable and typically have a mean diameter of less than 200 nm with 90% of the particles being less than 400 nm. The formulation consists only of water, drug and one or more GRAS excipients. Drug concentrations approaching 300-400mg/g can be targeted with the use of minimal amounts stabilizer. Typically, on average, the drug to stabilizer ratio on a weight basis ranges from 2:1 to 20:1. These liquid nanodispersions exhibit acceptable shelf-life and can be post-processed into various types of solid dosage forms. Nanoparticulate-based drug products have been shown to improve bioavailability and enhance drug exposure for oral and parenteral dosage forms. Suitable formulations for the most commonly used routes of administration can be identified with milligram quantities of drug substance providing the discovery scientist an alternate avenue for screening and identifying superior leads. In the last few years, formulating poorly water soluble compounds as nanosuspensions has evolved from a conception to a realization. The versatility and applicability of this drug delivery platform are just beginning to be realized.
Collapse
|
28
|
Martín V, Costela A, Pintado-Sierra M, García-Moreno I. Sulforhodamine B doped polymeric matrices: A high efficient and stable solid-state laser. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Mak W, Sin K, Chan C, Wong L, Renneberg R. Biofunctionalized indigo-nanoparticles as biolabels for the generation of precipitated visible signal in immunodipsticks. Biosens Bioelectron 2011; 26:3148-53. [DOI: 10.1016/j.bios.2010.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/22/2010] [Accepted: 12/08/2010] [Indexed: 11/16/2022]
|
30
|
Xu X, He C, Li L, Ma N, Li Y. Surface modification and shape adjustment of polymer semiconductor nanowires. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04296j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zheng C, Xu X, He F, Li L, Wu B, Yu G, Liu Y. Preparation of high-quality organic semiconductor nanoparticle films by solvent-evaporation-induced self-assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16730-16736. [PMID: 20942425 DOI: 10.1021/la103449q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Organic semiconductor nanoparticles are expected to be used in organic optical and electronic devices due to their unique optical and electrical properties. However, no method has been reported for the preparation of high-quality organic nanoparticle films without remaining additives and being capable of dealing with binary nanoparticle blends. We developed a simple approach to fabricate high-quality organic semiconductor nanoparticle films from their aqueous solutions by solvent-evaporation-induced self-assembly. Only volatile solvents are employed in the nanoparticle solutions, so the self-assembled nanoparticle films are free of additives. Moreover, this method is also suitable for fabricating thin films containing binary nanoparticles. Therefore, it paves the way for potential applications of organic semiconductor nanoparticles in nanoscale optical and electronic devices.
Collapse
Affiliation(s)
- Changchun Zheng
- State Key Laboratory of Advanced Metal and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
An electrochemical enzyme bioaffinity electrode based on biotin–streptavidin conjunction and bienzyme substrate recycling for amplification. Anal Biochem 2010; 405:121-6. [DOI: 10.1016/j.ab.2010.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022]
|
33
|
Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. Ther Deliv 2010; 1:149-67. [DOI: 10.4155/tde.10.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pharmacological activity of a drug molecule depends on its ability to dissolve and interact with its biological target, either through dissolution and absorption, or through dissolution and receptor interaction. The low bioavailability that characterizes poorly water-soluble drugs is usually attributed to the dissolution kinetic profile. Novel strategies to effectively deliver these drugs include nanoparticulate approaches that either increase the surface area of the drug or improve the solubility characteristics of the drug. Nanosizing approaches are based on the production of drug nanocrytals dispersed in an aqueous surfactant solution, whereas other possibilities include drug loading in nanoparticles. Promising nanoparticulate approaches include the development of lipid-based nanocarriers to increase drug solubility followed by enhanced bioavailability. To select the best approach there are, however, some critical considerations to take into account, for example the physicochemical properties of the drug, the possibility to scale-up the production process, the toxicological considerations of the use of solvents and cosolvents, the selection of an environmentally sustainable methodology and the development of a more patient-friendly dosage form. This article addresses these relevant questions and provides feasible examples of novel strategies with respect to relevant administration routes.
Collapse
|
34
|
Lee HJ, Lee SH, Yasukawa T, Ramón-Azcón J, Mizutani F, Ino K, Shiku H, Matsue T. Rapid and simple immunosensing system for simultaneous detection of tumor markers based on negative-dielectrophoretic manipulation of microparticles. Talanta 2010; 81:657-63. [DOI: 10.1016/j.talanta.2009.12.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/25/2009] [Accepted: 12/28/2009] [Indexed: 11/16/2022]
|
35
|
|
36
|
Yin Z, Liu Y, Jiang LP, Zhu JJ. Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosens Bioelectron 2010; 26:1890-4. [PMID: 20378330 DOI: 10.1016/j.bios.2010.03.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 11/20/2022]
Abstract
A novel immunosensor for sensitive detection of tumor necrosis factor α was reported. First of all, gold nanoparticles were uniformly assembled on the surface of poly (styrene-acrylic acid) nanospheres, which was used as the matrix to conjugate alkaline phosphatase (ALP). And then, the obtained composite was used as multi-enzyme functionalized label for immunoassay. Biocompatible polyaniline doped with poly (acrylic acid) was electro-polymerized at the glass carbon electrode to construct the matrix for the immobilization of antibody TNF-α. After the sandwich immunoreaction, the labeled ALP was used to hydrolyze α-naphthyl phosphate to produce the electroactive α-naphthol, which could be amperometrically detected. The results showed that the electrochemical signals were proportional to the logarithm of the antigen concentration in the range of 0.02-200.00 ng/mL with the detection limit of 0.01 ng/mL. The developed immunoassay showed high sensitivity, acceptable stability and reproducibility, which might have potentially broad applications in protein diagnostics and bioassay.
Collapse
Affiliation(s)
- Zhengzhi Yin
- Key Lab of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Hankou Road 22, Nanjing 210093, PR China
| | | | | | | |
Collapse
|
37
|
Encapsulation of Hydrophobic Dyes in Polystyrene Micro- and Nanoparticles via Swelling Procedures. J Fluoresc 2010; 21:937-44. [DOI: 10.1007/s10895-010-0632-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
38
|
Descalzo AB, Zhu S, Fischer T, Rurack K. Optimization of the Coupling of Target Recognition and Signal Generation. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II 2010. [DOI: 10.1007/978-3-642-04701-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms. LUMINESCENCE APPLIED IN SENSOR SCIENCE 2010; 300:51-91. [DOI: 10.1007/128_2010_99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Yang X, Yuan R, Chai Y, Zhuo Y, Mao L, Yuan S. Ru(bpy)3(2+)-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens Bioelectron 2009; 25:1851-5. [PMID: 20074928 DOI: 10.1016/j.bios.2009.12.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/07/2009] [Accepted: 12/21/2009] [Indexed: 02/09/2023]
Abstract
A new approach was established to construct a sandwich-type electrochemiluminescence (ECL) immunosensor by using Ru(bpy)(3)(2+)-doped silica (abbreviated as Ru-SiO(2)) nanoparticles to label secondary antibody. Firstly, carboxylate-terminated multi-walled carbon nanotubes (MWCNTs) were modified on the electrode to bond with avidin. Subsequently, biotinylated antibodies were immobilized on the surface of the electrode by employing the specific interaction of biotin/avidin and the non-covalent and covalent conjugation function of MWCNTs. Later, the electrode was incubated with antigen of mouse IgG and then reacted with the secondary antibody which was labeled by Ru-SiO(2). Accordingly, through the ECL response of Ru-SiO(2) and tripropylamine (TPA), a strong ECL signal was obtained and an amplification analysis of protein interaction was achieved. The present immunosensor showed a wide linear range of 0.05-200.00 ng mL(-1) for detecting mouse IgG, with a low detection limit of 17 pg mL(-1). There was a 4-300-fold improvement in detection limit compared with other similar studies. The morphologies of Ru-SiO(2) nanoparticles were characterized by using transmission electronic microscopy (TEM). The fabrication process of the immunosensor was studied by cyclic voltammetry (CV) and the performance of the immunosensor was monitored with an electrochemiluminescence analyzer. This new strategy for preparation of the ECL immunosensor could be easily realized and has potential application in ultrasensitive bioassays.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | |
Collapse
|
41
|
de la Escosura-Muñiz A, Merkoçi A. Electrochemical detection of proteins using nanoparticles: applications to diagnostics. ACTA ACUST UNITED AC 2009; 4:21-37. [DOI: 10.1517/17530050903386661] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Abstract
Suitable labels are at the core of Luminescence and fluorescence imaging and sensing. One of the most exciting, yet also controversial, advances in label technology is the emerging development of quantum dots (QDs)--inorganic nanocrystals with unique optical and chemical properties but complicated surface chemistry--as in vitro and in vivo fluorophores. Here we compare and evaluate the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs. Our aim is to provide a better understanding of the advantages and limitations of both classes of chromophores, to facilitate label choice and to address future challenges in the rational design and manipulation of QD labels.
Collapse
|
43
|
Shen D, Meyerhoff ME. Pyrroloquinoline Quinone-Doped Polymeric Nanospheres as Sensitive Tracer for Binding Assays. Anal Chem 2009; 81:1564-9. [DOI: 10.1021/ac8023153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongxuan Shen
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Mark E. Meyerhoff
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
44
|
Li JJ, Ouellette AL, Giovangrandi L, Cooper DE, Ricco AJ, Kovacs GTA. Optical scanner for immunoassays with up-converting phosphorescent labels. IEEE Trans Biomed Eng 2008; 55:1560-71. [PMID: 18440902 DOI: 10.1109/tbme.2007.914674] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A 2-D optical scanner was developed for the imaging and quantification of up-converting phosphor (UCP) labels in immunoassays. With resolution better than 500 microm, a scan rate of 0.4 mm/s, and a 1-2% coefficient of variation for repeatability, this scanner achieved a detection limit of fewer than 100 UCP particles in an 8.8. x 10(4) microm(2) area and a dynamic range that covered more than three orders of magnitude. Utilizing this scanner, a microfluidic chip immunoassay for the cytokine interferon-gamma (IFN-gamma) was developed: concentrations as low as 3 pM (50 pg/mL) were detected from 100 microL samples with a total assay time of under an hour, including the 8 min readout. For this UCP-based assay, 2-D images of the capture antibody lines were scanned, image processing techniques were employed to extract the UCP emission signals, a response curve that spanned 3-600 pM IFN-gamma was generated, and a five-parameter logistic mathematical model was fitted to the data for determination of unknown IFN-gamma concentrations. Relative to common single-point or 1-D scanning optical measurements, our results suggest that a simple 2-D imaging system can speed assay development, reduce errors, and improve accuracy by characterizing the spatial distribution and uniformity of surface-captured optical labels as a function of assay conditions and device parameters.
Collapse
Affiliation(s)
- Janice J Li
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bomans PH, Frederik PM, Kostarelos K. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS NANO 2008; 2:408-418. [PMID: 19206564 DOI: 10.1021/nn700176a] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the construction of lipid-quantum dot (L-QD) bilayer vesicles by incorporation of the smallest (2 nm core size) commercially available CdSe/ZnS QD within zwitterionic dioleoylphosphatidylcholine and cationic 1,2-dioleoyl-3-trimethylammonium-propane lipid bilayers, self-assembling into small unilamellar vesicles. The incorporation of QD in the acyl environment of the lipid bilayer led to significant enhancement of their optical stability during storage and exposure to UV irradiation compared to that of QD alone in toluene. Moreover, structural characterization of L-QD hybrid bilayer vesicles using cryogenic electron microscopy revealed that the incorporation of QD takes place by hydrophobic self-association within the biomembranes. The L-QD vesicles bound and internalized in human epithelial lung cells (A549), and confocal laser scanning microscopy studies indicated that the L-QD were able to intracellularly traffick inside the cells. Moreover, cationic L-QD vesicles were injected in vivo intratumorally, leading to enhanced retention within human cervical carcinoma (C33a) xenografts. The hybrid L-QD bilayer vesicles presented here are thought to constitute a novel delivery system that offers the potential for transport of combinatory therapeutic and diagnostic modalities to cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Wafa' T Al-Jamal
- Nanomedicine Lab, Centre for Drug Delivery Research, The School of Pharmacy, University of London, London WC1N 1AX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM. Multiplexed immunoassays for proteins using magnetic luminescent nanoparticles for internal calibration. Anal Biochem 2007; 369:34-40. [PMID: 17681270 PMCID: PMC2014785 DOI: 10.1016/j.ab.2007.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/21/2022]
Abstract
Suspension arrays present a promising tool for multiplexed assays in large-scale screening applications. A simple and robust platform for quantitative multiprotein immunoanalysis has been developed with the use of magnetic Co:Nd:Fe(2)O(3)/luminescent Eu:Gd(2)O(3) core/shell nanoparticles (MLNPs) as a carrier. The magnetic properties of the MLNPs allow their manipulation by an external magnetic field in the separation and washing steps in the immunoassay. Their optical properties enable the internal calibration of the detection system. The multiplexed sandwich immunoassay involves dual binding events on the surface of the MLNPs functionalized with the capture antibodies. Secondary antibodies labeled with conventional organic dyes (Alexa Fluor) are used as reporters. The amount of the bound secondary antibody is directly proportional to the concentration of the analyte in the sample. In our approach, the fluorescence intensity of the reporter dye is related to the luminescence signal of the MLNPs. In this way, the intrinsic luminescence of the MLNPs serves as an internal standard in the quantitative immunoassay. The concept is demonstrated for a simultaneous immunoassay for three model proteins (human, rabbit, and mouse IgGs). The method uses a standard bench plate reader. It can be applied to disease diagnostics and to the detection of biological threats.
Collapse
Affiliation(s)
- Mikaela Nichkova
- Department of Entomology and the UC Davis Cancer Center, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
47
|
Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F, Halas N, Surrey S, Waldman SA. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 2007; 25:145-52. [PMID: 17316852 DOI: 10.1016/j.tibtech.2007.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 12/21/2006] [Accepted: 02/08/2007] [Indexed: 01/19/2023]
Abstract
Nanotechnology has considerable promise for the detection, staging and treatment of cancer. Here, we outline one such promising application: the use of nanostructures with surface-bound ligands for the targeted delivery and ablation of colorectal cancer (CRC), the third most common malignancy and the second most common cause of cancer-related mortality in the US. Normal colonic epithelial cells as well as primary CRC and metastatic tumors all express a unique surface-bound guanylyl cyclase C (GCC), which binds the diarrheagenic bacterial heat-stable peptide enterotoxin ST. This makes GCC a potential target for metastatic tumor ablation using ST-bound nanoparticles in combination with thermal ablation with near-infrared or radiofrequency energy absorption. Furthermore, the incorporation of iron or iron oxide into such structures would provide advantages for magnetic resonance imaging (MRI). Although the scenarios outlined in this article are hypothetical, they might stimulate ideas about how other cancers could be attacked using nanotechnology.
Collapse
Affiliation(s)
- Paolo Fortina
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chan CPY, Tzang LCH, Sin KK, Ji SL, Cheung KY, Tam TK, Yang MMS, Renneberg R, Seydack M. Biofunctional organic nanocrystals for quantitative detection of pathogen deoxyribonucleic acid. Anal Chim Acta 2007; 584:7-11. [PMID: 17386578 DOI: 10.1016/j.aca.2006.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/30/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Advances in nanotechnology have had significant impacts in the field of biodiagnostics. In this study, we describe the novel application of dissolvable, organic and biofunctional nanocrystals for the quantitative detection of a PCR product. Fluorescein diacetate (FDA), a fluorogenic precursor of fluorescein, was milled in a solution of a polymeric surfactant to create a stable, nanosized colloid with an interface for coupling streptavidin molecules. The application of these particulate labels for the quantitative detection of biotinylated human papillomavirus (HPV) DNA, amplified in a standard PCR procedure, was demonstrated. After the affinity reaction, the FDA molecules were dissolved and concomitantly converted into fluorescein. This approach resulted in a high selectivity, short incubation times and a sensitivity up to 147 times greater than obtained from state-of-the-art, directly fluorescent-labeled streptavidins. This innovative method offers rapid detection of small amounts of nucleic acids because less target material and thus fewer PCR cycles are required.
Collapse
Affiliation(s)
- Cangel Pui-yee Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, SAR, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Huang YY, Hsu HY, Huang CJC. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags. Biosens Bioelectron 2007; 22:980-5. [PMID: 16759844 DOI: 10.1016/j.bios.2006.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
Surface plasmon resonance (SPR) can detect molecules bound to a surface by subtle changes in the SPR angle. By immobilizing probes onto the surface and passing analyte solution through the surface, changes in SPR angle indicate the binding between analyte and probes. Detection of analyte from solution can be achieved easily. By using rolling circle amplification (RCA) and nanogold-modified tags, the signals of analyte binding are greatly amplified, and the sensitivity of this technique is significantly improved. Furthermore, this technique has potentials for ultra-sensitive detection and microarray analysis. In this paper, this detection technique is introduced and shown to have great amplification capability. Using 5 nm nanogold with 30 min of RCA development time, this proposed protein detection technique shows over 60 times amplification of the original signal.
Collapse
Affiliation(s)
- Yi-You Huang
- Institute of Biomedical Engineering, College of Medicine, College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, Taiwan.
| | | | | |
Collapse
|
50
|
Chan CPY, Cheung YC, Renneberg R, Seydack M. New Trends in Immunoassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 109:123-54. [PMID: 17874052 DOI: 10.1007/10_2007_075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article takes a special focus on signal amplification technologies in immunoassays and new generations of lateral-flow assays. Novel signal amplification technologies based either on new classes of biofunctional nanocrystals consisting of releasable fluorophores or on aggregation-induced emission (AIE) can improve the sensitivity and the limits of detection in immunoassays. A bio-barcode assay also allows signal amplification by utilizing antibody-coated magnetic beads to concentrate the analytes and antibody-coated gold nanoparticle probes to carry with a large number of oligonucleotides. These innovative technologies boost the development of immunoassays. Growth in rapid immunoassay is fueled by the increasing number of diabetics, the globalization of infectious diseases and the surge in cardiovascular and other chronic diseases as well as other chronic conditions. Rapid, near patient, decentralized, point-of-care (POC) tests are emerging as a tool for more efficient diagnosis and patient evaluation. Technological innovations in lateral-flow assays have enabled a move to bring testing closer to the patient. A novel "digital-style" lateral-flow assay provides semi-quantitative results by simply counting the number of red lines in the test without any expensive reading instrument. An immuno-threshold-based assay can give a signal directly proportional to the concentration of a hapten to prevent confusion on interpretation of the test results. In addition, POC tests become more meaningful to healthcare professionals by combining the benefits of new technologies to provide quantitative results. A molecular compact disc provides a high-resolution imaging capability that can identify and quantify many different antigens simultaneously in highly complex immunoassays. Further advances in immunoassays will bring diagnostic testing even closer to the patient, and can help physicians to monitor diseases that require immediate test results, thereby enhancing the quality of patient care.
Collapse
Affiliation(s)
- Cangel Pui-yee Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, SAR Hong Kong, China.
| | | | | | | |
Collapse
|