1
|
Ying Y, Li H. Native top-down mass spectrometry for monitoring the rapid chymotrypsin catalyzed hydrolysis reaction. Anal Chim Acta 2024; 1285:341971. [PMID: 38057065 DOI: 10.1016/j.aca.2023.341971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
Enzymes play crucial roles in life sciences, pharmaceuticals and industries as biological catalysts that speed up biochemical reactions in living organisms. New catalytic reactions are continuously developed by enzymatic engineering to meet industrial needs, which thereby drives the development of analytical approaches for real-time reaction monitoring to reveal catalytic processes. Here, taking the hydrolase- chymotrypsin as a model system, we proposed a convenient method for monitoring catalytic processes through native top-down mass spectrometry (native TDMS). The chymotrypsin sample heterogeneity was first explored. By altering sample introduction modes and pHs, covalent and noncovalent enzymatic complexes, substrates and products can be monitored during the catalysis and further confirmed by tandem MS. Our results demonstrated that native TDMS based catalysis monitoring has distinctive strength on real-time inspection and continuous observation, making it a promising tool for characterizing more biocatalysts.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
3
|
Immobilization of proteolytic enzymes on replica-molded thiol-ene micropillar reactors via thiol-gold interaction. Anal Bioanal Chem 2019; 411:2339-2349. [PMID: 30899997 PMCID: PMC6459972 DOI: 10.1007/s00216-019-01674-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
We introduce rapid replica molding of ordered, high-aspect-ratio, thiol-ene micropillar arrays for implementation of microfluidic immobilized enzyme reactors (IMERs). By exploiting the abundance of free surface thiols of off-stoichiometric thiol-ene compositions, we were able to functionalize the native thiol-ene micropillars with gold nanoparticles (GNPs) and these with proteolytic α-chymotrypsin (CHT) via thiol-gold interaction. The micropillar arrays were replicated via PDMS soft lithography, which facilitated thiol-ene curing without the photoinitiators, and thus straightforward bonding and good control over the surface chemistry (number of free surface thiols). The specificity of thiol-gold interaction was demonstrated over allyl-rich thiol-ene surfaces and the robustness of the CHT-IMERs at different flow rates and reaction temperatures using bradykinin hydrolysis as the model reaction. The product conversion rate was shown to increase as a function of decreasing flow rate (increasing residence time) and upon heating of the IMER to physiological temperature. Owing to the effective enzyme immobilization onto the micropillar array by GNPs, no further purification of the reaction solution was required prior to mass spectrometric detection of the bradykinin hydrolysis products and no clogging problems, commonly associated with conventional capillary packings, were observed. The activity of the IMER remained stable for at least 1.5 h (continuous use), suggesting that the developed protocol may provide a robust, new approach to implementation of IMER technology for proteomics research. Graphical abstract.
Collapse
|
4
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Patrick JW, Zerfas B, Gao J, Russell DH. Rapid capillary mixing experiments for the analysis of hydrophobic membrane complexes directly from aqueous lipid bilayer solutions. Analyst 2017; 142:310-315. [DOI: 10.1039/c6an02290a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixing tee-electrospray ionization coupled to ion mobility-mass spectrometry reveals gramicidin A dimer conformer preferences.
Collapse
Affiliation(s)
- John W. Patrick
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Jianmin Gao
- Department of Chemistry
- Boston College
- Chestnut Hill
- USA
| | | |
Collapse
|
6
|
Hydrogen deuterium exchange mass spectrometry in biopharmaceutical discovery and development – A review. Anal Chim Acta 2016; 940:8-20. [DOI: 10.1016/j.aca.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 01/14/2023]
|
7
|
Baez NOD, Reisz JA, Furdui CM. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic Biol Med 2015; 80:191-211. [PMID: 25261734 PMCID: PMC4355329 DOI: 10.1016/j.freeradbiomed.2014.09.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers has been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses.
Collapse
Affiliation(s)
- Nelmi O Devarie Baez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie A Reisz
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
8
|
Lento C, Audette GF, Wilson DJ. Time-resolved electrospray mass spectrometry — a brief history. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes the evolution of time-resolved electrospray ionization mass spectrometry (TRESI-MS), a technology that was developed in large part at Western University. TRESI-MS was initially designed to characterize rapid chemical and biochemical reactions occurring on the millisecond time scale without need for a chromophore. Early TRESI-MS setups usually consisted of continuous-flow rapid mixers with a fixed tee for analysis of a single time point, and later adjustable reaction chamber devices allowing for automatic tracking of the reaction over time. Advances in instrumentation design over the years have resulted in improved time resolution, with microfluidic device implementation allowing for coupling to hydrogen−deuterium exchange (HDX) experiments. Areas of application that will be discussed include the investigation of protein folding intermediates, identification of enzyme−substrate intermediates in the pre-steady state, and the use of time-resolved HDX to study the dynamics of weakly structured protein regions. While some limitations still persist with the method, the continued development of TRESI-MS and related approaches paves the way to a promising future and the study of unexplored application areas.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
9
|
Zinck N, Stark AK, Wilson DJ, Sharon M. An improved rapid mixing device for time-resolved electrospray mass spectrometry measurements. ChemistryOpen 2014; 3:109-14. [PMID: 25050229 PMCID: PMC4101726 DOI: 10.1002/open.201402002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Time series data can provide valuable insight into the complexity of biological reactions. Such information can be obtained by mass-spectrometry-based approaches that measure pre-steady-state kinetics. These methods are based on a mixing device that rapidly mixes the reactants prior to the on-line mass measurement of the transient intermediate steps. Here, we describe an improved continuous-flow mixing apparatus for real-time electrospray mass spectrometry measurements. Our setup was designed to minimize metal–solution interfaces and provide a sheath flow of nitrogen gas for generating stable and continuous spray that consequently enhances the signal-to-noise ratio. Moreover, the device was planned to enable easy mounting onto a mass spectrometer replacing the commercial electrospray ionization source. We demonstrate the performance of our apparatus by monitoring the unfolding reaction of cytochrome C, yielding improved signal-to-noise ratio and reduced experimental repeat errors.
Collapse
Affiliation(s)
- Nicholas Zinck
- Department of Chemistry, York University Toronto, ON M3J 1P3 (Canada)
| | - Ann-Kathrin Stark
- Department of Biological Chemistry, Weizmann Institute of Science 76100 Rehovot (Israel) E-mail:
| | - Derek J Wilson
- Department of Chemistry, York University Toronto, ON M3J 1P3 (Canada)
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science 76100 Rehovot (Israel) E-mail:
| |
Collapse
|
10
|
Kaufmann CM, Graßmann J, Treutter D, Letzel T. Utilization of real-time electrospray ionization mass spectrometry to gain further insight into the course of nucleotide degradation by intestinal alkaline phosphatase. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:869-878. [PMID: 24623690 DOI: 10.1002/rcm.6855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Related with its ability to degrade nucleotides, intestinal alkaline phosphatase (iAP) is an important participant in intestinal pH regulation and inflammatory processes. However, its activity has been investigated mainly by using artificial non-nucleotide substrates to enable the utilization of conventional colorimetric methods. To capture the degradation of the physiological nucleotide substrate of the enzyme along with arising intermediates and the final product, the enzymatic assay was adapted to mass spectrometric detection. Therewith, the drawbacks associated with colorimetric methods could be overcome. METHODS Enzymatic activity was comparatively investigated with a conventional colorimetric malachite green method and a single quadrupole mass spectrometer with an electrospray ionization source using the physiological nucleotide substrates ATP, ADP or AMP and three different pH-values in either methodological approach. By this means the enzymatic activity was assessed on the one hand by detecting the phosphate release spectrometrically at defined time points of enzymatic reaction or on the other by continuous monitoring with mass spectrometric detection. RESULTS Adaption of the enzymatic assay to mass spectrometric detection disclosed the entire course of all reaction components--substrate, intermediates and product--resulting from the degradation of substrate, thereby pointing out a stepwise removal of phosphate groups. By calculating enzymatic substrate conversion rates a distinctively slower degradation of AMP compared to ADP or ATP was revealed together with the finding of a substrate competition between ATP and ADP at alkaline pH. CONCLUSIONS The comparison of colorimetric and mass spectrometric methods to elucidate enzyme kinetics and specificity clearly underlines the advantages of mass spectrometric detection for the investigation of complex multi-component enzymatic assays. The entire course of enzymatic substrate degradation was revealed with different nucleotide substrates, thus allowing a specific monitoring of intestinal alkaline phosphatase activity.
Collapse
Affiliation(s)
- Christine M Kaufmann
- Chair of Urban Water Systems Engineering, Technische Universität München, Am Coulombwall 8, 85748, Garching, Germany
| | | | | | | |
Collapse
|
11
|
Olivares A, Laskin J, Johnson GE. Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry. J Phys Chem A 2014; 118:8464-70. [DOI: 10.1021/jp501809r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Astrid Olivares
- Department
of Chemistry, California Lutheran University, Thousand Oaks, California 91360, United States
| | - Julia Laskin
- Physical Sciences
Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, Washington, 99352
| | - Grant E. Johnson
- Physical Sciences
Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, Washington, 99352
| |
Collapse
|
12
|
Resetca D, Wilson DJ. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry. FEBS J 2013; 280:5616-25. [DOI: 10.1111/febs.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Diana Resetca
- Department of Chemistry; York University; Toronto Ontario Canada
| | - Derek J. Wilson
- Department of Chemistry; York University; Toronto Ontario Canada
- Center for Research in Mass Spectrometry; Department of Chemistry; York University; Toronto Ontario Canada
| |
Collapse
|
13
|
Liuni P, Olkhov-Mitsel E, Orellana A, Wilson DJ. Measuring kinetic isotope effects in enzyme reactions using time-resolved electrospray mass spectrometry. Anal Chem 2013; 85:3758-64. [PMID: 23461634 DOI: 10.1021/ac400191t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic isotope effect (KIE) measurements are a powerful tool for studying enzyme mechanisms; they can provide insights into microscopic catalytic processes and even structural constraints for transition states. However, KIEs have not come into widespread use in enzymology, due in large part to the requirement for prohibitively cumbersome experimental procedures and daunting analytical frameworks. In this work, we introduce time-resolved electrospray ionization mass spectrometry (TRESI-MS) as a straightforward, precise, and inexpensive method for measuring KIEs. Neither radioisotopes nor large amounts of material are needed and kinetic measurements for isotopically "labeled" and "unlabeled" species are acquired simultaneously in a single "competitive" assay. The approach is demonstrated first using a relatively large isotope effect associated with yeast alcohol dehydrogenase (YADH) catalyzed oxidation of ethanol. The measured macroscopic KIE of 2.19 ± 0.05 is consistent with comparable measurements in the literature but cannot be interpreted in a way that provides insights into isotope effects in individual microscopic steps. To demonstrate the ability of TRESI-MS to directly measure intrinsic KIEs and to characterize the precision of the technique, we measure a much smaller (12)C/(13)C KIE associated specifically with presteady state acylation of chymotrypsin during hydrolysis of an ester substrate.
Collapse
Affiliation(s)
- Peter Liuni
- Department of Chemistry, York University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
14
|
Liuni P, Jeganathan A, Wilson DJ. Conformer selection and intensified dynamics during catalytic turnover in chymotrypsin. Angew Chem Int Ed Engl 2012; 51:9666-9. [PMID: 22936643 DOI: 10.1002/anie.201204903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/31/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Liuni
- Chemistry, York University, 4700 Keele St., Toronto, ON, Canada
| | | | | |
Collapse
|
15
|
Liuni P, Jeganathan A, Wilson DJ. Conformer Selection and Intensified Dynamics During Catalytic Turnover in Chymotrypsin. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Rob T, Wilson DJ. Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:205-214. [PMID: 22641726 DOI: 10.1255/ejms.1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many chemical and biochemical reactions equilibrate within a few seconds of initiation under "native" conditions. To understand the microscopic processes underlying these reactions, the most direct approach is to monitor the reaction as equilibrium is established (i.e. the reaction kinetics). However, this requires the ability to characterize the reaction mixture on the millisecond time-scale. In this review, we survey the contributions of time-resolved mass spectrometry (TR-MS) to the characterization of millisecond time-scale (bio)chemical processes, with a focus on biochemical applications. Compared to conventional time-resolved techniques, which use optical detection, the primary advantage of TR-MS is the ability to detect virtually all reactive species simultaneously. This provides a singularly high detail account of the reaction without the need for a chromophoric change on turnover or artificial chromophoric probes. To provide millisecond time-resolution, TR-MS set-ups usually employ continuous-flow rapid mixers, corresponding either to a fixed "tee" that provides a single reaction time-point or an adjustable position mixer that allows continuous reaction monitoring. TR-MS has been used to monitor processes with rates up to 500 s(-1) and to provide a detailed account of complex reactions involving 10 co- populated species. This corresponds to significantly lower time-resolution than optical methods, which can measure rates in excess of 900 s(-1) under ideal conditions, but substantially more detail (optical studies are typically limited to one or two analytes). TR-MS has been implemented on a number of platforms, including capillary and microfluidic set-ups. Capillary-based implementations are straightforward to fabricate and provide the most efficient rapid mixing. Microfluidic implementations have also been devised to enable multi-step experimental workflows that incorporate TR-MS. As a general method for time-resolved measurements, the applications for TR-MS are wide ranging. TR-MS has been used to identify intermediates in organic reactions, reveal protein (un)folding mechanisms, monitor enzyme catalysis in the pre-steady-state and, in conjunction with hydrogen-deuterium exchange, characterize protein conformational dynamics. While not without limitations, TR-MS represents a powerful alternative for measuring solution phase processes on the millisecond time-scale and a new, promising approach for revealing mechanistic details in (bio)chemical reactions.
Collapse
Affiliation(s)
- Tamanna Rob
- Department of Chemistry, York University, 4700 Keele St, Toronto, Ontario, M3J 1P3 Canada
| | | |
Collapse
|
17
|
Functional proteomics: application of mass spectrometry to the study of enzymology in complex mixtures. Anal Bioanal Chem 2011; 402:625-45. [PMID: 21769551 DOI: 10.1007/s00216-011-5236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/19/2022]
Abstract
This review covers recent developments in mass spectrometry-based applications dealing with functional proteomics with special emphasis on enzymology. The introduction of mass spectrometry into this research field has led to an enormous increase in knowledge in recent years. A major challenge is the identification of "biologically active substances" in complex mixtures. These biologically active substances are, on the one hand, potential regulators of enzymes. Elucidation of function and identity of those regulators may be accomplished by different strategies, which are discussed in this review. The most promising approach thereby seems to be the one-step procedure, because it enables identification of the functionality and identity of biologically active substances in parallel and thus avoids misinterpretation. On the other hand, besides the detection of regulators, the identification of endogenous substrates for known enzymes is an emerging research field, but in this case studies are quite rare. Moreover, the term biologically active substances may also encompass proteins with diverse biological functions. Elucidation of the functionality of those-so far unknown-proteins in complex mixtures is another branch of functional proteomics and those investigations will also be discussed in this review.
Collapse
|
18
|
Ben-Nissan G, Sharon M. Capturing protein structural kinetics by mass spectrometry. Chem Soc Rev 2011; 40:3627-37. [DOI: 10.1039/c1cs15052a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Robbins MD, Yoon OK, Barbula GK, Zare RN. Stopped-flow kinetic analysis using Hadamard transform time-of-flight mass spectrometry. Anal Chem 2010; 82:8650-7. [PMID: 20843011 DOI: 10.1021/ac101899n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A home-built stopped-flow apparatus is interfaced to a Hadamard transform time-of-flight mass spectrometer, which permits study of reaction kinetics with a time between reaction initiation and observation as short as about 100 ms and a sampling rate of chemical change that can approach 1 ms. This technique is applied to the trypsin-catalyzed hydrolysis of several peptides and is validated by comparing the results with literature values as well as to optical data obtained with the present stopped-flow apparatus. In addition, we report a kinetic study of the action of trypsin on a peptide having more than one cleavage site.
Collapse
Affiliation(s)
- Matthew D Robbins
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
20
|
Roberts A, Furdui C, Anderson KS. Observation of a chemically labile, noncovalent enzyme intermediate in the reaction of metal-dependent Aquifex pyrophilus KDO8PS by time-resolved mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1919-1924. [PMID: 20533322 PMCID: PMC3381509 DOI: 10.1002/rcm.4594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The direct detection of intermediates in enzymatic reactions can yield important mechanistic insights but may be difficult due to short intermediate lifetimes and chemical instability. Using a rapid-mixing device coupled with electrospray ionization time-of-flight mass spectrometry, the noncovalent hemiketal intermediate in the reaction of metal-dependent 3-deoxy-D-manno-octulosonate-8-phosphate (KDO8P) synthase from Aquifex pyrophilus was observed in the millisecond time range. Using single turnover conditions, the noncovalent complexes of enzyme with Cd(2+):phosphoenolpyruvate, Cd(2+):phosphate, Cd(2+):KDO8P, and Cd(2+):intermediate complexes were resolved. The intermediate complex is present during times ranging from 50-630 ms, indicating that the intermediate builds up at the ambient temperatures of the experiment. This represents the first direct detection of the intermediate with a native metal-dependent KDO8PS, and further demonstrates that time-resolved mass spectrometry is a useful tool in mechanistic studies of enzymatic reactions.
Collapse
Affiliation(s)
- Anne Roberts
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Clarke DJ, Stokes AA, Langridge-Smith P, Mackay CL. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms. Anal Chem 2010; 82:1897-904. [PMID: 20112916 DOI: 10.1021/ac9026302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.
Collapse
Affiliation(s)
- David J Clarke
- SIRCAMS, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | | | | | | |
Collapse
|
22
|
Pierre ZN, Field CR, Scheeline A. Sample handling and chemical kinetics in an acoustically levitated drop microreactor. Anal Chem 2010; 81:8496-502. [PMID: 19769373 PMCID: PMC2761965 DOI: 10.1021/ac901400y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor.
Collapse
Affiliation(s)
- Zakiah N Pierre
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
23
|
Ngu TT, Lee JA, Rushton MK, Stillman MJ. Arsenic metalation of seaweed Fucus vesiculosus metallothionein: the importance of the interdomain linker in metallothionein. Biochemistry 2009; 48:8806-16. [PMID: 19655782 DOI: 10.1021/bi9007462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence of metallothionein in seaweed Fucus vesiculosus has been suggested as the protecting agent against toxic metals in the contaminated waters it can grow in. We report the first kinetic pathway data for A3+ binding to an algal metallothionein, F. vesiculosus metallothionein (rfMT). The time and temperature dependence of the relative concentrations of apo-rfMT and the five As-containing species have been determined following mixing of As3+ and apo-rfMT using electrospray ionization mass spectrometry (ESI MS). Kinetic analysis of the detailed time-resolved mass spectral data for As3+ metalation allows the simulation of the metalation reactions showing the consumption of apo-rfMT, the formation and consumption of As1- to As4-rfMT, and subsequent, final formation of As5-rfMT. The kinetic model proposed here provides a stepwise analysis of the metalation reaction showing time-resolved occupancy of the Cys7 and the Cys9 domain. The rate constants (M(-1) s(-1)) calculated from the fits for the 7-cysteine gamma domain are k1gamma, 19.8, and k2gamma, 1.4, and for the 9-cysteine beta domain are k1beta, 16.3, k2beta, 9.1, and k3beta, 2.2. The activation energies and Arrhenius factors for each of the reaction steps are also reported. rfMT has a long 14 residue linker, which as we show from analysis of the ESI MS data, allows each of its two domains to bind As3+ independently of each other. The analysis provides for the first time an explanation of the differing metal-binding properties of two-domain MTs with linkers of varying lengths, suggesting further comparison between plant (with long linkers) and mammalian (with short linkers) metallothioneins will shed light on the role of the interdomain linker.
Collapse
Affiliation(s)
- Thanh T Ngu
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
24
|
Abstract
Metallothionein are small, cysteine-rich, metal-binding proteins that are found ubiquitously in nature. Most metallothioneins bind multiple metals in two well-defined metal-thiolate clusters. This perspective discusses the use of optical spectroscopy to study the metalation of metallothioneins and the emergence of electrospray ionization mass spectrometry as a means of studying the mechanism of metalation for metallothioneins. A brief history of past kinetic studies of cadmium metallothioneins and recent kinetic study advances for the arsenic metalation of metallothionein will be presented. Lastly, a possible functional role for the two-domain structure of metallothionein will be briefly discussed.
Collapse
Affiliation(s)
- Thanh T Ngu
- Department of Chemistry, The University of Western Ontario, London, CanadaN6A 5B7
| | | |
Collapse
|
25
|
Ngu TT, Easton A, Stillman MJ. Kinetic analysis of arsenic-metalation of human metallothionein: significance of the two-domain structure. J Am Chem Soc 2009; 130:17016-28. [PMID: 19053406 DOI: 10.1021/ja8060326] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallothionein (MT) is ubiquitous in Nature, underlying MT's importance in the cellular chemistry of metals. Mammalian MT consists of two metal-binding domains while microorganisms like cyanobacteria consist of a single metal-binding domain MT. The evolution of a two-domain protein has been speculated on for some time; however, no conclusive evidence explaining the evolutionary necessity of the two-domain structure has been reported. The results presented in this report provide the complete kinetic analysis and subsequent mechanism of the As(3+)-metalation of the two-domain beta alpha hMT and the isolated single domain fragments using time- and temperature-resolved electrospray ionization mass spectrometry. The mechanism for beta alpha hMT binding As(3+) is noncooperative and involves six sequential bimolecular reactions in which the alpha domain binds As(3+) first followed by the beta domain. At room temperature (295 K) and pH 3.5, the sequential individual rate constants, k(n) (n = 1-6) for the As(3+)-metalation of beta alpha hMT starting at k(1beta alpha) are 25, 24, 19, 14, 8.7, and 3.7 M(-1)s(-1). The six rate constants follow an almost linear trend directly dependent on the number of unoccupied sites for the incoming metal. Analysis of the temperature-dependent kinetic electrospray ionization mass spectra data allowed determination of the activation energy for the formation of As(1)-H(17)-beta alpha hMT (14 kJ mol(-1)) and As(2-6)-beta alpha hMT (22 kJ mol(-1)). On the basis of the increased rate of metalation for the two-domain protein when compared with the isolated single-domain, we propose that there is an evolutionary advantage for the two-domain MT structures in higher organism, which allows MT to bind metals faster and, therefore, be a more efficient metal scavenger.
Collapse
Affiliation(s)
- Thanh T Ngu
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | | | | |
Collapse
|
26
|
Rob T, Wilson DJ. A versatile microfluidic chip for millisecond time-scale kinetic studies by electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:124-130. [PMID: 18845447 DOI: 10.1016/j.jasms.2008.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/01/2008] [Accepted: 09/01/2008] [Indexed: 05/26/2023]
Abstract
An electrospray coupled microfluidic reactor for the measurement of millisecond time-scale, solution phase kinetics is introduced. The device incorporates a simple two-channel design that is etched into polymethyl methacrylate (PMMA) by laser ablation. The outlet of the device is laser cut to a sharp tip, facilitating low dead volume 'on chip' electrospray. Fabrication is fast, straightforward and highly reproducible, supporting rapid prototyping and large-scale reproduction. Device performance is characterized using a cytochrome c unfolding reaction. Unfolding processes with rates in excess of 30 s(-1) are easily measured, including the appearance of a 'native-like' intermediate that is maximally populated 180 ms post reaction initiation. To extract reliable rates from the data, a theoretical framework for the analysis of kinetics acquired under square-channel laminar flow is introduced.
Collapse
Affiliation(s)
- Tamanna Rob
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Konermann L, Messinger J, Hillier W. Mass Spectrometry-Based Methods for Studying Kinetics and Dynamics in Biological Systems. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Jänis J, Pulkkinen P, Rouvinen J, Vainiotalo P. Determination of steady-state kinetic parameters for a xylanase-catalyzed hydrolysis of neutral underivatized xylooligosaccharides by mass spectrometry. Anal Biochem 2007; 365:165-73. [PMID: 17475200 DOI: 10.1016/j.ab.2007.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/15/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
A direct mass spectrometric approach was used for the determination of steady-state kinetic parameters, the turnover number (k(cat)), the Michaelis constant (K(M)), and the specificity constant (k(cat)/K(M)) for an enzyme-catalyzed hydrolysis of xylooligosaccharides. Electrospray ionization mass spectrometry was performed to observe product distributions and to determine k(cat), K(M), and k(cat)/K(M) values for Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) with xylohexaose (Xyl(6)), xylopentaose (Xyl(5)), xylotetraose (Xyl(4)), and xylotriose (Xyl(3)) as substrates. The determined k(cat)/K(M) values (0.93, 0.37, 0.027, and 0.00015 microM(-1) s(-1), respectively) indicated that Xyl(6) was the most preferred substrate of TRX II. In addition, the obtained K(M) value for Xyl(5) (136 microM) was roughly twice as high as that for Xyl(6) (73 microM), suggesting that at least six putative subsites contribute to the substrate binding in the active site of TRX II. Previous mass spectrometric assays for enzyme kinetics have been used mostly in the case of reactions that result in a transfer of acidic groups (e.g., phosphate) into neutral oligosaccharides giving rise to negatively charged products. Here we demonstrate that such analysis is also feasible in the case of neutral underivatized oligosaccharides. Implications of the results for the catalytic mechanism of TRX II in particular are discussed.
Collapse
Affiliation(s)
- Janne Jänis
- Department of Chemistry, University of Joensuu, FI-80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
29
|
Konermann L, Pan J, Wilson DJ. Protein Folding Mechanisms Studied by Time-Resolved Electrospray Mass Spectrometry. Biotechniques 2006; 40:135, 137, 139 passim. [PMID: 16526400 DOI: 10.2144/06402te01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of WesternOntario, London, ON, Canada
| | | | | |
Collapse
|
30
|
Receveur-Bréchot V, Bourhis JM, Uversky VN, Canard B, Longhi S. Assessing protein disorder and induced folding. Proteins 2005; 62:24-45. [PMID: 16287116 DOI: 10.1002/prot.20750] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins (IDPs) defy the structure-function paradigm as they fulfill essential biological functions while lacking well-defined secondary and tertiary structures. Conformational and spectroscopic analyses showed that IDPs do not constitute a uniform family, and can be divided into subfamilies as a function of their residual structure content. Residual intramolecular interactions are thought to facilitate binding to a partner and then induced folding. Comprehensive information about experimental approaches to investigate structural disorder and induced folding is still scarce. We herein provide hints to readily recognize features typical of intrinsic disorder and review the principal techniques to assess structural disorder and induced folding. We describe their theoretical principles and discuss their respective advantages and limitations. Finally, we point out the necessity of using different approaches and show how information can be broadened by the use of multiples techniques.
Collapse
Affiliation(s)
- Véronique Receveur-Bréchot
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Universités Aix-Marseille I et II, Campus de Luminy, Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
31
|
Kelleher NL, Hicks LM. Contemporary mass spectrometry for the direct detection of enzyme intermediates. Curr Opin Chem Biol 2005; 9:424-30. [PMID: 16129650 DOI: 10.1016/j.cbpa.2005.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 08/16/2005] [Indexed: 11/28/2022]
Abstract
The field of enzymology has long used small-molecule mass spectrometry. However, the direct interrogation of covalent and non-covalent intermediates by large-molecule mass spectrometry of enzymes or large peptide substrates is illuminating an increasingly diverse array of chemistries used in nature. Recent advances now allow improved detection of several modifications formed at sub-stoichiometric levels on the same polypeptide, and elucidation of intermediate dynamics with low millisecond temporal resolution. Highlighting recent applications in both ribosomal and non-ribosomal biosynthesis of natural products, along with acetyl transferases, sulfonucleotide reducatases, and PEP-utilizing enzymes, the utility of small- and large-molecule mass spectrometry to reveal enzyme intermediates and illuminate mechanism is described briefly. From ever more complex mixtures, mass spectrometry continues to evolve into a key technology for a larger number of today's enzymologists.
Collapse
Affiliation(s)
- Neil L Kelleher
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
32
|
Liesener A, Karst U. Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal Bioanal Chem 2005; 382:1451-64. [PMID: 16007447 DOI: 10.1007/s00216-005-3305-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
This review highlights recent advances in the application of electrospray ionisation and matrix-assisted laser desorption/ionisation mass spectrometry (MS) to study enzymatic reactions. Several assay schemes for different fields of application are presented. The employment of MS as a means of detection in pre-steady-state kinetic studies by rapid-mixing direct analysis and rapid-mixing quench flow techniques is discussed. Several steady-state kinetic studies of a broad range of different enzymatic systems are presented as well as enzyme inhibition studies for various target enzymes. As a promising new development multiplex assays, which monitor the conversion of several substrates simultaneously in one experiment, are described. This assay type has been used for competition studies, enzymatic activity screenings and for diagnostic purposes in clinical chemistry. Generally, it can be concluded that mass spectrometry offers an intriguing alternative as detection methodology in enzymatic bioassays. Its applicability for the monitoring the conversion of naturally occurring substrates and its overall versatility make MS an especially promising tool for the study of enzyme-catalysed processes.
Collapse
Affiliation(s)
- André Liesener
- Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500, AE Enschede, The Netherlands
| | | |
Collapse
|
33
|
Wiseman JM, Takáts Z, Gologan B, Davisson VJ, Cooks RG. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2004; 44:913-6. [PMID: 15624227 DOI: 10.1002/anie.200461672] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justin M Wiseman
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
34
|
Wiseman JM, Takáts Z, Gologan B, Davisson VJ, Cooks RG. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200461672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Konermann L. 2003 Fred Beamish Award Lecture Exploring the dynamics of biological systems by mass spectrometry. CAN J CHEM 2004. [DOI: 10.1139/v04-132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review describes the use of electrospray ionization mass spectrometry (ESI-MS) in conjunction with on-line rapid mixing techniques. This combination, termed "time-resolved" ESI-MS, provides a powerful approach for studying solution-phase reactions on timescales as short as a few milliseconds. Of particular interest is the application of this technique for monitoring protein folding reactions. Time-resolved ESI-MS can provide detailed information on structural changes of the polypeptide chain, while at the same time probing the occurrence of noncovalent ligandprotein interactions. Especially when used in combination with hydrogendeuterium pulse labeling, these measurements yield valuable structural information on short-lived folding intermediates. Similar approaches can be used to monitor the dynamics of proteins under equilibrium conditions. Another important application of time-resolved ESI-MS are mechanistic studies on enzyme-catalyzed processes. These reactions can be monitored under presteady-state conditions, without requiring artificial chromophoric substrates or radioactive labeling. We also discuss the use of ESI-MS for monitoring noncovalent ligandprotein interactions by diffusion measurements. In contrast to conventional MS-based techniques, this approach does not rely on the preservation of noncovalent interactions in the gas phase. It appears that diffusion measurements by ESI-MS could become an interesting alternative to existing methods for the high throughput screening of compound libraries in the context of drug discovery.Key words: reaction intermediate, rapid mixing, kinetics, protein conformation, protein function.
Collapse
|