1
|
Lequesne L, Dano J, Rouaix A, Kropp C, Plaisance M, Gelhaye S, Lequesne ML, Piquet P, Avril A, Becher F, Orsini Delgado ML, Simon S. A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning. Toxins (Basel) 2024; 16:412. [PMID: 39453188 PMCID: PMC11510859 DOI: 10.3390/toxins16100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Ricin is a highly potent toxin that has been used in various attempts at bioterrorism worldwide. Although a vaccine for preventing ricin poisoning (RiVax™) is in clinical development, there are currently no commercially available prophylaxis or treatments for ricin intoxication. Numerous studies have highlighted the potential of passive immunotherapy using anti-ricin monoclonal antibodies (mAbs) and have shown promising results in preclinical models. In this article, we describe the neutralizing and protective efficacy of a new generation of high-affinity anti-ricin mAbs, which bind and neutralize very efficiently both ricin isoforms D and E in vitro through cytotoxicity cell assays. In vivo, protection assay revealed that one of these mAbs (RicE5) conferred over 90% survival in a murine model challenged intranasally with a 5 LD50 of ricin and treated by intravenous administration of the mAbs 6 h post-intoxication. Notably, a 35% survival rate was observed even when treatment was administered 24 h post-exposure. Moreover, all surviving mice exhibited long-term immunity to high ricin doses. These findings offer promising results for the clinical development of a therapeutic candidate against ricin intoxication and may also pave the way for novel vaccination strategies against ricin or other toxins.
Collapse
Affiliation(s)
- Loïs Lequesne
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Julie Dano
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Audrey Rouaix
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Camille Kropp
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Marc Plaisance
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Stéphanie Gelhaye
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Marie-Lou Lequesne
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Paloma Piquet
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Arnaud Avril
- Microbiology and Infectious Diseases Department, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | - François Becher
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Maria Lucia Orsini Delgado
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| |
Collapse
|
2
|
Piquet P, Saadi J, Fenaille F, Kalb SR, Becher F. Rapid detection of ricin at trace levels in complex matrices by asialofetuin-coated beads and bottom-up proteomics using high-resolution mass spectrometry. Anal Bioanal Chem 2024; 416:5145-5153. [PMID: 39046503 PMCID: PMC11377644 DOI: 10.1007/s00216-024-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Ricin is a toxic protein regarded as a potential chemical weapon for bioterrorism or criminal use. In the event of a ricin incident, rapid analytical methods are essential for ricin confirmation in a diversity of matrices, from environmental to human or food samples. Mass spectrometry-based methods provide specific toxin identification but require prior enrichment by antibodies to reach trace-level detection in matrices. Here, we describe a novel assay using the glycoprotein asialofetuin as an alternative to antibodies for ricin enrichment, combined with the specific detection of signature peptides by high-resolution mass spectrometry. Additionally, optimizations made to the assay reduced the sample preparation time from 5 h to 80 min only. Method evaluation confirmed the detection of ricin at trace levels over a wide range of pH and in protein-rich samples, illustrating challenging matrices. This new method constitutes a relevant antibody-free solution for the fast and specific mass spectrometry detection of ricin in the situation of a suspected toxin incident, complementary to active ricin determination by adenine release assays.
Collapse
Affiliation(s)
- Paloma Piquet
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Justyna Saadi
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - François Fenaille
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Suzanne R Kalb
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, 30341, USA
| | - François Becher
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France.
| |
Collapse
|
3
|
Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022; 27:molecules27082411. [PMID: 35458608 PMCID: PMC9031286 DOI: 10.3390/molecules27082411] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.
Collapse
|
4
|
Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO 2@Au nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102522. [PMID: 35032631 DOI: 10.1016/j.nano.2022.102522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022]
Abstract
We developed surface-enhanced Raman scattering-lateral flow immunoassay (SERS-LFIA) biosensor strips based on SiO2@Au nanoparticles (NPs) for the specific and highly sensitive detection of ricin, staphylococcal enterotoxin B (SEB), and botulinum neurotoxin type A (BoNT/A). SiO2@Au NPs were used to prepare SERS tags with useful properties, such as light weight, uniform particle size, good dispersion, and high SERS performance. The detection limit of the SERS-LFIA strips developed herein for ricin, SEB, and BoNT/A was 0.1, 0.05, and 0.1 ng/mL. Their sensitivity was 100-fold higher than that of colloidal gold-LFIA strips, and the same batch of strips had good repeatability. Moreover, the test was completed within 15 min, indicating that the strips are suitable for the rapid and on-site detection of the said toxins. The SERS-LFIA strips based on SiO2@Au NPs developed herein for the detection of toxins are important to the prevention of bioterrorism attacks.
Collapse
|
5
|
Rapid Differential Detection of Abrin Isoforms by an Acetonitrile- and Ultrasound-Assisted On-Bead Trypsin Digestion Coupled with LC-MS/MS Analysis. Toxins (Basel) 2021; 13:toxins13050358. [PMID: 34069935 PMCID: PMC8157574 DOI: 10.3390/toxins13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
The high toxic abrin from the plant Abrus precatorius is a type II ribosome-inactivating protein toxin with a human lethal dose of 0.1-1.0 µg/kg body weight. Due to its high toxicity and the potential misuse as a biothreat agent, it is of great importance to developing fast and reliable methods for the identification and quantification of abrin in complex matrices. Here, we report rapid and efficient acetonitrile (ACN)- and ultrasound-assisted on-bead trypsin digestion method combined with HPLC-MS/MS for the quantification of abrin isoforms in complex matrices. Specific peptides of abrin isoforms were generated by direct ACN-assisted trypsin digestion and analyzed by HPLC-HRMS. Combined with in silico digestion and BLASTp database search, fifteen marker peptides were selected for differential detection of abrin isoforms. The abrin in milk and plasma was enriched by immunomagnetic beads prepared by biotinylated anti-abrin polyclonal antibodies conjugated to streptavidin magnetic beads. The ultrasound-assisted on-bead trypsin digestion method was carried out under the condition of 10% ACN as denaturant solvent, the entire digestion time was further shortened from 90 min to 30 min. The four peptides of T3Aa,b,c,d, T12Aa, T15Ab, and T9Ac,d were chosen as quantification for total abrin, abrin-a, abrin-b, and abrin-c/d, respectively. The absolute quantification of abrin and its isoforms was accomplished by isotope dilution with labeled AQUA peptides and analyzed by HPLC-MS/MS (MRM). The developed method was fully validated in milk and plasma matrices with quantification limits in the range of 1.0-9.4 ng/mL for the isoforms of abrin. Furthermore, the developed approach was applied for the characterization of abrin isoforms from various fractions from gel filtration separation of the seeds, and measurement of abrin in the samples of biotoxin exercises organized by the Organization for the Prohibition of Chemical Weapons (OPCW). This study provided a recommended method for the differential identification of abrin isoforms, which are easily applied in international laboratories to improve the capabilities for the analysis of biotoxin samples.
Collapse
|
6
|
Orsini Delgado ML, Avril A, Prigent J, Dano J, Rouaix A, Worbs S, Dorner BG, Rougeaux C, Becher F, Fenaille F, Livet S, Volland H, Tournier JN, Simon S. Ricin Antibodies' Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins (Basel) 2021; 13:100. [PMID: 33573016 PMCID: PMC7911099 DOI: 10.3390/toxins13020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ricin, a highly toxic protein from Ricinus communis, is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.
Collapse
Affiliation(s)
- Maria Lucia Orsini Delgado
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Arnaud Avril
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Julie Prigent
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Julie Dano
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Audrey Rouaix
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Clémence Rougeaux
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - François Becher
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - François Fenaille
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sandrine Livet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Hervé Volland
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| |
Collapse
|
7
|
Livet S, Worbs S, Volland H, Simon S, Dorner MB, Fenaille F, Dorner BG, Becher F. Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins (Basel) 2021; 13:toxins13010052. [PMID: 33450857 PMCID: PMC7828309 DOI: 10.3390/toxins13010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Sandrine Livet
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Stéphanie Simon
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
- Correspondence: ; Tel.: +33-1-69-08-13-15
| |
Collapse
|
8
|
Liu CC, Liang LH, Yang Y, Yu HL, Yan L, Li XS, Chen B, Liu SL, Xi HL. Direct Acetonitrile-Assisted Trypsin Digestion Method Combined with LC-MS/MS-Targeted Peptide Analysis for Unambiguous Identification of Intact Ricin. J Proteome Res 2020; 20:369-380. [PMID: 33108200 DOI: 10.1021/acs.jproteome.0c00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin is a type II ribosome-inactivating protein toxin consisting of A and B chains linked by one interchain disulfide bond. Because of its high toxicity depending on both chains together, confirming the presence of both A and B chains of intact ricin is required during the investigation of the illegal production and application. Here, we report a novel and sensitive acetonitrile (ACN)-assisted trypsin digestion method for unambiguous identification of intact ricin by simultaneous detection of its marker peptides from A and B chains. Marker peptides were generated with a simple procedure by direct cleaving the native ricin at 45 °C for 4 h using Promega modified sequencing grade trypsin under the assistance of 10% ACN, and then directly analyzed by ultrahigh performance liquid chromatography tandem mass spectrometry. The type of trypsin was found to be one critical factor for cleavage of intact ricin based on a significant difference in the yields of specific peptides generated while using various types of trypsin. A low content of ACN in enzymatic buffer significantly reduced the digestion time from overnight to 4 h. There was commonly a better MS response of marker peptides when using the developed ACN-assisted trypsin digestion method than methanol-assisted trypsin digestion within the same 4 h. Totally, seven specific peptides with high sensitivity and specificity including three in the A-chain (TA7, TA11, and TA10) and four in the B-chain (TB6, TB14-ss-TB16, TB20, and TB18) were obtained as good marker peptides for unambiguous identification of intact ricin. The lowest concentration of native ricin for unambiguous identification was 20 ng/mL, in which three marker peptides from both the A-chain and B-chain could be measured with a minimum of three ion transitions. Combined with affinity enrichment, the developed approach was successfully applied for the measurement of intact ricin from the complicated matrix samples of the second, third, and fourth biotoxin exercises organized by the Organisation for the Prohibition of Chemical Weapons (OPCW). This study has provided a recommended detection method combined with one novel ACN-assisted trypsin digestion with MS for forensic unambiguous confirmation of trace ricin intact with high confidence.
Collapse
Affiliation(s)
- Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
9
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
10
|
Heller NC, Garrett AM, Merkley ED, Cendrowski SR, Melville AM, Arce JS, Jenson SC, Wahl KL, Jarman KH. Probabilistic Limit of Detection for Ricin Identification Using a Shotgun Proteomics Assay. Anal Chem 2019; 91:12399-12406. [PMID: 31490662 DOI: 10.1021/acs.analchem.9b02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Robust and highly specific methods for the detection of the protein toxin ricin are of interest to the law enforcement community. In previous studies, methods based on liquid chromatography-tandem mass spectrometry shotgun proteomics have been proposed. The successful implementation of this approach relies on specific data evaluation criteria addressing (1) the quality of the mass spectrometric data, (2) the confidence of peptide identifications (peptide-spectrum matches), and (3) the number and sequence specificity of peptides detected. We present such data evaluation criteria and use a novel approach to establish the limit of detection for this ricin assay. Specifically, we use logistic regression to determine the probability of detection for individual ricin peptides at different concentrations. We then apply basic rules from probability theory, combining these individual peptide probabilities into an overall assay limit of detection. This procedure yields an assay limit of detection for ricin at 42.5 ng on column or 21.25 ng/μL for a 2-μL injection. We also show that, despite the conventional wisdom that detergents are deleterious to mass spectrometric analyses, the presence of Tween-20 did not prevent detection of ricin peptides, and indeed assays performed in buffers that included Tween-20 gave better results than assays performed using other buffer formulations with or without detergent removal.
Collapse
Affiliation(s)
| | - Alaine M Garrett
- National Biodefense Analysis and Countermeasures Center , Operated by BNBI for the U.S. Department of Homeland Security Science and Technology Directorate , Frederick , Maryland , United States
| | | | - Stephen R Cendrowski
- National Biodefense Analysis and Countermeasures Center , Operated by BNBI for the U.S. Department of Homeland Security Science and Technology Directorate , Frederick , Maryland , United States
| | | | | | | | | | | |
Collapse
|
11
|
O’Bryon I, Tucker AE, Kaiser BLD, Wahl KL, Merkley ED. Constructing a Tandem Mass Spectral Library for Forensic Ricin Identification. J Proteome Res 2019; 18:3926-3935. [DOI: 10.1021/acs.jproteome.9b00377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isabelle O’Bryon
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Abigail E. Tucker
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Brooke L. D. Kaiser
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Karen L. Wahl
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Eric D. Merkley
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
12
|
Liang LH, Liu CC, Chen B, Yan L, Yu HL, Yang Y, Wu JN, Li XS, Liu SL. LC-HRMS Screening and Identification of Novel Peptide Markers of Ricin Based on Multiple Protease Digestion Strategies. Toxins (Basel) 2019; 11:toxins11070393. [PMID: 31284465 PMCID: PMC6669667 DOI: 10.3390/toxins11070393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Both ricin and R. communisagglutinin (RCA120), belonging to the type II ribosome-inactivating proteins (RIPs-Ⅱ), are derived from the seeds of the castor bean plant. They share very similar amino acid sequences, but ricin is much more toxic than RCA120. It is urgently necessary to distinguish ricin and RCA120 in response to public safety. Currently, mass spectrometric assays are well established for unambiguous identification of ricin by accurate analysis of differentiated amino acid residues after trypsin digestion. However, diagnostic peptides are relatively limited for unambiguous identification of trace ricin, especially in complex matrices. Here, we demonstrate a digestion strategy of multiple proteinases to produce novel peptide markers for unambiguous identification of ricin. Liquid chromatography-high resolution MS (LC-HRMS) was used to verify the resulting peptides, among which only the peptides with uniqueness and good MS response were selected as peptide markers. Seven novel peptide markers were obtained from tandem digestion of trypsin and endoproteinase Glu-C in PBS buffer. From the chymotrypsin digestion under reduction and non-reduction conditions, eight and seven novel peptides were selected respectively. Using pepsin under pH 1~2 and proteinase K digestion, six and five peptides were selected as novel peptide markers. In conclusion, the obtained novel peptides from the established digestion methods can be recommended for the unambiguous identification of ricin during the investigation of illegal use of the toxin.
Collapse
Affiliation(s)
- Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China.
| | - Bo Chen
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long Yan
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Ji-Na Wu
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Xiao-Sen Li
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China.
| |
Collapse
|
13
|
Applications and challenges of forensic proteomics. Forensic Sci Int 2019; 297:350-363. [DOI: 10.1016/j.forsciint.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
|
14
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
15
|
Jarman KH, Heller NC, Jenson SC, Hutchison JR, Kaiser BLD, Payne SH, Wunschel DS, Merkley ED. Proteomics Goes to Court: A Statistical Foundation for Forensic Toxin/Organism Identification Using Bottom-Up Proteomics. J Proteome Res 2018; 17:3075-3085. [DOI: 10.1021/acs.jproteome.8b00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kristin H. Jarman
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Natalie C. Heller
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah C. Jenson
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Janine R. Hutchison
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samuel H. Payne
- Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David S. Wunschel
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D. Merkley
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Braun AV, Taranchenko VF, Tikhomirov LA, Grechukhin AP, Rybal’chenko IV. Detection of Ricin in Plant Extracts and Soil Using Liquid Chromatography–High-Resolution Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818080026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Fredriksson SÅ, Wunschel DS, Lindström SW, Nilsson C, Wahl K, Åstot C. A ricin forensic profiling approach based on a complex set of biomarkers. Talanta 2018; 186:628-635. [PMID: 29784413 DOI: 10.1016/j.talanta.2018.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/17/2022]
Abstract
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1-PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods and robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved.
Collapse
Affiliation(s)
- Sten-Åke Fredriksson
- FOI CBRN Defence and Security, Swedish Defence Research Agency, SE-90182 Umeå, Sweden
| | - David S Wunschel
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O Box 999, MSIN P7-50 Richland, WA, United States
| | | | - Calle Nilsson
- FOI CBRN Defence and Security, Swedish Defence Research Agency, SE-90182 Umeå, Sweden
| | - Karen Wahl
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O Box 999, MSIN P7-50 Richland, WA, United States
| | - Crister Åstot
- FOI CBRN Defence and Security, Swedish Defence Research Agency, SE-90182 Umeå, Sweden.
| |
Collapse
|
18
|
Merkley ED, Jenson SC, Arce JS, Melville AM, Leiser OP, Wunschel DS, Wahl KL. Ricin-like proteins from the castor plant do not influence liquid chromatography-mass spectrometry detection of ricin in forensically relevant samples. Toxicon 2017; 140:18-31. [PMID: 29031940 DOI: 10.1016/j.toxicon.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
Abstract
The toxic protein ricin (also known as RCA60), found in the seed of the castor plant (Ricinus communis) is frequently encountered in law enforcement investigations. The ability to detect ricin by analyzing its proteolytic (tryptic) peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well established. However, ricin is just one member of a family of proteins in R. communis with closely related amino acid sequences, including R. communis agglutinin I (RCA120) and other ricin-like proteins (RLPs). Inferring the presence of ricin from its constituent peptides requires an understanding of the specificity, or uniqueness to ricin, of each peptide. Here we describe the set of ricin-derived tryptic peptides that can serve to uniquely identify ricin in distinction to closely-related RLPs and to proteins from other species. Other ricin-derived peptide sequences occur only in the castor plant, and still others are shared with unrelated species. We also characterized the occurrence and relative abundance of ricin and related proteins in an assortment of forensically relevant crude castor seed preparations. We find that whereas ricin and RCA120 are abundant in castor seed extracts, other RLPs are not represented by abundant unique peptides. Therefore, the detection of peptides shared between ricin and RLPs (other than RCA120) in crude castor seed extracts most likely reflects the presence of ricin in the sample.
Collapse
Affiliation(s)
- Eric D Merkley
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Sarah C Jenson
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jennifer S Arce
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Angela M Melville
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Owen P Leiser
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David S Wunschel
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Karen L Wahl
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
19
|
Sun J, Wang C, Shao B, Wang Z, Xue D, Liu Y, Qi K, Yang Y, Niu Y. Fast on-Site Visual Detection of Active Ricin Using a Combination of Highly Efficient Dual-Recognition Affinity Magnetic Enrichment and a Specific Gold Nanoparticle Probe. Anal Chem 2017; 89:12209-12216. [PMID: 29058405 DOI: 10.1021/acs.analchem.7b02944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ricin, a highly toxic protein, is a controlled substance by both the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC). Therefore, fast precaution of potential ricin toxin plays an important role in national security and public safety. Herein, a simple, sensitive, and accurate visual detection of active ricin in complex samples is presented by combining magnetic affinity enrichment with a specific gold nanoparticle (AuNP) probe. In the first step, a dual-recognition magnetic absorbent was fabricated by simultaneously incorporating two different affinity ligands (concanavalin A and galactosamine) on low-foul polymer brushes grafted magnetic beads, which showed remarkable multivalent synergy binding capacity for ricin even under complex interfering environments. Subsequently, a homoadenine-constituted oligodeoxynucleotide named poly(21dA) was conjugated to AuNPs (the poly(21dA)-AuNPs), which served as a specific depurination substrate of active ricin. Coralyne can trigger the intact poly(21dA)-AuNPs aggregate by forming a non-Watson-Crick homoadenine/coralyne complex, but the poly(21dA)-AuNPs after reacting with active ricin failed to form this complex due to the loss of adenines. Based on these facts, active ricin can be detected as low as 12.5 ng mL-1 with the naked eyes. This detection strategy could be well-applied in various ricin-spiked complex matrices. The features such as ready operation, facile readout, and easy accessibility make the assay a better choice for fast on-site active ricin detection.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University , Beijing 100193, China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
| | - Cheng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University , Beijing 100193, China
| | - Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University , Beijing 100193, China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University , Beijing 100193, China
| | - Dingshuai Xue
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences , Beijing 100029, China
| | - Yanhong Liu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences , Beijing 100029, China
| | - Kailun Qi
- School of Public Health, Capital Medical University , Beijing 100069, China
| | - Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
| |
Collapse
|
20
|
Brandtzaeg OK, Røen BT, Enger S, Lundanes E, Wilson SR. Multichannel Open Tubular Enzyme Reactor Online Coupled with Mass Spectrometry for Detecting Ricin. Anal Chem 2017; 89:8667-8673. [PMID: 28783436 DOI: 10.1021/acs.analchem.7b02590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For counterterrorism purposes, a selective nano liquid chromatography-mass spectrometry (nanoLC-MS) platform was developed for detecting the highly lethal protein ricin from castor bean extract. Manual sample preparation steps were omitted by implementing a trypsin/Lys-C enzyme-immobilized multichannel reactor (MCR) consisting of 126 channels (8 μm inner diameter in all channels) that performed online digestion of proteins (5 min reaction time, instead of 4-16 h in previous in-solution methods). Reduction and alkylation steps were not required. The MCR allowed identification of ricin by signature peptides in all targeted mode injections performed, with a complete absence of carry-over in blank injections. The MCRs (interior volume ≈ 1 μL) have very low backpressure, allowing for trivial online coupling with commercial nanoLC-MS systems. The open tubular nature of the MCRs allowed for repeatable within/between-reactor preparation and performance.
Collapse
Affiliation(s)
| | - Bent-Tore Røen
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Siri Enger
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
21
|
Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2017; 14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.
Collapse
|
22
|
Bagas CK, Scadding RL, Scadding CJ, Watling RJ, Roberts W, Ovenden SP. Trace isotope analysis of Ricinus communis seed core for provenance determination by laser ablation-ICP-MS. Forensic Sci Int 2017; 270:46-54. [DOI: 10.1016/j.forsciint.2016.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
|
23
|
Stern D, Pauly D, Zydek M, Müller C, Avondet MA, Worbs S, Lisdat F, Dorner MB, Dorner BG. Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor. Biosens Bioelectron 2016; 78:111-117. [DOI: 10.1016/j.bios.2015.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/23/2015] [Accepted: 11/08/2015] [Indexed: 01/26/2023]
|
24
|
Yonezawa T, Asano T, Matsubara M. Surface-Assisted Laser Desorption Ionization Mass Spectrometry (SALDI-MS) of Low-Molecular-Weight Medicines and Toxic Materials Using Commercial TiO2 Nanoparticles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsu Yonezawa
- Division of Material Science and Engineering, Faculty of Engineering, Hokkaido University
| | - Takashi Asano
- Division of Material Science and Engineering, Faculty of Engineering, Hokkaido University
- Criminal Investigation Laboratory, Metropolitan Police Department
| | - Masaki Matsubara
- Division of Material Science and Engineering, Faculty of Engineering, Hokkaido University
| |
Collapse
|
25
|
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins (Basel) 2015; 7:4987-5010. [PMID: 26703726 PMCID: PMC4690109 DOI: 10.3390/toxins7124859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Collapse
|
26
|
Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR. Recommended Immunological Assays to Screen for Ricin-Containing Samples. Toxins (Basel) 2015; 7:4967-86. [PMID: 26703725 PMCID: PMC4690108 DOI: 10.3390/toxins7124858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023] Open
Abstract
Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories’ capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods “dangerous” samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Marc-André Avondet
- Federal Department of Defence, Civil Protection and Sport-SPIEZ Laboratory, Spiez 3700, Switzerland.
| | - Dobryan M Tracz
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Lisa Schmidt
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Cindi R Corbett
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
27
|
Worbs S, Skiba M, Söderström M, Rapinoja ML, Zeleny R, Russmann H, Schimmel H, Vanninen P, Fredriksson SÅ, Dorner BG. Characterization of Ricin and R. communis Agglutinin Reference Materials. Toxins (Basel) 2015; 7:4906-34. [PMID: 26703723 PMCID: PMC4690106 DOI: 10.3390/toxins7124856] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon "gold standards" are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization-time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Söderström
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Marja-Leena Rapinoja
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Reinhard Zeleny
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Heiko Russmann
- Bundeswehr Research Institute for Protective Technologies and NBC Protection, Humboldtstr. 100, 29633 Munster, Germany.
| | - Heinz Schimmel
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Paula Vanninen
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Sten-Åke Fredriksson
- FOI, Swedish Defence Research Agency, CBRN Defence and Security, Cementvagen 20, 901 82 Umeå, Sweden.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| |
Collapse
|
28
|
Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins (Basel) 2015; 7:4881-94. [PMID: 26610568 PMCID: PMC4690104 DOI: 10.3390/toxins7124854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.
Collapse
|
29
|
Engdahl C, Knutsson S, Fredriksson SÅ, Linusson A, Bucht G, Ekström F. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues. PLoS One 2015; 10:e0138598. [PMID: 26447952 PMCID: PMC4598118 DOI: 10.1371/journal.pone.0138598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE.
Collapse
Affiliation(s)
| | | | | | - Anna Linusson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
- * E-mail: (GB); (FE)
| | - Fredrik Ekström
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
- * E-mail: (GB); (FE)
| |
Collapse
|
30
|
Dupré M, Gilquin B, Fenaille F, Feraudet-Tarisse C, Dano J, Ferro M, Simon S, Junot C, Brun V, Becher F. Multiplex Quantification of Protein Toxins in Human Biofluids and Food Matrices Using Immunoextraction and High-Resolution Targeted Mass Spectrometry. Anal Chem 2015; 87:8473-80. [DOI: 10.1021/acs.analchem.5b01900] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mathieu Dupré
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Benoit Gilquin
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - François Fenaille
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Cécile Feraudet-Tarisse
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Julie Dano
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Myriam Ferro
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - Stéphanie Simon
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Christophe Junot
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Virginie Brun
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - François Becher
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, McGrath SC, Morse SA, Barr JR. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 2015; 95:72-83. [PMID: 25576235 PMCID: PMC5303535 DOI: 10.1016/j.toxicon.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/06/2015] [Indexed: 11/22/2022]
Abstract
The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity.
Collapse
Affiliation(s)
- David M Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Lisa G McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Samantha M Prezioso
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Andrew J Carter
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Yulanda M Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Sara C McGrath
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Stephen A Morse
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - John R Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA.
| |
Collapse
|
32
|
Fredriksson SÅ, Artursson E, Bergström T, Östin A, Nilsson C, Åstot C. Identification of RIP-II Toxins by Affinity Enrichment, Enzymatic Digestion and LC-MS. Anal Chem 2014; 87:967-74. [DOI: 10.1021/ac5032918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sten-Åke Fredriksson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Elisabet Artursson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Tomas Bergström
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Anders Östin
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Calle Nilsson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Crister Åstot
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| |
Collapse
|
33
|
Bergström T, Fredriksson SÅ, Nilsson C, Åstot C. Deamidation in ricin studied by capillary zone electrophoresis- and liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 974:109-17. [PMID: 25463205 DOI: 10.1016/j.jchromb.2014.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 12/29/2022]
Abstract
Deamidation in ricin, a toxin present in castor beans from the plant Ricinus communis, was investigated using capillary zone electrophoresis (CZE) and liquid chromatography coupled to high resolution mass spectrometry. Potential sites for deamidation, converting asparagine (Asn) into aspartic or isoaspartic acid (Asp or isoAsp), were identified in silico based on the protein sequence motifs and tertiary structure. In parallel, CZE- and LC-MS-based screening were performed on the digested toxin to detect deamidated peptides. The use of CZE-MS was critical for the separation of small native/deamidated peptide pairs. Selected peptides were subjected to a detailed analysis by tandem mass spectrometry to verify the presence of deamidation and determine its exact position. In the ricin preparation studied, deamidation was confirmed and located to three asparagine residues: Asn54 in the A-chain, and Asn42 and Asn60 in the B-chain. Possible in vitro deamidation occurring during sample preparation was monitored using a synthetic peptide with a known and rapid rate of deamidation. Finally, we showed that the isoelectric diversity previously reported in ricin is related to the level of deamidation.
Collapse
Affiliation(s)
- Tomas Bergström
- Swedish Defence Research Agency, CBRN Defence and Security, Cementvägen 20, SE-901 82 Umeå, Sweden
| | - Sten-Åke Fredriksson
- Swedish Defence Research Agency, CBRN Defence and Security, Cementvägen 20, SE-901 82 Umeå, Sweden
| | - Calle Nilsson
- Swedish Defence Research Agency, CBRN Defence and Security, Cementvägen 20, SE-901 82 Umeå, Sweden
| | - Crister Åstot
- Swedish Defence Research Agency, CBRN Defence and Security, Cementvägen 20, SE-901 82 Umeå, Sweden.
| |
Collapse
|
34
|
Ovenden SPB, Pigott EJ, Rochfort S, Bourne DJ. Liquid chromatography-mass spectrometry and chemometric analysis of Ricinus communis extracts for cultivar identification. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:476-484. [PMID: 24737411 DOI: 10.1002/pca.2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Seeds of Ricinus communis contain the toxic protein ricin, a 64 kD heterodimeric type II ribosome-inactivating protein that has been used in several high-profile poisoning incidents. The ability to determine which cultivar the toxin was isolated from via an LC-MS method would be of significant use to law enforcement and forensic agencies. OBJECTIVE To analyse via LC-MS and chemometrics (principal components analysis (PCA), orthogonal partial-least-squares discriminant analysis (OPLS-DA)) extracts of R. communis to identify compounds specific to a particular cultivar. METHODS Seeds from eight specimens of six cultivars of R. communis ('carmencita', 'dehradun', 'gibsonii', 'impala', 'sanguineus' and 'zanzibariensis') were extracted using a standard methodology. These extracts were analysed by LC-MS then subjected to chemometric analysis (PCA and OPLS-DA). Identified compounds of importance were subjected to high-resolution Fourier transform (HRFT) MS and MS/MS to elucidate their structures. RESULTS This analysis identified 17 ions as potential cultivar determinators. Through accurate mass measurement and MS/MS, molecular formulae for 13 ions were determined, including two known and 11 new peptides. CONCLUSION Unique ions in extracts of 'carmencita', 'dehradun', 'gibsonii', 'impala' and 'zanzibariensis' were identified that would allow an individual cultivar to be distinguished from other cultivars in this study. Although 'sanguineus' extracts contained no unique compounds, a unique LC-MS profile would allow for cultivar assignment.
Collapse
Affiliation(s)
- Simon P B Ovenden
- Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria, 3207, Australia
| | | | | | | |
Collapse
|
35
|
Tevell Åberg A, Björnstad K, Hedeland M. Mass Spectrometric Detection of Protein-Based Toxins. Biosecur Bioterror 2013; 11 Suppl 1:S215-26. [DOI: 10.1089/bsp.2012.0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Annica Tevell Åberg
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kristian Björnstad
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Yonezawa T, Asano T, Fujino T, Nishihara H. Cyclodextrin-supported organic matrix for application of MALDI-MS for forensics. Soft-ionization to obtain protonated molecules of low molecular weight compounds. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
HUEBNER M, WUTZ K, SZKOLA A, NIESSNER R, SEIDEL M. A Glyco-chip for the Detection of Ricin by an Automated Chemiluminescence Read-out System. ANAL SCI 2013; 29:461-6. [DOI: 10.2116/analsci.29.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Maria HUEBNER
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Klaus WUTZ
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Agathe SZKOLA
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Reinhard NIESSNER
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Michael SEIDEL
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| |
Collapse
|
38
|
Tanpure AA, Srivatsan SG. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA. Chembiochem 2012; 13:2392-9. [PMID: 23070860 DOI: 10.1002/cbic.201200408] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 11/07/2022]
Abstract
The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
39
|
Wunschel DS, Melville AM, Ehrhardt CJ, Colburn HA, Victry KD, Antolick KC, Wahl JH, Wahl KL. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods. Analyst 2012; 137:2077-85. [DOI: 10.1039/c2an16186a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Tanpure AA, Patheja P, Srivatsan SG. Label-free fluorescence detection of the depurination activity of ribosome inactivating protein toxins. Chem Commun (Camb) 2012; 48:501-3. [DOI: 10.1039/c1cc16667k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Understanding ricin from a defensive viewpoint. Toxins (Basel) 2011; 3:1373-92. [PMID: 22174975 PMCID: PMC3237001 DOI: 10.3390/toxins3111373] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/17/2022] Open
Abstract
The toxin ricin has long been understood to have potential for criminal activity and there has been concern that it might be used as a mass-scale weapon on a military basis for at least two decades. Currently, the focus has extended to encompass terrorist activities using ricin to disrupt every day activities on a smaller scale. Whichever scenario is considered, there are features in common which need to be understood; these include the knowledge of the toxicity from ricin poisoning by the likely routes, methods for the detection of ricin in relevant materials and approaches to making an early diagnosis of ricin poisoning, in order to take therapeutic steps to mitigate the toxicity. This article will review the current situation regarding each of these stages in our collective understanding of ricin and how to defend against its use by an aggressor.
Collapse
|
42
|
Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 2011; 3:1332-72. [PMID: 22069699 PMCID: PMC3210461 DOI: 10.3390/toxins3101332] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022] Open
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
Collapse
Affiliation(s)
- Sylvia Worbs
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Street 96, Giessen 35392, Germany;
| | - Diana Pauly
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Marc-André Avondet
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin Schaer
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin B. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Brigitte G. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| |
Collapse
|
43
|
Kanamori-Kataoka M, Kato H, Uzawa H, Ohta S, Takei Y, Furuno M, Seto Y. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:821-829. [PMID: 21834021 DOI: 10.1002/jms.1953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ricin is a glycosylated proteinous toxin that is registered as toxic substance by Chemical Weapons convention. Current detection methods can result in false negatives and/or positives, and their criteria are not based on the identification of the protein amino acid sequences. In this study, lactose-immobilized monolithic silica extraction followed by tryptic digestion and liquid chromatography/mass spectrometry (LC/MS) was developed as a method for rapid and accurate determination of ricin. Lactose, which was immobilized on monolithic silica, was used as a capture ligand for ricin extraction from the sample solution, and the silica was supported in a disk-packed spin column. Recovery of ricin was more than 40%. After extraction, the extract was digested with trypsin and analyzed by LC/MS. The accurate masses of molecular ions and MS/MS spectra of the separated peptide peaks were measured by Fourier transform-MS and linear iontrap-MS, respectively. Six peptides, which were derived from the ricin A-(m/z 537.8, 448.8 and 586.8) and B-chains (m/z 701.3, 647.8 and 616.8), were chosen as marker peptides for the identification of ricin. Among these marker peptides, two peptides were ricin-specific. This method was applied to the determination of ricin from crude samples. The monolithic silica extraction removed most contaminant peaks from the total ion chromatogram of the sample, and the six marker peptides were clearly detected by LC/MS. It takes about 5 h for detection and identification of more than 8 ng/ml of ricin through the whole handling, and this procedure will be able to deal with the terrorism using chemical weapon.
Collapse
Affiliation(s)
- Mieko Kanamori-Kataoka
- Fourth Chemistry Section, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Schieltz DM, McGrath SC, McWilliams LG, Rees J, Bowen MD, Kools JJ, Dauphin LA, Gomez-Saladin E, Newton BN, Stang HL, Vick MJ, Thomas J, Pirkle JL, Barr JR. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation. Forensic Sci Int 2011; 209:70-9. [PMID: 21251774 DOI: 10.1016/j.forsciint.2010.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/29/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022]
Abstract
In late February 2008, law enforcement officials in Las Vegas, Nevada, discovered in a hotel room, a copy of The Anarchist Cookbook, suspected castor beans and a "white powder" thought to be a preparation of ricin. Ricin is a deadly toxin from the seed of the castor bean plant (Ricinus communis). The United States regulates the possession, use, and transfer of ricin and it is the only substance considered a warfare agent in both the Chemical and the Biological Weapons Conventions. Six samples obtained from the hotel room were analyzed by laboratories at the Centers for Disease Control and Prevention using a panel of biological and mass spectrometric assays. The biological assays (real time-PCR, time resolved fluorescence and cytotoxicity) provided presumptive evidence of active ricin in each of the samples. This initial screen was followed by an in-depth analysis using a novel, state-of-the-art mass spectrometry-based ricin functional assay and high sensitivity tandem mass spectrometry for protein identification. Mass spectrometric analysis positively identified ricin and confirmed that in each of the samples it was enzymatically active. The tandem mass spectrometry analysis used here is the most selective method available to detect ricin toxin. In each sample, ricin was unequivocally identified along with other R. communis plant proteins, including the highly homologous protein RCA120. Although database searches using tandem mass spectra acquired from the samples indicated that additional controlled substances were not present in these samples, the mass spectrometric results did provide extensive detail about the sample contents. To the best of our knowledge following a review of the available literature, this report describes the most detailed analysis of a white powder for a public health or forensic investigation involving ricin.
Collapse
Affiliation(s)
- David M Schieltz
- Emergency Response and Air Toxicants Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McGrath SC, Schieltz DM, McWilliams LG, Pirkle JL, Barr JR. Detection and Quantification of Ricin in Beverages Using Isotope Dilution Tandem Mass Spectrometry. Anal Chem 2011; 83:2897-905. [DOI: 10.1021/ac102571f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara C. McGrath
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - David M. Schieltz
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - Lisa G. McWilliams
- Battelle (on Contract with the Division of Laboratory Sciences), 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - James L. Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
| |
Collapse
|
46
|
de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins (Basel) 2010; 2:2699-737. [PMID: 22069572 PMCID: PMC3153179 DOI: 10.3390/toxins2112699] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 12/02/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.
Collapse
Affiliation(s)
| | - Alessio Lombardi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy;
| | - Rocco Caliandro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy;
| | - Maria Serena Fabbrini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy;
| |
Collapse
|
47
|
Genus identification of toxic plant by real-time PCR. Int J Legal Med 2010; 125:211-7. [PMID: 20623131 DOI: 10.1007/s00414-010-0487-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
Some plants have toxicities that are dangerous for humans. In the case of poisoning by toxic plants, a rapid and easy screening test is required for accurate medical treatment or forensic investigation. In this study, we designed specific primer pairs for identification of toxic plants, such as subgenus Aconitum, genus Ricinus, genus Illicium, and genus Scopolia, by internal transcribed spacer sequences of nuclear ribosomal DNA. Allied species of target plants, foods, and human DNA were not detected, but each primer pair provided a specific PCR product from the target plant using real-time PCR. This method can detect the subgenus Aconitum, genus Ricinus, and genus Scopolia with template DNA of 10 pg, respectively, and genus Illicium with 1 pg. Furthermore, each primer pair provided the exact PCR product from digested target plants in artificial gastric fluid. When a trace unknown plant sample in forensic investigation is collected from stomach contents, this PCR assay may be useful for screening toxic plants.
Collapse
|
48
|
Colburn HA, Wunschel DS, Kreuzer HW, Moran JJ, Antolick KC, Melville AM. Analysis of Carbohydrate and Fatty Acid Marker Abundance in Ricin Toxin Preparations for Forensic Information. Anal Chem 2010; 82:6040-7. [DOI: 10.1021/ac1006206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heather A. Colburn
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, MSIN P7-50, Richland Washington 99352
| | - David S. Wunschel
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, MSIN P7-50, Richland Washington 99352
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, MSIN P7-50, Richland Washington 99352
| | - James J. Moran
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, MSIN P7-50, Richland Washington 99352
| | - Kathryn C. Antolick
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, MSIN P7-50, Richland Washington 99352
| | - Angela M. Melville
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, MSIN P7-50, Richland Washington 99352
| |
Collapse
|
49
|
Kull S, Pauly D, Störmann B, Kirchner S, Stämmler M, Dorner MB, Lasch P, Naumann D, Dorner BG. Multiplex Detection of Microbial and Plant Toxins by Immunoaffinity Enrichment and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2010; 82:2916-24. [DOI: 10.1021/ac902909r] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Skadi Kull
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Diana Pauly
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Britta Störmann
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Sebastian Kirchner
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Maren Stämmler
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Martin B. Dorner
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Peter Lasch
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Dieter Naumann
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Brigitte G. Dorner
- Biomedical Spectroscopy (P25), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany and Microbial Toxins (ZBS3), Center for Biological Safety, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
50
|
Ovenden SPB, Gordon BR, Bagas CK, Muir B, Rochfort S, Bourne DJ. A Study of the Metabolome of Ricinus communis for Forensic Applications. Aust J Chem 2010. [DOI: 10.1071/ch09293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Investigations were undertaken to ascertain the appropriateness of studying the metabolome of Ricinus communis for cultivar and provenance determination. Seeds from 14 R. communis specimens (a total of 56 seeds) collected from the east coast of Australia were analyzed by high pressure liquid chromatography with UV detection (HPLC-UV), liquid chromatography–mass spectrometry (LC-MS), and 1H NMR spectroscopy. The collected data were then analyzed using principle component analysis (PCA). For HPLC-UV analysis, six R. communis specimens were unambiguously identified by PCA as belonging to separate classes relating to specimen. LC-MS data allowed unique ions to be identified for four specimens. Conversely 10 specimens were unambiguously segregated in the PCA of the 1H NMR data. The ratio of ricinine 1 to demethylricinine analogues 2 and 3 was found to be important for specimen determination. These combined analyses suggested that a combination of HPLC-UV and 1H NMR in conjunction with PCA could allow for specimen differentiation.
Collapse
|