1
|
Naylor CN, Nagy G. Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39087820 DOI: 10.1002/mas.21902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Kinlein Z, Clowers BH. Altering Conformational States of Dynamic Ion Populations using Traveling Wave Structures for Lossless Ion Manipulations. Anal Chem 2024; 96:6450-6458. [PMID: 38603648 DOI: 10.1021/acs.analchem.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
With its capacity to store and translate ions across considerable distances and times, traveling wave structures for lossless ion manipulations (TW-SLIM) provide the foundation to expand the scope of ion mobility spectrometry (IMS) experiments. While promising, the dynamic electric fields and consequential ion-neutral collisions used to realize extensive degrees of separation have a considerable impact on the empirical results and the fundamental interpretation of observed arrival time distributions. Using a custom-designed set of TW-SLIM boards (∼9 m) coupled with a time-of-flight mass spectrometer (SLIM-ToF), we detail the capacity to systematically alter the gas-phase distribution of select peptide conformers. In addition to discussing the role charge-transfer may play in TW-SLIM experiments that occur at extended time scales, the ability of the SLIM-ToF to perform tandem IMS was leveraged to confirm that both the compact and elongated conformers of bradykinin2+ undergo interconversion within the SLIM. Storage experiments in which ions are confined within SLIM using static potential wells suggest that factors aside from TW-induced ion motion contribute to interconversion. Further investigation into this matter suggests that the use of radio frequency (RF) fields to confine ions within SLIM may play a role in ion heating. Aside from interconversion, storage experiments also provide insight into charge transfer behavior over the course of extended periods. The results of the presented experiments suggest that considerations should be taken when analyzing labile species and inform strategies for the TW-SLIM design and method development.
Collapse
Affiliation(s)
- Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
3
|
Griffiths D, Anderson M, Richardson K, Inaba-Inoue S, Allen WJ, Collinson I, Beis K, Morris M, Giles K, Politis A. Cyclic Ion Mobility for Hydrogen/Deuterium Exchange-Mass Spectrometry Applications. Anal Chem 2024; 96:5869-5877. [PMID: 38561318 PMCID: PMC11024883 DOI: 10.1021/acs.analchem.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and in vivo IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.
Collapse
Affiliation(s)
- Damon Griffiths
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| | - Malcolm Anderson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Keith Richardson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
- Diffraction
and Scattering Division, Japan Synchrotron
Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - William J. Allen
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Collinson
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Kevin Giles
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Argyris Politis
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
4
|
Zercher BP, Feng Y, Bush MF. Towards IM n with Electrostatic Drift Fields: Resetting the Potential of Trapped Ions Between Dimensions of Ion Mobility. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117163. [PMID: 37928050 PMCID: PMC10621600 DOI: 10.1016/j.ijms.2023.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the dimensionality of ion mobility (IM) presents an enticing opportunity to increase the information content and selectivity of many analyses. However, for implementations of IM that use constant electrostatic gradients to separate ions in a buffer gas, technical challenges have limited the adoption of the technique and number of dimensions within individual experiments. Here, we introduce a strategy to "reset" the potentials of ions between IM dimensions. To achieve this, mobility-selected ions are trapped between dimensions of IM, using a combination of RF and electrostatic fields, while the subsequent dimension of IM is devoid of any drift field. By applying an incremental voltage ramp, the potential of the trapping region is elevated, simultaneously establishing the drift field in the subsequent dimension of IM. The trapped ions are then released and separated. We measured similar arrival-time distributions of protein ions using this strategy and a method without potential resetting, suggesting that potential resetting can be performed without additional losses or activation of ions. The findings of those experiments were corroborated by ion trajectory simulations, which exhibited a very small changes in ion position and no significant changes in effective temperatures during potential resetting. Finally, we demonstrate that IM information can be preserved during potential resetting by selecting subpopulations of 9+ cytochrome c ions, resetting their potential, subjecting them to a second-dimension IM separation, and observing the retention of conformers within each subpopulation. We anticipate that this strategy will be useful for advancing flexible, multidimensional experiments on electrostatic IM instruments.
Collapse
Affiliation(s)
- Benjamin P. Zercher
- University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Yuan Feng
- University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
5
|
Pan H, Raab SA, El-Baba TJ, Schrecke SR, Laganowsky A, Russell DH, Clemmer DE. Variation of CI-2 Conformers upon Addition of Methanol to Water: An IMS-MS-Based Thermodynamic Analysis. J Phys Chem A 2023; 127:9399-9408. [PMID: 37934510 PMCID: PMC11212803 DOI: 10.1021/acs.jpca.3c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Chymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source. A thermodynamic analysis of these states revealed large changes in enthalpy (ΔH) and entropy (ΔS) at different temperatures, and it was suggested that such variation might arise because of temperature-dependent conformational changes of the protein in response to changes in the conformational entropy and the dielectric permeability of water, which drops from a value of ε ∼ 79 at 24 °C to ∼ 60 at 82 °C. Herein, we examine how adding methanol to water influences the distributions of CI-2 conformers and their ensuing stabilities. The dielectric constant of a 60:40 water:methanol (MeOH) drops from ε ∼ 60 at 24 °C to ∼ 51 at 64 °C. Although the same set of conformers observed in water appears to be present in 60:40 water:MeOH, the abundance of each is substantially altered by the presence of methanol. Relative free energy values (ΔG) and thermodynamic values [ΔH and ΔS and heat capacities (ΔCp)] are derived from a Gibbs-Helmholtz analysis. A comparison of these data from water and water:MeOH systems allows rare insight into how variations in solvation and temperature affect many-state protein equilibria. While these studies confirm that variations in solvent dielectric constant with temperature affect the distributions of conformers that are observed, our findings suggest that other solvent differences may also affect abundances.
Collapse
Affiliation(s)
- Hua Pan
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Samantha R Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
6
|
Hou Y, Zhou S, Xu X, Kou M, Kong X. Selective confinement of potassium, rubidium, or caesium ions in a non-covalent hydroxyproline octamer cage stabilized by cis-hydroxyl locks. Phys Chem Chem Phys 2023; 25:22614-22618. [PMID: 37584166 DOI: 10.1039/d3cp03230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
While numerous studies have focused on the impact of chirality on some magic amino acid clusters, this article investigates the effects of steric isomerization using 4-hydroxyproline octamers as a model system. Through mass spectrometry, infrared photodissociation spectroscopy, and theoretical calculation, it was demonstrated that the cis-4-hydroxy-L-proline octamer can selectively cage potassium, rubidium, or caesium ions through stable cis-hydroxyl locks, while the trans-form cannot. The results highlight the importance of hydroxyl group orientation in designing biocompatible membrane transporters with high ion-selectivity.
Collapse
Affiliation(s)
- Yameng Hou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Sijin Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xingshi Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Min Kou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Beckett D, El-Baba TJ, Zhang Z, Clemmer DE, Raghavachari K. Tautomerization of H +KPGG: Entropic Consequences of Strong Hydrogen-Bond Networks in Peptides. J Phys Chem A 2023; 127:6282-6291. [PMID: 37490716 PMCID: PMC10405267 DOI: 10.1021/acs.jpca.3c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Ion mobility spectrometry-mass spectrometry and quantum chemical calculations are used to determine the structures and stabilities of the singly protonated peptide H+KPGG. The two peaks making up the IMS distribution are shown to be tautomers differing by the location of the extra proton on either the lysine side chain or the N-terminus. The lysine-protonated tautomer is strongly preferred entropically while being disfavored in terms of the electronic energy and enthalpy. This relationship is shown, through comparison of all low-lying conformers of both tautomers, to be related to the strong hydrogen-bond network of the N-terminally protonated tautomer. A general relationship is demonstrated wherein stronger cross-peptide hydrogen-bond networks result in entropically disfavored conformers. Further effects of the H+KPGG hydrogen-bond network are probed by computationally examining singly and doubly methylated analogues. These results demonstrate the importance of the entropic consequences of hydrogen bonds to peptide stability as well as techniques for perturbing the hydrogen-bond network and folding preferences of peptides via minimal chemical modification.
Collapse
Affiliation(s)
- Daniel Beckett
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tarick J. El-Baba
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhichao Zhang
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Sharon EM, Henderson LW, Clemmer DE. Resolving Hidden Solution Conformations of Hemoglobin Using IMS-IMS on a Cyclic Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1559-1568. [PMID: 37418419 PMCID: PMC10916761 DOI: 10.1021/jasms.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.
Collapse
Affiliation(s)
- Edie M Sharon
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
10
|
Eaton RM, Zercher BP, Wageman A, Bush MF. A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1175-1185. [PMID: 37171243 PMCID: PMC10548348 DOI: 10.1021/jasms.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Native ion mobility (IM) mass spectrometry (MS) is used to probe the size, shape, and assembly of biomolecular complexes. IM-IM-MS can increase the amount of information available in structural studies by isolating subpopulations of structures for further analysis. Previously, IM-IM-MS has been implemented using the Structures for Lossless Ion Manipulations (SLIM) architecture to probe the structural stability of gas-phase protein ions. Here, a new multidimensional IM instrument constructed from SLIM devices is characterized using multiple operational modes. In this new design, modular devices are used to perform all ion manipulations, including initial accumulation, injection, separation, selection, and trapping. Using single-dimension IM, collision cross section (Ω) values are determined for a set of native-like ions. These Ω values are within 3% of those reported previously based on measurements using RF-confining drift cells. Tandem IM experiments are performed on a sample of ubiquitin ions that contains both compact and partially unfolded structures, demonstrating that this platform can isolate subpopulations of structures. Finally, additional modes of analysis, including multiplexed IM and inverse IM, are demonstrated using this platform. The ability of this platform to quickly switch between different modes of IM analysis makes it a highly flexible tool for studying protein structures and dynamics.
Collapse
Affiliation(s)
- Rachel M. Eaton
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Benjamin P. Zercher
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - AnneClaire Wageman
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
11
|
Zhang ZC, Hales DA, Clemmer DE. Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1368-1376. [PMID: 35576623 PMCID: PMC10161955 DOI: 10.1021/jasms.2c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Diketopiperazine (DKP) formation is an important degradation pathway for peptides and proteins. It can occur during synthesis and storage in either solution or the solid state. The kinetics of peptide cleavage through DKP formation have been analyzed for the model peptides Xaa1-Pro2-Gly4-Lys7 [Xaa = Gln, Glu, Lys, Ser, Phe, Trp, Tyr, Cha (β-cyclohexylalanine), Aib (α-aminoisobutyric acid), Gly, and Val] at multiple elevated temperatures in ethanol with ion mobility spectrometry-mass spectrometry (IMS-MS). When Xaa is an amino acid with a charged or polar side chain, degradation is relatively fast. When Xaa is an amino acid with a nonpolar alkyl side chain, the peptide is relatively stable. For these peptides, a bulky group on the α carbon speeds up dissociation, but the kinetic effects vary in a complicated manner for bulky groups on the β or γ carbon. Peptides where Xaa has a nonpolar aromatic side chain show moderate dissociation rates. The stability of these peptides is a result of multiple factors. The reaction rate is enhanced by (1) the stabilization of the late transition state through the interaction of an aromatic ring with the nascent DKP ring or lowering the activation energy of nucleophilic attack intermediate state through polar or charged residues and (2) the preference of the cis proline bond favored by the aromatic N-terminus. The number of unseen intermediates and transition state thermodynamic values are derived for each peptide by modeling the kinetics data. Most of the transition states are entropically favored (ΔS⧧ ∼ -5 to +31 J·mol-1·K-1), and all are enthalpically disfavored (ΔH⧧ ∼ 93 to 109 kJ·mol-1). The Gibbs free energy of activation is similar for all of the peptides studied here (ΔG⧧ ∼ 90-99 kJ·mol-1).
Collapse
Affiliation(s)
- Zhi-Chao Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Liu FC, Kirk SR, Caldwell KA, Pedrete T, Meier F, Bleiholder C. Tandem Trapped Ion Mobility Spectrometry/Mass Spectrometry (tTIMS/MS) Reveals Sequence-Specific Determinants of Top-Down Protein Fragment Ion Cross Sections. Anal Chem 2022; 94:8146-8155. [PMID: 35621336 PMCID: PMC10032035 DOI: 10.1021/acs.analchem.1c05171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Top-down proteomics provides a straightforward approach to the level of proteoforms but remains technologically challenging. Using ion mobility spectrometry/mass spectrometry (IMS/MS) to separate top-down fragment ions improves signal/noise and dynamic range. Such applications, however, do not yet leverage the primary information obtained from IMS/MS, which is the characterization of the fragment ion structure by the measured momentum transfer cross sections. Here, we perform top-down analysis of intact proteins and assemblies using our tandem trapped ion mobility spectrometer/mass spectrometer (tTIMS/MS) and compile over 1400 cross section values of fragment ions. Our analysis reveals that most fragment ions exhibit multiple, stable conformations similar to those of intact polypeptides and proteins. The data further indicate that the conformational heterogeneity is strongly influenced by the amino acid sequences of the fragment ions. Moreover, time-resolved tTIMS/MS experiments reveal that conformations of top-down fragment ions can be metastable on the timescale of ion mobility measurements. Taken together, our analysis indicates that top-down fragment ions undergo a folding process in the gas phase and that this folding process can lead to kinetic trapping of intermediate states in ion mobility measurements. Hence, because the folding free energy surface of a polypeptide ion is encoded by its amino acid sequence and charge state, our analysis suggests that cross sections can be exploited as sequence-specific determinants of top-down fragment ions.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Samuel R. Kirk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Kirsten A. Caldwell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Thais Pedrete
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
- Corresponding Author
| |
Collapse
|
13
|
Chen X, Latif M, Gandhi VD, Chen X, Hua L, Fukushima N, Larriba-Andaluz C. Enhancing Separation and Constriction of Ion Mobility Distributions in Drift Tubes at Atmospheric Pressure Using Varying Fields. Anal Chem 2022; 94:5690-5698. [PMID: 35357157 DOI: 10.1021/acs.analchem.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A linearly decreasing electric field has been previously proven to be effective for diffusional correction of ions in a varying field drift tube (VFDT) system, leading to higher resolving powers compared to a conventional drift tube due to its capacity to narrow distributions midflight. However, the theoretical predictions in resolving power of the VFDT were much higher than what was observed experimentally. The reason behind this discrepancy has been identified as the difference between the theoretically calculated resolving power (spatial) and the experimental one (time). To match the high spatial resolving power experimentally, a secondary high voltage pulse (HVP) at a properly adjusted time is used to provide the ions with enough momentum to increase their drift velocity and hence their time-resolving power. A series of systematic numerical simulations and experimental tests have been designed to corroborate our theoretical findings. The HVP-VFDT atmospheric pressure portable system improves the resolving power from the maximum expected of 60-80 for a regular drift tube to 250 in just 21 cm in length and 7kV, an unprecedent accomplishment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Viraj D Gandhi
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuemeng Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States.,Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Leyan Hua
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | | | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
14
|
Hollerbach AL, Conant CR, Nagy G, Ibrahim YM. Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM). Methods Mol Biol 2022; 2394:453-469. [PMID: 35094340 PMCID: PMC9526429 DOI: 10.1007/978-1-0716-1811-0_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structures for Lossless Ion Manipulations (SLIM) is a powerful variant of traveling wave ion mobility spectrometry (TW-IMS) that uses a serpentine pattern of microelectrodes deposited onto printed circuit boards to achieve ultralong ion path lengths (13.5 m). Ions are propelled through SLIM platforms via arrays of TW electrodes while RF and DC electrodes provide radial confinement, establishing near lossless transmission. The recent ability to cycle ions multiple times through a SLIM has allowed ion path lengths to exceed 1000 m, providing unprecedented separation power and the ability to observe ion structural conformations unobtainable with other IMS technologies. The combination of high separation power, high signal intensity, and the ability to couple with mass spectrometry places SLIM in the unique position of being able to address longstanding proteomics and metabolomics challenges by allowing the characterization of isomeric mixtures containing low abundance analytes.
Collapse
Affiliation(s)
| | | | - Gabe Nagy
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
15
|
Ivashchenko DA, Cerqueira NM, Magalhães AL. Improving computational modeling coupled with ion mobility-mass spectrometry data for efficient drug metabolite structural determination. Struct Chem 2021. [DOI: 10.1007/s11224-021-01726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Kohoutek KM, Harrington PDB. Electrospray Ionization Ion Mobility Mass Spectrometry. Crit Rev Anal Chem 2021; 53:483-497. [PMID: 34547945 DOI: 10.1080/10408347.2021.1964938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) is a rapidly progressing analytical technique for the examination of complex compounds in the gas phase. ESI-IMS-MS separates isomers, provides structural information, and quantitatively identifies peptides, lipids, carbohydrates, polymers, and metabolites in biological samples. ESI-IMS-MS has pharmaceutical, environmental, and manufacturing applications quickly characterizing drugs, petroleum products, and metal macromolecules. This review provides the history of ESI-IMS-MS development and applications to date.
Collapse
Affiliation(s)
- Katie M. Kohoutek
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | | |
Collapse
|
17
|
Zhang Z, Conant CR, El-Baba TJ, Raab SA, Fuller DR, Hales DA, Clemmer DE. Diketopiperazine Formation from FPG nK ( n = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms. J Phys Chem B 2021; 125:8107-8116. [PMID: 34270248 PMCID: PMC10661757 DOI: 10.1021/acs.jpcb.1c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptides with penultimate proline residues undergo trans → cis isomerization of the Phe1-Pro2 peptide bond followed by spontaneous bond cleavage at the Pro2-Xxx3 bond (where Xxx is another amino acid residue), leading to cleavage of the Pro2-Xxx3 bond and formation of a diketopiperazine (DKP). In this paper, ion mobility spectrometry and mass spectrometry techniques were used to study the dissociation kinetics of nine peptides [Phe1-Pro2-Glyn-Lysn+3 (n = 1-9)] in ethanol. Shorter (n = 1-3) peptides are found to be more stable than longer (n = 4-9) peptides. Alanine substitution studies indicate that, when experiments are initiated, the Phe1-Pro2 bond of the n = 9 peptide exists exclusively in the cis configuration, while the n = 1-8 peptides appear to exist initially with both cis- and trans-Phe1-Pro2 configured bonds. Molecular dynamics simulations indicate that intramolecular hydrogen bonding interactions stabilize conformations of shorter peptides, thus inhibiting DKP formation. Similar stabilizing interactions appear less frequently in longer peptides. In addition, in smaller peptides, the N-terminal amino group is more likely to be charged compared to the same group in longer peptides, which would inhibit the dissociation through the DKP formation mechanism. Analysis of temperature-dependent kinetics measurements provides insight about the mechanism of bond cleavage. The analysis gives the following transition state thermochemistry: ΔG⧧ values range from 94.6 ± 0.9 to 101.5 ± 1.9 kJ·mol-1, values of ΔH⧧ range from 89.1 ± 0.9 to 116.7 ± 1.5 kJ·mol-1, and ΔS⧧ values range from -25.4 ± 2.6 to 50.8 ± 4.2 J·mol-1·K-1. Proposed mechanisms and thermochemistry are discussed.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Christopher R Conant
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
18
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
19
|
Eldrid C, Ben-Younis A, Ujma J, Britt H, Cragnolini T, Kalfas S, Cooper-Shepherd D, Tomczyk N, Giles K, Morris M, Akter R, Raleigh D, Thalassinos K. Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1545-1552. [PMID: 34006100 PMCID: PMC8172447 DOI: 10.1021/jasms.1c00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Jakub Ujma
- Waters
Corporation, Wilmslow SK9 4AX, U.K.
| | - Hannah Britt
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Tristan Cragnolini
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| | - Symeon Kalfas
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | | | | | | | | | - Rehana Akter
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Daniel Raleigh
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| |
Collapse
|
20
|
Zhang ZC, Raab SA, Hales DA, Clemmer DE. Influence of Solvents upon Diketopiperazine Formation of FPG8K. J Phys Chem B 2021; 125:2952-2959. [DOI: 10.1021/acs.jpcb.1c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi-chao Zhang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shannon A. Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David A. Hales
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
21
|
Alikord M, Mohammadi A, Kamankesh M, Shariatifar N. Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit Rev Food Sci Nutr 2021; 62:4833-4866. [PMID: 33554631 DOI: 10.1080/10408398.2021.1879003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is an analytical separation and diagnostic technique that is simple and sensitive and a rapid response and low-priced technique for detecting trace levels of chemical compounds in different matrices. Chemical agents and environmental contaminants are successfully detected by IMS and have been recently considered to employ in food safety. In addition, IMS uses stand-alone or coupled analytical diagnostic tools with chromatographic and spectroscopic methods. Scientific publications show that IMS has been applied 21% in the pharmaceutical industry, 9% in environmental studies and 13% in quality control and food safety. Nevertheless, applications of IMS in food safety and quality analysis have not been adequately explored. This review presents the IMS-related analysis and focuses on the application of IMS in food safety and quality. This review presents the important topics including detection of traces of chemicals, rate of food spoilage and freshness, food adulteration and authenticity as well as natural toxins, pesticides, herbicides, fungicides, veterinary, and growth promoter drug residues. Further, persistent organic pollutants (POPs), acrylamide, polycyclic aromatic hydrocarbon (PAH), biogenic amines, nitrosamine, furfural, phenolic compounds, heavy metals, food packaging materials, melamine, and food additives were also examined for the first time. Therefore, it is logical to predict that the application of the IMS technique in food safety, food quality, and contaminant analysis will be impressively increased in the future. HighlightsCurrent status of IMS for residues and contaminant detection in food safety.To assess all the detected contaminants in food safety, for the first time.Identified IMS-related parameters and chemical compounds in food safety control.
Collapse
Affiliation(s)
- Mahsa Alikord
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Halal Research Center of the Islamic Republic of Iran, Tehran, Iran
| |
Collapse
|
22
|
Austin CA, Inutan ED, Bohrer BC, Li J, Fischer JL, Wijerathne K, Foley CD, Lietz CB, Woodall DW, Imperial LF, Clemmer DE, Trimpin S, Larsen BS. Resolving Isomers of Star-Branched Poly(Ethylene Glycols) by IMS-MS Using Multiply Charged Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:21-32. [PMID: 32510213 DOI: 10.1021/jasms.0c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ion mobility spectrometry (IMS) mass spectrometry (MS) centers on the ability to separate gaseous structures by size, charge, shape, and followed by mass-to-charge (m/z). For oligomeric structures, improved separation is hypothesized to be related to the ability to extend structures through repulsive forces between cations electrostatically bonded to the oligomers. Here we show the ability to separate differently branched multiply charged ions of star-branched poly(ethylene glycol) oligomers (up to 2000 Da) regardless of whether formed by electrospray ionization (ESI) charged solution droplets or from charged solid particles produced directly from a surface by matrix-assisted ionization. Detailed structural characterization of isomers of the star-branched compositions was first established using a home-built high-resolution ESI IMS-MS instrument. The doubly charged ions have well-resolved drift times, achieving separation of isomers and also allowing differentiation of star-branched versus linear oligomers. An IMS-MS "snapshot" approach allows visualization of architectural dispersity and (im)purity of samples in a straightforward manner. Analyses capabilities are shown for different cations and ionization methods using commercially available traveling wave IMS-MS instruments. Analyses directly from surfaces using the new ionization processes are, because of the multiply charging, not only associated with the benefits of improved gas-phase separations, relative to that of ions produced by matrix-assisted laser desorption/ionization, but also provide the potential for spatially resolved measurements relative to ESI and other ionization methods.
Collapse
Affiliation(s)
- Calvin A Austin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Brian C Bohrer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jing Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kanchana Wijerathne
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Daniel W Woodall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lorelie F Imperial
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Barbara S Larsen
- DuPont, Nutrition & Biosciences, Wilmington, Delaware 19808, United States
| |
Collapse
|
23
|
Eldrid C, Thalassinos K. Developments in tandem ion mobility mass spectrometry. Biochem Soc Trans 2020; 48:2457-2466. [PMID: 33336686 PMCID: PMC7752082 DOI: 10.1042/bst20190788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023]
Abstract
Ion Mobility (IM) coupled to mass spectrometry (MS) is a useful tool for separating species of interest out of small quantities of heterogenous mixtures via a combination of m/z and molecular shape. While tandem MS instruments are common, instruments which employ tandem IM are less so with the first commercial IM-MS instrument capable of multiple IM selection rounds being released in 2019. Here we explore the history of tandem IM instruments, recent developments, the applications to biological systems and expected future directions.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, U.K
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck University, Malet Place, London WC1E 7HX, U.K
| |
Collapse
|
24
|
Gadkari VV, Ramírez CR, Vallejo DD, Kurulugama RT, Fjeldsted JC, Ruotolo BT. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal Chem 2020; 92:15489-15496. [PMID: 33166123 PMCID: PMC7861131 DOI: 10.1021/acs.analchem.0c03372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel D Vallejo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ruwan T Kurulugama
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - John C Fjeldsted
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Raab SA, El-Baba TJ, Woodall DW, Liu W, Liu Y, Baird Z, Hales DA, Laganowsky A, Russell DH, Clemmer DE. Evidence for Many Unique Solution Structures for Chymotrypsin Inhibitor 2: A Thermodynamic Perspective Derived from vT-ESI-IMS-MS Measurements. J Am Chem Soc 2020; 142:17372-17383. [PMID: 32866376 DOI: 10.1021/jacs.0c05365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chymotrypsin inhibitor 2 (CI-2) is a classic model for two-state cooperative protein folding and is one of the most extensively studied systems. Alan Fersht, a pioneer in the field of structural biology, has studied the wild-type (wt) and over 100 mutant forms of CI-2 with traditional analytical and biochemical techniques. Here, we examine wt CI-2 and three mutant forms (A16G, K11A, L32A) to demonstrate the utility of variable-temperature (vT) electrospray ionization (ESI) paired with ion mobility spectrometry (IMS) and mass spectrometry (MS) to map the free energy folding landscape. As the solution temperature is increased, the abundance of each of the six ESI charge states for wt CI-2 and each mutant is found to vary independently. These results require that at least six unique types of CI-2 solution conformers are present. Ion mobility analysis reveals that within each charge state there are additional conformers having distinct solution temperature profiles. A model of the data at ∼30 different temperatures for all four systems suggests the presence of 41 unique CI-2 solution conformations. A thermodynamic analysis of this system yields values of ΔCp as well as ΔG, ΔH, and ΔS for each state at every temperature studied. Detailed energy landscapes derived from these data provide a rare glimpse into Anfinsen's thermodynamic hypothesis and the process of thermal denaturation, normally thought of as a cooperative two-state transition involving the native state and unstructured denatured species. Specifically, as the temperature is varied, the entropies and enthalpies of different conformers undergo dramatic changes in magnitude and relative order to maintain the delicate balance associated with equilibrium.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Wen Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zane Baird
- Baxter Healthcare Corporation, 927 South Curry Pike, Bloomington, Indiana 47403, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
26
|
Kwantwi-Barima P, Hogan CJ, Clowers BH. Probing Gas-Phase-Clustering Thermodynamics with Ion Mobility-Mass Spectrometry: Association Energies of Phenylalanine Ions with Gas-Phase Alcohols. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1803-1814. [PMID: 32687705 DOI: 10.1021/jasms.0c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vapor assisted mobility shift measurements were made with atmospheric pressure drift-tube ion mobility-mass spectrometry (IM-MS) to determine the thermodynamic properties of weakly bound ion-molecule clusters formed from protonated phenylalanine and neutral vapor molecules with hydroxyl functional groups. Relative binding energies and gas-phase association energies of amino acid ions clustered with small organic molecules have been established previously using high-pressure mass spectrometry. However, the issue of volatility largely prohibits the use of high-pressure mass spectrometry for the determination of gas-phase associations of amino acid ions clustered with neutral vapor molecules in many instances. In contrast, ion mobility measurements can be made at atmospheric pressure with volatile vapor additives near and above their boiling points, providing access to clustering equilibria not possible using high-vacuum techniques. In this study, we report the gas-phase association energies, enthalpies, and entropies for a protonated phenylalanine ion clustered with three neutral vapor molecules: 2-propanol, 1-butanol, and 2-pentanol based upon measurements at temperatures ranging from 120 to 180 °C. The gas-phase enthalpy and entropy changes ranged between -4 to -7 kcal/mol and -3 to 6 cal/(mol K), respectively. We found enthalpically favored ion-neutral cluster reactions for phenylalanine with entropic barriers for the formation of phenylalanine-1-butanol and phenylalanine-2-pentanol cluster ions, while phenylalanine-2-propanol cluster ion formation is both enthalpically and (weakly) entropically favorable. Under the measurement conditions examined, phenylalanine-vapor modifier cluster ion formation is clearly observed via shifts in the drift time for the three test vapor molecules. In comparison, negligible shifts in mobility are observed for protonated arginine exposed to the same vapor modifiers.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
27
|
Bansal P, Yatsyna V, AbiKhodr AH, Warnke S, Ben Faleh A, Yalovenko N, Wysocki VH, Rizzo TR. Using SLIM-Based IMS-IMS Together with Cryogenic Infrared Spectroscopy for Glycan Analysis. Anal Chem 2020; 92:9079-9085. [PMID: 32456419 PMCID: PMC7349563 DOI: 10.1021/acs.analchem.0c01265] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
The isomeric heterogeneity of glycans poses a great challenge for their analysis. While combining ion mobility spectrometry (IMS) with tandem mass spectrometry is a powerful means for identifying and characterizing glycans, it has difficulty distinguishing the subtlest differences between isomers. Cryogenic infrared spectroscopy provides an additional dimension for glycan identification that is extremely sensitive to their structure. Our approach to glycan analysis combines ultrahigh-resolution IMS-IMS using structures for lossless ion manipulation (SLIM) with cryogenic infrared spectroscopy. We present here the design of a SLIM board containing a series of on-board traps in which we perform collision-induced dissociation (CID) at pressures in the millibar range. We characterize the on-board CID process by comparing the fragments generated from a pentapeptide to those obtained on a commercial tandem mass spectrometer. We then apply our new technique to study the mobility and vibrational spectra of CID fragments from two human milk oligosaccharides. Comparison of both the fragment drift times and IR spectra with those of suitable reference compounds allows us to identify their specific isomeric form, including the anomericity of the glycosidic linkage, demonstrating the power of this tool for glycan analysis.
Collapse
Affiliation(s)
- Priyanka Bansal
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gotheburg, Sweden
| | - Ali H. AbiKhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Natalia Yalovenko
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Morsa D, Hanozin E, Eppe G, Quinton L, Gabelica V, Pauw ED. Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Anal Chem 2020; 92:4573-4582. [DOI: 10.1021/acs.analchem.9b05850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoire Acides Nucléiques: Régulations Naturelles et Artificielles (ARNA, U1212, UMR5320), IECB, Pessac 33600, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
29
|
Kwantwi-Barima P, Reinecke T, Clowers BH. Increased ion throughput using tristate ion-gate multiplexing. Analyst 2019; 144:6660-6670. [PMID: 31595887 DOI: 10.1039/c9an01585j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For time dispersive ion mobility experiments detail control over the mechanism of ion beam modulation is necessary to establish optimum performance as this parameter greatly influences the temporal width of the ion beam arriving at the detector. When sampling continuous ion sources the temporal sampling or the incoming ion beam is often achieved by the electronic modulation of a grid or electric field. Not surprisingly, the rate at which a given ion population traverses this gating region is directly proportional to an ion's population and the applied electric field. This scenario establishes conditions where discrimination of the incoming ion beam may occur when the ion gate modulation rate is minimized. Recent developments in the mechanical construction of ion gates and their subsequent operation suggest that the mobility discrimination during ion gating may be minimized, however, it is remains unclear how this behavior will translate to ion beam multiplexing approaches. In this present work, we compare the performance levels of the tri-state ion shutter (3S-IS) to the two-state ion shutter (2S-IS) using a series of Fourier transform ion mobility mass spectrometry (FT-IMMS) experiments. The performance of the two different shutter operating principles were evaluated using ion multiplexing using tetraalkylammonium salts (TXA ions; T5-T8, T10, T12) bradykinin, and a set of reversed sequence isomeric pentapeptides using a variety of different ion gate frequency sweeps. Noticeable increases in ion throughput were observed for the 3S-IS with 95% and 45% increases in ion counts for the T5 and T12 ions respectively compared to the 2S-IS. Similarly, a 27% and 55% increase in ion counts was observed for the [M + 2H]2+ and [M + H]+ ions of bradykinin, respectively. In addition, a 10% increase in resolving power was also observed for the 3S-IS compared to the 2S-IS. Overall, utilization of the 3S-IS effectively minimizes both discrimination of slower ions and the impact of gate depletion effect common to traditional ion gating techniques.
Collapse
|
30
|
Historical, current and future developments of travelling wave ion mobility mass spectrometry: A personal perspective. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Amo-González M, Pérez S, Delgado R, Arranz G, Carnicero I. Tandem Ion Mobility Spectrometry for the Detection of Traces of Explosives in Cargo at Concentrations of Parts Per Quadrillion. Anal Chem 2019; 91:14009-14018. [DOI: 10.1021/acs.analchem.9b03589] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Sergio Pérez
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain
| | - Rafael Delgado
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain
| | - Gonzalo Arranz
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain
| | - Irene Carnicero
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain
| |
Collapse
|
32
|
Beckett D, El-Baba TJ, Gilbert K, Clemmer DE, Raghavachari K. Untangling Hydrogen Bond Networks with Ion Mobility Spectrometry and Quantum Chemical Calculations: A Case Study on H +XPGG. J Phys Chem B 2019; 123:5730-5741. [PMID: 31241336 DOI: 10.1021/acs.jpcb.9b03803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion mobility spectrometry-mass spectrometry and quantum chemical calculations are used to determine the structures and stabilities of singly protonated XaaProGlyGly peptides: H+DPGG, H+NPGG, H+EPGG, and H+QPGG. The IMS distributions are similar, suggesting the peptides adopt closely related structures in the gas phase. Quantum chemical calculations show that all conformers seen in the experimental spectrum correspond to the cis configuration about the Xaa-Pro peptide bond, significantly different from the behavior seen previously for H+GPGG. Density functional theory and quantum theory of atoms in molecules (QTAIM) investigations uncover a silent drama as a minor conformer not observed in the H+DPGG spectrum becomes the preferred conformer in H+QPGG, with both conformers being coincident in collision cross section. Investigation of the highly coupled hydrogen bond network, replete with CH···O interactions and bifurcated hydrogen bonds, reveals the cause of this effect as well as the absence of trans conformers from the spectra. A series of generalized observations are provided to aid in enzyme and ligand design using these coupled hydrogen bond motifs.
Collapse
Affiliation(s)
- Daniel Beckett
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Tarick J El-Baba
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Kevin Gilbert
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Krishnan Raghavachari
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| |
Collapse
|
33
|
Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, Green M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal Chem 2019; 91:8564-8573. [PMID: 31141659 DOI: 10.1021/acs.analchem.9b01838] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Improvements in the performance and availability of commercial instrumentation have made ion mobility-mass spectrometry (IM-MS) an increasingly popular approach for the structural analysis of ionic species as well as for separation of complex mixtures. Here, a new research instrument is presented which enables complex experiments, extending the current scope of IM technology. The instrument is based on a Waters SYNAPT G2-S i IM-MS platform, with the IM separation region modified to accept a cyclic ion mobility (cIM) device. The cIM region consists of a 98 cm path length, closed-loop traveling wave (TW)-enabled IM separator positioned orthogonally to the main ion optical axis. A key part of this geometry and its flexibility is the interface between the ion optical axis and the cIM, where a planar array of electrodes provides control over the TW direction and subsequent ion motion. On either side of the array, there are ion guides used for injection, ejection, storage, and activation of ions. In addition to single and multipass separations around the cIM, providing selectable mobility resolution, the instrument design and control software enable a range of "multifunction" experiments such as mobility selection, activation, storage, IMS n, and importantly custom combinations of these functions. Here, the design and performance of the cIM-MS instrument is highlighted, with a mobility resolving power of approximately 750 demonstrated for 100 passes around the cIM device using a reverse sequence peptide pair. The multifunction capabilities are demonstrated through analysis of three isomeric pentasaccharide species and the small protein ubiquitin.
Collapse
Affiliation(s)
- Kevin Giles
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Jakub Ujma
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Jason Wildgoose
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Steven Pringle
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Keith Richardson
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - David Langridge
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| | - Martin Green
- Waters Corporation , Stamford Avenue, Altrincham Road , Wilmslow SK9 4AX , U.K
| |
Collapse
|
34
|
Eldrid C, Ujma J, Kalfas S, Tomczyk N, Giles K, Morris M, Thalassinos K. Gas Phase Stability of Protein Ions in a Cyclic Ion Mobility Spectrometry Traveling Wave Device. Anal Chem 2019; 91:7554-7561. [PMID: 31117399 PMCID: PMC7006968 DOI: 10.1021/acs.analchem.8b05641] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Ion
mobility mass spectrometry (IM-MS) allows separation of native
protein ions into “conformational families”. Increasing
the IM resolving power should allow finer structural information to
be obtained and can be achieved by increasing the length of the IM
separator. This, however, increases the time that protein ions spend
in the gas phase and previous experiments have shown that the initial
conformations of small proteins can be lost within tens of milliseconds.
Here, we report on investigations of protein ion stability using a
multipass traveling wave (TW) cyclic IM (cIM) device. Using this device,
minimal structural changes were observed for Cytochrome C after hundreds
of milliseconds, while no changes were observed for a larger multimeric
complex (Concanavalin A). The geometry of the instrument (Q-cIM-ToF)
also enables complex tandem IM experiments to be performed, which
were used to obtain more detailed collision-induced unfolding pathways
for Cytochrome C. The instrument geometry provides unique capabilities
with the potential to expand the field of protein analysis via IM-MS.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute of Structural and Molecular Biology, Division of Biosciences , University College London , London , WC1E 6BT , United Kingdom
| | - Jakub Ujma
- Waters Corporation , Wilmslow , SK9 4AX , United Kingdom
| | - Symeon Kalfas
- Institute of Structural and Molecular Biology, Division of Biosciences , University College London , London , WC1E 6BT , United Kingdom
| | - Nick Tomczyk
- Waters Corporation , Wilmslow , SK9 4AX , United Kingdom
| | - Kevin Giles
- Waters Corporation , Wilmslow , SK9 4AX , United Kingdom
| | - Mike Morris
- Waters Corporation , Wilmslow , SK9 4AX , United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences , University College London , London , WC1E 6BT , United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College , University of London , London , WC1E 7HX , United Kingdom
| |
Collapse
|
35
|
Chen X, Raab SA, Poe T, Clemmer DE, Larriba-Andaluz C. Determination of Gas-Phase Ion Structures of Locally Polar Homopolymers Through High-Resolution Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:905-918. [PMID: 30993642 DOI: 10.1007/s13361-019-02184-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The strong synergy arising from coupling two orthogonal analytical techniques such as ion mobility and mass spectrometry can be used to separate complex mixtures and determine structural information of analytes in the gas phase. A tandem study is performed using two systems with different gases and pressures to ascertain gas-phase conformations of homopolymer ions. Aside from spherical and stretched configurations, intermediate configurations formed by a multiply charged globule and a "bead-on-a-string" appendix are confirmed for polyethylene-glycol (PEG), polycaprolactone (PCL), and polydimethylsiloxane (PDMS). These intermediate configurations are shown to be ubiquitous for all charge states and masses present. For each charge state, configurations evolve in two distinctive patterns: an inverse evolution which occurs as an elementary charge attached to the polymer leaves the larger globule and incorporates itself into the appendage, and a forward evolution which reduces the globule without relinquishing a charge while leaving the appendix relatively constant. Forward evolutions are confirmed to form self-similar family shapes that transcend charge states for all polymers. Identical structural changes occur at the same mass over charge regardless of the system, gas or pressure strongly suggesting that conformations are only contingent on number of charges and chain length, and start arranging once the ion is at least partially ejected from the droplet, supporting a charge extrusion mechanism. Configurational changes are smoother for PDMS which is attributed to the larger steric hindrance caused by protruding pendant groups. This study has implications in the study of the configurational space of more complex homopolymers and heteropolymers. Graphical Abstract.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanical Engineering, IUPUI, 723 W Michigan st, Indianapolis, IN, 46202, USA
- Department of Mechanical Engineering, Purdue Universiy, West Lafayette, IN, 47907, USA
| | - Shannon A Raab
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Timothy Poe
- Department of Mechanical Engineering, IUPUI, 723 W Michigan st, Indianapolis, IN, 46202, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, IUPUI, 723 W Michigan st, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Conant CR, Fuller DR, El-Baba TJ, Zhang Z, Russell DH, Clemmer DE. Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:919-931. [PMID: 30980380 PMCID: PMC6824264 DOI: 10.1007/s13361-019-02159-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/02/2023]
Abstract
We report ion mobility spectrometry and mass spectrometry studies of the non-enzymatic step-by-step degradation of substance P (subP), an 11-residue neuropeptide, with the sequence Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2, in ethanol. At elevated solution temperatures (55 to 75 °C), several reactions are observed, including a protonation event, i.e., [subP+2H]2+ + H+ → [subP+3H]3+, that appears to be regulated by a configurational change and two sequential bond cleavages (the Pro2-Lys3 peptide bond is cleaved to form the smaller nonapeptide Lys3-Met11-NH2 [subP(3-11)], and subsequently, subP(3-11) is cleaved at the Pro4-Gln5 peptide bond to yield the heptapeptide Gln5-Met11-NH2 [subP(5-11)]). Each of the product peptides [subP(3-11) and subP(5-11)] is accompanied by a complementary diketopiperazine (DKP): cyclo-Arg1-Pro2 (cRP) for the first cleavage, and cyclo-Lys3-Pro4 (cKP) for the second. Insight about the mechanism of degradation is obtained by comparing kinetics calculations of trial model mechanisms with experimental data. The best model of our experimental data indicates that the initial cleavage of subP is regulated by a conformational change, likely a trans→cis isomerization of the Arg1-Pro2 peptide bond. The subP(3-11) product has a long lifetime (t1/2 ~ 30 h at 55 °C) and appears to transition through several structural intermediates prior to dissociation, suggesting that subP(3-11) is initially formed with a Lys3-trans-Pro4 peptide bond configuration and that slow trans→cis isomerization regulates the second bond cleavage event as well. From these data and our model mechanisms, we obtain transition state thermochemistry ranging from ΔH‡ = 41 to 85 kJ mol-1 and ΔS‡ = - 43 to - 157 J mol-1 K-1 for each step in the reaction. Graphical Abstract.
Collapse
Affiliation(s)
- Christopher R Conant
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Zhichao Zhang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA.
| |
Collapse
|
37
|
Eaton RM, Allen SJ, Bush MF. Principles of Ion Selection, Alignment, and Focusing in Tandem Ion Mobility Implemented Using Structures for Lossless Ion Manipulations (SLIM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1115-1125. [PMID: 30963456 DOI: 10.1007/s13361-019-02170-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Tandem ion mobility (IM) enables the characterization of subpopulations of ions from larger ensembles, including differences that cannot be resolved in a single dimension of IM. Tandem IM consists of at least two IM regions that are each separated by an ion selection region. In many implementations of tandem IM, ions eluting from a dimension of separation are filtered and immediately transferred to the subsequent dimension of separation (selection-only experiments). We recently reported a mode of operation in which ions eluting from a dimension are trapped prior to the subsequent dimension (selection-trapping experiments), which was implemented on an instrument constructed using the structures for lossless ion manipulations (SLIM) architecture. Here, we use a combination of experiments and trajectory simulations to characterize aspects of the selection, trapping, and separation processes underlying these modes of operation. For example, the actual temporal profile of filtered ions can be very similar to the width of the waveforms used for selection, but depending on experimental parameters, can differ by up to ± 500 μs. Experiments and simulations indicate that ions in selection-trapping experiments can be spatially focused between dimensions, which removes the broadening that occurred during the preceding dimension. During focusing, individual ions are thermalized, which aligns and establishes common initial conditions for the subsequent dimension. Therefore, selection-trapping experiments appear to offer significant advantages relative to selection-only experiments, which we anticipate will become more pronounced in future experiments that make use of longer IM separations, additional dimensions of analysis, and the outcomes of this study. Graphical Abstract.
Collapse
Affiliation(s)
- Rachel M Eaton
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Samuel J Allen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
38
|
Baird MA, Shliaha PV, Anderson GA, Moskovets E, Laiko V, Makarov AA, Jensen ON, Shvartsburg AA. High-Resolution Differential Ion Mobility Separations/Orbitrap Mass Spectrometry without Buffer Gas Limitations. Anal Chem 2019; 91:6918-6925. [DOI: 10.1021/acs.analchem.9b01309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gordon A. Anderson
- GAACE, 101904 Wiser Parkway Suite 105, Kennewick, Washington 99338, United States
| | - Eugene Moskovets
- MassTech Inc., 6992 Columbia Gateway Drive, Columbia, Maryland 21046, United States
| | - Victor Laiko
- MassTech Inc., 6992 Columbia Gateway Drive, Columbia, Maryland 21046, United States
| | - Alexander A. Makarov
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
- Department of Chemistry, University of Utrecht, 3508 TC Utrecht, Netherlands
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
39
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
40
|
Fuller DR, Conant CR, El-Baba TJ, Zhang Z, Molloy KR, Zhang CS, Hales DA, Clemmer DE. Monitoring the stabilities of a mixture of peptides by mass-spectrometry-based techniques. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:73-81. [PMID: 30773926 PMCID: PMC7702224 DOI: 10.1177/1469066718798718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biomolecular degradation plays a key role in proteostasis. Typically, proteolytic enzymes degrade proteins into smaller peptides by breaking amino acid bonds between specific residues. Cleavage around proline residues is often missed and requires highly specific enzymes for peptide processing due to the cyclic proline side-chain. However, degradation can occur spontaneously (i.e. in the absence of enzymes). In this study, the influence of the first residue on the stability of a series of penultimate proline containing peptides, with the sequence Xaa-Pro-Gly-Gly (where Xaa is any amino acid), is investigated with mass spectrometry techniques. Peptides were incubated as mixtures at various solution temperatures (70℃ to 90℃) and were periodically sampled over the duration of the experiment. At elevated temperatures, we observe dissociation after the Xaa-Pro motif for all sequences, but at different rates. Transition state thermochemistry was obtained by studying the temperature-dependent kinetics and although all peptides show relatively small differences in the transition state free energies (∼95 kJ/mol), there is significant variability in the transition state entropy and enthalpy. This demonstrates that the side-chain of the first amino acid has a significant influence on the stability of the Xaa-Pro sequence. From these data, we demonstrate the ability to simultaneously measure the dissociation kinetics and relative transition state thermochemistries for a mixture of peptides, which vary only in the identity of the N-terminal amino acid.
Collapse
Affiliation(s)
- Daniel R Fuller
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Zhichao Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Connie S Zhang
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
41
|
Chiluwal U, Lee G, Rajapakse MY, Willy T, Lukow S, Schmidt H, Eiceman GA. Tandem ion mobility spectrometry at ambient pressure and field decomposition of mobility selected ions of explosives and interferences. Analyst 2019; 144:2052-2061. [DOI: 10.1039/c8an02041h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A tandem ion mobility spectrometer at ambient pressure included a thermal desorption inlet, two drift regions, dual ion shutters, and a wire grid assembly in the second drift region.
Collapse
Affiliation(s)
- Umesh Chiluwal
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | - Gyoungil Lee
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | | | - Timothy Willy
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| | | | | | - Gary A. Eiceman
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces
- USA
| |
Collapse
|
42
|
El-Baba TJ, Fuller DR, Hales DA, Russell DH, Clemmer DE. Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:77-84. [PMID: 30069641 PMCID: PMC6503664 DOI: 10.1007/s13361-018-2034-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 05/30/2023]
Abstract
Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol and ethanol) favor the all-cis polyproline I helix (PPI); as the temperature is increased, the trans-configured polyproline II helix (PPII) is formed. In polar solvents (methanol and water), PPII is favored at all temperatures. From the experimental data, we determine the relative stabilities of the eight structures in methanol, ethanol, and 1-propanol, as well as four in water, all with respect to PPII. Although these conformers show relatively small differences in free energies, substantial variability is observed in the enthalpies and entropies across the structures and solvents. This requires that enthalpies and entropies be highly correlated: in 1-propanol, cis-configured PPI conformations are energetically favorable but entropically disfavored. In more polar solvents, PPI is enthalpically less favorable and entropy favors trans-configured forms. While either ΔH0 or ΔS0 can favor different structures, no conformation in any solvent is simultaneously energetically and entropically stabilized. These data present a rare opportunity to examine the origin of conformational stability. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, AR, 72032, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA.
| |
Collapse
|
43
|
MacLean BX, Pratt BS, Egertson JD, MacCoss MJ, Smith RD, Baker ES. Using Skyline to Analyze Data-Containing Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry Dimensions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2182-2188. [PMID: 30047074 PMCID: PMC6191345 DOI: 10.1007/s13361-018-2028-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 05/04/2023]
Abstract
Recent advances in ion mobility spectrometry (IMS) have illustrated its power in determining the structural characteristics of a molecule, especially when coupled with other separations dimensions such as liquid chromatography (LC) and mass spectrometry (MS). However, these three separation techniques together greatly complicate data analyses, making better informatics tools essential for assessing the resulting data. In this manuscript, Skyline was adapted to analyze LC-IMS-CID-MS data from numerous instrument vendor datasets and determine the effect of adding the IMS dimension into the normal LC-MS molecular pipeline. For the initial evaluation, a tryptic digest of bovine serum albumin (BSA) was spiked into a yeast protein digest at seven different concentrations, and Skyline was able to rapidly analyze the MS and CID-MS data for 38 of the BSA peptides. Calibration curves for the precursor and fragment ions were assessed with and without the IMS dimension. In all cases, addition of the IMS dimension removed noise from co-eluting peptides with close m/z values, resulting in calibration curves with greater linearity and lower detection limits. This study presents an important informatics development since to date LC-IMS-CID-MS data from the different instrument vendors is often assessed manually and cannot be analyzed quickly. Because these evaluations require days for the analysis of only a few target molecules in a limited number of samples, it is unfeasible to evaluate hundreds of targets in numerous samples. Thus, this study showcases Skyline's ability to work with the multidimensional LC-IMS-CID-MS data and provide biological and environmental insights rapidly. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brian S Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jarrett D Egertson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd. MSIN K8-98, P.O. Box 999, Richland, WA, 99352, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd. MSIN K8-98, P.O. Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
44
|
Iwamoto K, Fujimoto Y, Nakanishi T. Development of an ion mobility spectrometer using radio-frequency electric field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:115101. [PMID: 30501352 DOI: 10.1063/1.5050440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
This paper describes the development of a new ion mobility spectrometer (IMS) using the radio-frequency (RF) electric field. The proposed IMS has high ion transmission efficiency. Seven connected IMS devices, in which the RF and DC electric fields are created by separate electrodes, are constructed. The ions are confined by the RF electric field and drifted by the DC electric field. The electrodes in each IMS device include short quadrupole electrodes and segmented vane electrodes. The uniform electric field in the IMS is verified by simulated results obtained using SIMION. To measure the exact value of reduced mobility K 0 at low Td (1 Td = 10-17 V cm2), two ion gates are installed in the IMS. By installing the ion gates at suitable positions for eliminating the effect of gas flow, the exact ion velocity through the IMS can be measured. The K 0 values of O2 + and C6H6 + ions are measured as a function of Td. In addition, the K 0 of CH3OCH2 + fragment ions is measured. These K 0 measurement results are consistent with previous results obtained using electrostatic drift tube apparatus. In summary, as our IMS can measure K 0 under low Td conditions, it can be used to better understand the structure of small molecular or fragment ions.
Collapse
Affiliation(s)
- Kenichi Iwamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yusuke Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Toshiki Nakanishi
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
45
|
Beckett D, El-Baba TJ, Clemmer DE, Raghavachari K. Electronic Energies Are Not Enough: An Ion Mobility-Aided, Quantum Chemical Benchmark Analysis of H+GPGG Conformers. J Chem Theory Comput 2018; 14:5406-5418. [DOI: 10.1021/acs.jctc.8b00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Beckett
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tarick J. El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
46
|
Fuller DR, Conant CR, El-Baba TJ, Brown CJ, Woodall DW, Russell DH, Clemmer DE. Conformationally Regulated Peptide Bond Cleavage in Bradykinin. J Am Chem Soc 2018; 140:9357-9360. [PMID: 30028131 PMCID: PMC6503673 DOI: 10.1021/jacs.8b04751] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion mobility and mass spectrometry techniques are used to investigate the stabilities of different conformations of bradykinin (BK, Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9). At elevated solution temperatures, we observe a slow protonation reaction, i.e., [BK+2H]2++H+ → [BK+3H]3+, that is regulated by trans → cis isomerization of Arg1-Pro2, resulting in the Arg1- cis-Pro2- cis-Pro3-Gly4-Phe5-Ser6- cis-Pro7-Phe8-Arg9 (all- cis) configuration. Once formed, the all- cis [BK+3H]3+ spontaneously cleaves the bond between Pro2-Pro3 with perfect specificity, a bond that is biologically resistant to cleavage by any human enzyme. Temperature-dependent kinetics studies reveal details about the intrinsic peptide processing mechanism. We propose that nonenzymatic cleavage at Pro2-Pro3 occurs through multiple intermediates and is regulated by trans → cis isomerization of Arg1-Pro2. From this mechanism, we can extract transition state thermochemistry: Δ G‡ = 94.8 ± 0.2 kJ·mol-1, Δ H‡ = 79.8 ± 0.2 kJ·mol-1, and Δ S‡ = -50.4 ± 1.7 J·mol-1·K-1 for the trans → cis protonation event; and, Δ G‡ = 94.1 ± 9.2 kJ·mol-1, Δ H‡ = 107.3 ± 9.2 kJ·mol-1, and Δ S‡ = 44.4 ± 5.1 J·mol-1·K-1 for bond cleavage. Biological resistance to the most favored intrinsic processing pathway prevents formation of Pro3-Gly4-Phe5-Ser6- cis-Pro7-Phe8-Arg9 that is approximately an order of magnitude more antigenic than BK.
Collapse
Affiliation(s)
- Daniel R. Fuller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher R. Conant
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tarick J. El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher J. Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel W. Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
47
|
Khanal N, Gaye MM, Clemmer DE. Multiple solution structures of the disordered peptide indolicidin from IMS-MS analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:52-58. [PMID: 30906201 PMCID: PMC6426319 DOI: 10.1016/j.ijms.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The solution-favored conformations of the 13-residue disordered peptide, indolicidin (Ile1-Leu2-Pro3-Trp4-Lys5-Trp6-Pro7-Trp8-Trp9-Pro10-Trp11-Arg12-Arg13), are evaluated using electrospray ionization (ESI) coupled to ion mobility spectrometry-mass spectrometry (IMS-MS). The ESI-IMS-MS distributions for the dominant [M+4H]4+ ions indicate that three populations of structures coexist in a range of aqueous to non-aqueous solutions (water:dioxane, water:trifluoroethanol, and water:hexafluoroisopropanol). Conformer types and their relative abundances change in response to different solution environments suggesting that the gas phase conformers reflect on the solution populations present in different solvent environments. Collisional activation of isolated gas phase conformations with IMS-IMS-MS experiments provides additional insight about the relative stabilities of different structural types in the absence of solvent. Simulated annealing studies suggest that proline configuration may be important for the presence of multiple conformations.
Collapse
|
48
|
El-Baba TJ, Fuller DR, Woodall DW, Raab SA, Conant CR, Dilger JM, Toker Y, Williams ER, Russell DH, Clemmer DE. Melting proteins confined in nanodroplets with 10.6 μm light provides clues about early steps of denaturation. Chem Commun (Camb) 2018; 54:3270-3273. [PMID: 29536995 PMCID: PMC5871606 DOI: 10.1039/c7cc09829d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ubiquitin confined within nanodroplets was irradiated with a variable-power CO2 laser. Mass spectrometry analysis shows evidence for a protein "melting"-like transition within droplets prior to solvent evaporation and ion formation. Ion mobility spectrometry reveals that structures associated with early steps of denaturation are trapped because of short droplet lifetimes.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana, 47401, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sarbu M, Zamfir AD. Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis. Electrophoresis 2018; 39:1155-1170. [DOI: 10.1002/elps.201700461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter; Timisoara Romania
| | - Alina Diana Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter; Timisoara Romania
| |
Collapse
|
50
|
Brown CJ, Kaufman T, Trinidad JC, Clemmer DE. Proteome changes in the aging Drosophila melanogaster head. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 425:36-46. [PMID: 30906200 PMCID: PMC6426325 DOI: 10.1016/j.ijms.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry, and database searching techniques were used to characterize the proteomes of four biological replicates of adult Drosophila melanogaster heads at seven time points across their lifespans. Based on the detection of tryptic peptides, the identities of 1281 proteins were determined. An estimate of the abundance of each protein, based on the three most intense peptide ions, shows that the quantified species vary in concentration over a factor of ~103. Compared to initial studies in the field of Drosophila proteomics, our current results show an eight-fold higher temporal protein coverage with increased quantitative accuracy. Across the lifespan, we observe a range of trends in the abundance of different proteins, including: an increase in abundance of proteins involved in oxidative phosphorylation, and the tricarboxylic acid cycle; a decrease in proteasomal proteins, as well as ribosomal proteins; and, many types of proteins, which remain relatively unchanged. For younger flies, proteomes are relatively similar within their age group. For older flies, proteome similarity decreases within their age group. These combined results illustrate a correlation between increasing age and decreasing proteostasis.
Collapse
Affiliation(s)
- Christopher J. Brown
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|