1
|
Chang JL, Liao CW, Arthisree D, Senthil Kumar A, Zen JM. A Size-Controlled Graphene Oxide Materials Obtained by One-Step Electrochemical Exfoliation of Carbon Fiber Cloth for Applications to In Situ Gold Nanoparticle Formation and Electrochemical Sensors—A Preliminary Study. BIOSENSORS 2022; 12:bios12060360. [PMID: 35735508 PMCID: PMC9221386 DOI: 10.3390/bios12060360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
A simple, one-step and facile method has been introduced to prepare fluorescent and electrochemically active carbon nanoparticles with single-size distribution and good long-term stability by electrochemical exfoliation of polyacrylonitrile-based carbon fibers in an alkaline solution-phase condition. The preparation condition was systematically optimized by studying the effect of temperature and electrolytes. It has been found that an electrochemical exfoliation reaction carried out at an applied potential of 2 V vs. Ag/AgCl in a phosphate-ion-containing alkaline solution at a temperature of 40 °C is an ideal condition for the preparation of 14 ± 4 nm-sized carbon nanoparticles. Unlike the literature protocols, there are no filtration and membrane dialysis-based off-line sample pretreatments adopted in this work. The as-prepared carbon nanoparticles were characterized by fluorescence, Raman spectrum, transmission electron microscope, and X-ray photoelectron spectroscopic characterization methods. It was found that the carbon–oxygen functional group rich in graphene–oxide quantum dots (GOQDs) such as carbon nanoparticles were formed in this work. A preliminary study relating to simultaneous electrochemical oxidation and the sensing of uric acid and ascorbic acid with well-resolved peaks was demonstrated as a model system to extend the new carbon material for electroanalytical applications. Furthermore, in situ synthesis of 2 nm-sized gold nanoparticles stabilized by GOQDs was presented. The carbon nanoparticles prepared by the direct method in this work have shown good stability over 6 months when stored at room temperature. The electrochemical exfoliation reaction has been found to be highly reproducible and suitable for bulk synthesis of luminescence-effective carbon nanoparticles to facilitate fundamental studies and practical applications.
Collapse
Affiliation(s)
- Jen-Lin Chang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.C.); (C.-W.L.)
| | - Chen-Wei Liao
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.C.); (C.-W.L.)
| | - D. Arthisree
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632 014, India;
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632 014, India;
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
- Correspondence: or (A.S.K.); (J.-M.Z.)
| | - Jyh-Myng Zen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.C.); (C.-W.L.)
- Correspondence: or (A.S.K.); (J.-M.Z.)
| |
Collapse
|
2
|
Kumar Mall V, Prakash Ojha R, Tiwari P, Prakash R. Immunosuppressive Drug Sensor based on MoS2-Polycarboxyindole Modified Electrodes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Moon S, Kamakshaiah Charyulu D, Lee W, Lee K. Controlling the geometric design of anodic 1D TiO2 nanotubes for the electrochemical reduction of 2,4,6-trinitrotoluene in ambient conditions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
An improving aqueous dispersion of polydopamine functionalized vapor grown carbon fiber for the effective sensing electrode fabrication to chloramphenicol drug detection in food samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Anh NT, Dinh NX, Pham TN, Vinh LK, Tung LM, Le AT. Enhancing the chloramphenicol sensing performance of Cu-MoS 2 nanocomposite-based electrochemical nanosensors: roles of phase composition and copper loading amount. RSC Adv 2021; 11:30544-30559. [PMID: 35479872 PMCID: PMC9041121 DOI: 10.1039/d1ra06100c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
The rational design of nanomaterials for electrochemical nanosensors from the perspective of structure–property–performance relationships is a key factor in improving the analytical performance toward residual antibiotics in food. We have investigated the effects of the crystalline phase and copper loading amount on the detection performance of Cu–MoS2 nanocomposite-based electrochemical sensors for the antibiotic chloramphenicol (CAP). The phase composition and copper loading amount on the MoS2 nanosheets can be controlled using a facile electrochemical method. Cu and Cu2O nanoparticle-based electrochemical sensors showed a higher CAP electrochemical sensing performance as compared to CuO nanoparticles due to their higher electrocatalytic activity and conductivity. Moreover, the design of Cu–MoS2 nanocomposites with appropriate copper loading amounts could significantly improve their electrochemical responses for CAP. Under optimized conditions, Cu–MoS2 nanocomposite-based electrochemical nanosensor showed a remarkable sensing performance for CAP with an electrochemical sensitivity of 1.74 μA μM−1 cm−2 and a detection limit of 0.19 μM in the detection range from 0.5–50 μM. These findings provide deeper insight into the effects of nanoelectrode designs on the analytical performance of electrochemical nanosensors. In this work, we clarify the roles of phase composition and copper loading amount on the CAP sensing performance of Cu–MoS2 nanocomposite-based electrochemical nanosensors.![]()
Collapse
Affiliation(s)
- Nguyen Tuan Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Le Khanh Vinh
- Institute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST) Ho Chi Minh 70000 Vietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang University My Tho City Tien Giang Province Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam .,Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
6
|
Goswami R, Das S, Seal N, Pathak B, Neogi S. High-Performance Water Harvester Framework for Triphasic and Synchronous Detection of Assorted Organotoxins with Site-Memory-Reliant Security Encryption via pH-Triggered Fluoroswitching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34012-34026. [PMID: 34255471 DOI: 10.1021/acsami.1c05088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atmospheric water harvesting, triphasic detection of water contaminants, and advanced antiforgery measures are among important global agendas, where metal-organic frameworks (MOFs), as an incipient class of multifaceted materials, can affect substantial development of individual properties at the interface of tailor-made fabrication. The chemically robust and microporous MOF, encompassing contrasting pore functionalization, exhibits an S-shaped water adsorption curve at 300 K with a steep pore-filling step near P/P0 = 0.5 and shows reversible uptake-release performance. Density functional theory (DFT) studies provide atomistic-level snapshots of sequential insertion of H2O molecules inside the porous channels and also portray H-bonding interactions with polar functional sites in the two-fold interpenetrated structure. The highly emissive attribute with an electron-pull system benefits the fast-responsive framework and highly regenerable detection of four classes of organic pollutants (2,4,6-trinitrophenol (TNP), dichloran, aniline, and nicotine) in water at a record-low sensitivity. In addition to solid-, liquid-, and vapor-phase sensing, host-guest-mediated reversible fluoroswitching is validated through repetitive paper-strip monitoring and image-based detection of food sample contamination. Structure-property synergism in the electron transfer route of sensing is justified from DFT calculations that describe the reshuffling of molecular orbital energy levels in an electron-rich network by each organotoxin, besides evidencing framework-analyte supramolecular interactions. The MOF further delineates the pH-responsive luminescence defect repair via site-specific emission modulation, wherein reversibly alternated "encrypted and decrypted" states are utilized as highly reusable anticounterfeiting labels over multiple platforms and conceptualized as artificial molecular switches. Aiming at self-calibrated, advanced security claims, a NOR-OR coupled logic gate is devised based on commensurate fluorescence-cum-real-time synchronous detection of organic and inorganic (HCl and NH3) pollutants.
Collapse
Affiliation(s)
- Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Sandeep Das
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Biswarup Pathak
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
7
|
Yamuna A, Jiang TY, Chen SM. Preparation of K + intercalated MnO 2-rGO composite for the electrochemical detection of nitroaniline in industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125054. [PMID: 33445046 DOI: 10.1016/j.jhazmat.2021.125054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This work reports the electrochemical detection of highly hazardous material 4-Nitroaniline (4-NA) based on the metal oxide-rGO composite materials. The potassium intercalated MnO2-rGO composite material was prepared by a simple one-pot reduction method. The K+ intercalation on K-MnO2-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman analysis. The amorphous nature of prepared material was scrutinized by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern analysis. The elemental compositions are done by energy dispersive X-ray Analysis (EDX) mapping. The prepared composite material K-MnO2-rGO was used to determine the 4-NA by differential pulse voltammetry (DPV). The electroanalytical performances of fabricated K-MnO2-rGO/SPCE were compared with the K-MnO2 and rGO in pH 7. The developed 4-NA sensor showed good sensitivity (2.85 µA µM-1 cm-2), linear range (0.001-10.53 µM), and LOD (0.7 nM). Furthermore, the K-MnO2-rGO/SPCE exhibited high selectivity with the other potential interfering nitro compounds in river water and pond water samples. Therefore the developed sensor can be applied for the determination of noxious pollutants in real-time monitoring devices.
Collapse
Affiliation(s)
- Annamalai Yamuna
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Ting-Yu Jiang
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
8
|
Tung CL, Chen JC, Ko JC, Liu LL, Chien CC, Huang IH, Tsao YC, Cheng HH, Chen TY, Yen TC, Lin YW. Capsaicin Acts Through Reducing P38 MAPK-Dependent Thymidylate Synthase Expression to Enhance 5-Fluorouracil-Induced Cytotoxicity in Human Lung Cancer Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21993335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Capsaicin, an ingredient of green and red bell peppers, shows anticancer activity in several malignant cell lines. Thymidylate synthase (TS) is a well-validated anticancer drug target in non-small cell lung cancer (NSCLC) cells. However, whether capsaicin and 5-fluorouracil (5-FU) induce synergistic cytotoxicity in NSCLC cells by regulating TS expression is unclear. This study investigated the cytotoxicity of capsaicin and 5-FU co-treatment on two hoursuman lung adenocarcinoma cell lines, H520 and H1703, and the underlying mechanisms. Capsaicin decreased TS expression in a p38 mitogen-activated protein kinase (MAPK) inactivation–dependent manner in H520 and H1703 cells. Enhancement of p38 MAPK activity by transfection with constitutive active mitogen-activated protein kinase kinase six vectors increased TS expression and cell survival. In addition, capsaicin and 5-FU co-treatment enhanced synergistic cytotoxicity and inhibited cell growth associated with TS downregulation and p38 MAPK inactivation in H520 and H1703 cells. Capsaicin and 5-FU co-treatment did not affect the cellular content of capsaicin. These results show that capsaicin may be combined with 5-FU to treat NSCLC.
Collapse
Affiliation(s)
- Chun-Liang Tung
- Department of Health and Nutrition Biotechnology, Asia University, Taichung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi
| | - Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch
| | - Li-Ling Liu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Chin-Cheng Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - I-Hsiang Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Yong-Cing Tsao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Hsiang-Hung Cheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| |
Collapse
|
9
|
Banga I, Paul A, Muthukumar S, Prasad S. Characterization of Room-Temperature Ionic Liquids to Study the Electrochemical Activity of Nitro Compounds. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1124. [PMID: 32092938 PMCID: PMC7070553 DOI: 10.3390/s20041124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023]
Abstract
Over the past few years, room-temperature ionic liquid (RTIL) has evolved as an important solvent-cum-electrolyte because of its high thermal stability and excellent electrochemical activity. Due to these unique properties, RTILs have been used as a solvent/electrolyte/mediator in many applications. There are many RTILs, which possess good conductivity as well as an optimal electrochemical window, thus enabling their application as a transducer for electrochemical sensors. Nitroaromatics are a class of organic compounds with significant industrial applications; however, due to their excess use, detection is a major concern. The electrochemical performance of a glassy carbon electrode modified with three different RTILs, [EMIM][BF4], [BMIM][BF4] and [EMIM][TF2N], has been evaluated for the sensing of two different nitroaromatic analytes: 2,6-dinitrotoluene (2,6 DNT) and ethylnitrobenzene (ENB). Three RTILs have been chosen such that they have either a common anion or cation amongst them. The sensory response has been measured using square wave voltammetry (SQWV). We found the transducing ability of [EMIM][BF4] to be superior compared to the other two RTILs. A low limit of detection (LOD) of 1 ppm has been achieved with a 95% confidence interval for both the analytes. The efficacy of varying the cationic and anionic species of RTIL to obtain a perfect combination has been thoroughly investigated in this work, which shows a novel selection process of RTILs for specific applications. Moreover, the results obtained from testing with a glassy carbon electrode (GCE) have been replicated using a miniaturized sensor platform that can be deployed easily for on-site sensing applications.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (I.B.); (A.P.); (S.M.)
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (I.B.); (A.P.); (S.M.)
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (I.B.); (A.P.); (S.M.)
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (I.B.); (A.P.); (S.M.)
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX 75013, USA
| |
Collapse
|
10
|
Laghrib F, Houcini H, Khalil F, Liba A, Bakasse M, Lahrich S, El Mhammedi MA. Synthesis of Silver Nanoparticles Using Chitosan as Stabilizer Agent: Application towards Electrocatalytical Reduction of p‐Nitrophenol. ChemistrySelect 2020. [DOI: 10.1002/slct.201903955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- F. Laghrib
- Sultan Moulay Slimane University of Beni MellalLaboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - H. Houcini
- Sultan Moulay Slimane University of Beni MellalLaboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - F. Khalil
- Univ. Sidi Mohamed Ben AbdellahLaboratory of Applied Chemistry (LCA), Faculty of Science and Technology Immouzer Road, BP 2202 Fez Morocco
| | - A. Liba
- Univ. Sultan Moulay Slimane, Materials Physics LaboratoryFaculty of Science and Technology Beni Mellal Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University of Beni MellalLaboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
- Chouaib Doukkali UniversityFaculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment El Jadida Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University of Beni MellalLaboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - M. A. El Mhammedi
- Sultan Moulay Slimane University of Beni MellalLaboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| |
Collapse
|
11
|
Allahnouri F, Farhadi K, Eskandari H, Molaei R. Screen printed carbon electrode modified with a copper@porous silicon nanocomposite for voltammetric sensing of clonazepam. Mikrochim Acta 2019; 186:676. [PMID: 31494758 DOI: 10.1007/s00604-019-3784-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
The work describes an electrochemical sensor for the determination of the tranquilizer clonazepam (CZP) in serum and pharmaceutical preparations. A screen printed carbon electrode (SPCE) was modified with copper nanoparticles anchored on porous silicon (PSi). The surface of the SPCEs modified with the Cu/PSi nanostructure was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, energy dispersive X-ray spectroscopy and field-emission scanning electron microscopy. Cyclic and differential pulse voltammetric methods were used for the electrochemical studies and electrochemical detection, respectively. Several parameters controlling the performance of the modified SPCE were optimized. The peak current values (at a potential of -0.52 V) were used to construct calibration plots. Under the optimum conditions, the calibration plot is linear in the 0.05-7.6 μM CZP concentration range, and the detection limit is 15 nM. The sensor is reproducible, repeatable, highly selective and sensitive. It was successfully applied to the determination of CPZ in spiked serum and in drugs. Graphical abstract Scheme of electrochemical reduction of clonazepam on the designed copper@porous silicon modified screen printed carbon electrode (CuNPs/PSi/SPCE). This electrode was employed for the determination of clonazepam in tablets and human blood plasma using differential pulse voltammetry.
Collapse
Affiliation(s)
- Farzad Allahnouri
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, P.O. Box 165-5715944931, Urmia, Iran
| | - Khalil Farhadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, P.O. Box 165-5715944931, Urmia, Iran.
| | - Habibollah Eskandari
- Department of Chemistry, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - Rahim Molaei
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, P.O. Box 165-5715944931, Urmia, Iran
| |
Collapse
|
12
|
Asif M, Aziz A, Azeem M, Wang Z, Ashraf G, Xiao F, Chen X, Liu H. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv Colloid Interface Sci 2018; 262:21-38. [PMID: 30428998 DOI: 10.1016/j.cis.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
The development of layered double hydroxides (LDHs), also known as anionic clays with uniform distribution of metal ions and facile exchangeability of intercalated anions, are now appealing an immense deal of attention in synthesis of multifunctional materials. In electrochemical biosensors, LDHs provide stable environment for immobilization of enzymes or other sensing materials and play crucial roles in development of clinical chemistry, point-of-care devices through analysis of various small molecule metabolites excreted by biological processes which in turn serve as molecular biomarkers for medical diagnostics. In this review, we summarize the recent development in fabrication of LDH based nanoarchitectures and their electrocatalytic applications in ultrasensitive in vitro determination of conventional biomarkers, i.e., H2O2, glucose, dopamine and other biomolecules. Moreover, detailed discussion has been compiled to differentiate electrochemical enzymatic and nonenzymatic biosensors, to evaluate useful concentration ranges of H2O2 and glucose for analytical circumstances and to distinguish tumorigenic and normal cells via quantifying the released H2O2 efflux from living cells. Here, we envision that electrochemical sensing platform based on structurally integrated LDH nanohybrids with highly conducting substrates will assist as diseases diagnostic probe further enhancing diagnosis as well as therapeutic window for chronic diseases. Finally, the perspective for fabrication and assembly of LDH electrode is proposed for the future innovation of electrochemical biosensors with high performance making them more reliable for in vitro diagnostics.
Collapse
|
13
|
Khatun MA, Hoque MA, Zhang Y, Lu T, Cui L, Zhou NY, Feng Y. Bacterial Consortium-Based Sensing System for Detecting Organophosphorus Pesticides. Anal Chem 2018; 90:10577-10584. [DOI: 10.1021/acs.analchem.8b02709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Irandoust M, Haghighi M, Taherpour AA, Jafarzadeh M. Electrochemical sensing of trifluralin in water by fluconazole-immobilized Fe3O4/SiO2 nanomagnetic core–shell linked to carbon nanotube modified glassy carbon electrode; an experimental and theoretical modeling. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1271-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Electrocatalytic reduction of nitroaromatic compounds by activated graphite sheets in the presence of atmospheric oxygen molecules. J Catal 2017. [DOI: 10.1016/j.jcat.2017.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Gong C, Gong Y, Chen Q, Rao YJ, Peng GD, Fan X. Reproducible fiber optofluidic laser for disposable and array applications. LAB ON A CHIP 2017; 17:3431-3436. [PMID: 28875219 DOI: 10.1039/c7lc00708f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Disposable sensors are widely used in biomedical detection due to their inherent safety, ease of use and low cost. An optofluidic laser is a sensitive bioassay platform; however, demonstrating its fabrication cheaply and reproducibly enough for disposable use has been challenging. Here, we report a low-cost, reproducible fiber optofluidic laser (FOFL) using a microstructured optical fiber (MOF). The MOF not only supports the whispering gallery modes for lasing but also serves as a microfluidic channel for sampling the liquid gain medium via capillary force. Because of the precise control of its geometry (δ < 0.4%) during the fiber-drawing process, good reproducibility in laser intensity (δ = 6.5%) was demonstrated by changing 10 sections of the MOF. The strong coupling between the in-fiber resonator and gain medium enables a low threshold of 3.2 μJ mm-2. The angular dependence of the laser emission was observed experimentally and analyzed with numerical simulations. An array of the FOFLs was also demonstrated. This technology has great potential for low-cost bioassay applications.
Collapse
Affiliation(s)
- Chaoyang Gong
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., Chengdu, 611731 China.
| | | | | | | | | | | |
Collapse
|
17
|
Yusoff N, Rameshkumar P, Mehmood MS, Pandikumar A, Lee HW, Huang NM. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens Bioelectron 2017; 87:1020-1028. [DOI: 10.1016/j.bios.2016.09.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
|
18
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
19
|
Jakubec P, Urbanová V, Medříková Z, Zbořil R. Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicol. Chemistry 2016; 22:14279-84. [DOI: 10.1002/chem.201602434] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Petr Jakubec
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University in Olomouc; 17 Listopadu 1192/12 771 46 Olomouc Czech Republic
| | - Veronika Urbanová
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University in Olomouc; 17 Listopadu 1192/12 771 46 Olomouc Czech Republic
| | - Zdenka Medříková
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University in Olomouc; 17 Listopadu 1192/12 771 46 Olomouc Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University in Olomouc; 17 Listopadu 1192/12 771 46 Olomouc Czech Republic
| |
Collapse
|
20
|
Das AK, Goswami S, Quah CK, Fun HK. Relay recognition of F−and a nerve-agent mimic diethyl cyano-phosphonate in mixed aqueous media: discrimination of diethyl cyanophosphonate and diethyl chlorophosphate by cyclization induced fluorescence enhancement. RSC Adv 2016. [DOI: 10.1039/c5ra24392k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
F−to DCNP detection by relay recognition has been designed and realized for the first time with sequence specificity (F−→ DCNP)viaa fluorescence “off–on–on” mechanism.
Collapse
Affiliation(s)
- Avijit Kumar Das
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711 103
- India
| | - Shyamaprosad Goswami
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711 103
- India
| | - Ching Kheng Quah
- X-ray Crystallography Unit
- School of Physics
- Universiti Sains Malaysia
- Penang
- Malaysia
| | - Hoong-Kun Fun
- X-ray Crystallography Unit
- School of Physics
- Universiti Sains Malaysia
- Penang
- Malaysia
| |
Collapse
|
21
|
IRANDOUST M, HAGHIGHI M. Electrochemical Study and Determination of Dinitramine Using Glassy Carbon Electrodes Modified with Multi-walled Carbon Nanotubes. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mohsen IRANDOUST
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University
| | - Maryam HAGHIGHI
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University
| |
Collapse
|
22
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
23
|
Zhang R, Sun CL, Lu YJ, Chen W. Graphene Nanoribbon-Supported PtPd Concave Nanocubes for Electrochemical Detection of TNT with High Sensitivity and Selectivity. Anal Chem 2015; 87:12262-9. [PMID: 26568380 DOI: 10.1021/acs.analchem.5b03390] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this work, PtPd concave nanocubes anchored on graphene nanoribbons (PtPd-rGONRs) were successfully fabricated through a hydrothermal process. The structural characterizations confirmed that PtPd concave cubes with an average size of around 11 nm have been successfully synthesized and they are uniformly assembled on the surface of rGONRs. The electrochemical measurements demonstrated that the PtPd-rGONRs composite-modified glassy carbon electrode (GCE) shows much enhanced current signals for TNT reduction, which is 4 and 12-fold higher than rGONRs and bare glassy carbon electrode, respectively. The PtPd-rGONRs exhibited a wide linear range for TNT detection from 0.01 to 3 ppm with the sensing limit of 0.8 ppb. Moreover, the PtPd-rGONRs showed excellent detection stability for the determination of TNT. Most importantly, the PtPd-rGONRs-based electrochemical detection platform can be successfully applied to TNT detection in tap water and real lake water samples. The present study indicates that graphene nanoribbon-supported nanocrystals are promising in designing high performance electrochemical sensors for explosives detection.
Collapse
Affiliation(s)
- Ruizhong Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | | | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital , No. 5, Fu-Shing Road, Guishan, Taoyuan 333, Taiwan, ROC
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin, China
| |
Collapse
|
24
|
Wang T, Reid RC, Minteer SD. A Paper-based Mitochondrial Electrochemical Biosensor for Pesticide Detection. ELECTROANAL 2015. [DOI: 10.1002/elan.201500487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Sağlam Ş, Üzer A, Tekdemir Y, Erçağ E, Apak R. Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine–aniline) film modified glassy carbon electrode. Talanta 2015; 139:181-8. [DOI: 10.1016/j.talanta.2015.02.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/28/2022]
|
26
|
Yan F, He Y, Ding L, Su B. Highly Ordered Binary Assembly of Silica Mesochannels and Surfactant Micelles for Extraction and Electrochemical Analysis of Trace Nitroaromatic Explosives and Pesticides. Anal Chem 2015; 87:4436-41. [DOI: 10.1021/acs.analchem.5b00433] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fei Yan
- Institute of Microanalytical
Systems, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yayun He
- Institute of Microanalytical
Systems, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Longhua Ding
- Institute of Microanalytical
Systems, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Su
- Institute of Microanalytical
Systems, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Pilehvar S, Gielkens K, Trashin SA, Dardenne F, Blust R, De Wael K. (Electro)Sensing of Phenicol Antibiotics—A Review. Crit Rev Food Sci Nutr 2015; 56:2416-29. [DOI: 10.1080/10408398.2013.845140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Wu C, Cheng Q, Wu K. Electrochemical Functionalization of N-Methyl-2-pyrrolidone-Exfoliated Graphene Nanosheets as Highly Sensitive Analytical Platform for Phenols. Anal Chem 2015; 87:3294-9. [DOI: 10.1021/ac504309j] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Can Wu
- Key Laboratory for Large-Format
Battery Materials and
System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Cheng
- Key Laboratory for Large-Format
Battery Materials and
System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangbing Wu
- Key Laboratory for Large-Format
Battery Materials and
System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
29
|
Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:611-9. [DOI: 10.1016/j.msec.2014.12.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 12/17/2014] [Indexed: 11/21/2022]
|
30
|
Jamil AK, Izake EL, Sivanesan A, Fredericks PM. Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta 2015; 134:732-738. [DOI: 10.1016/j.talanta.2014.12.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 12/27/2022]
|
31
|
Brownson DAC, Kelly PJ, Banks CE. In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Adv 2015. [DOI: 10.1039/c5ra03049h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An internal standard protocol is utilised to simultaneously characterise and utilise carbon-based electrode materials during their implementation.
Collapse
Affiliation(s)
- Dale A. C. Brownson
- Faculty of Science and Engineering
- School of Science and the Environment
- Division of Chemistry and Environmental Science
- Manchester Metropolitan University
- Manchester M1 5GD
| | - Peter J. Kelly
- Faculty of Science and Engineering
- School of Science and the Environment
- Division of Chemistry and Environmental Science
- Manchester Metropolitan University
- Manchester M1 5GD
| | - Craig E. Banks
- Faculty of Science and Engineering
- School of Science and the Environment
- Division of Chemistry and Environmental Science
- Manchester Metropolitan University
- Manchester M1 5GD
| |
Collapse
|
32
|
Brown K, Doo H, Makamba H, Seo SS. SPECTROSCOPIC AND ELECTROCHEMICAL CHARACTERIZATION OF IRON(II) AND 2,4-DINITROTOLUENE. ANAL LETT 2015; 48:2482-2492. [PMID: 27239059 DOI: 10.1080/00032719.2015.1030675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of this work was the development of reliable methods to determine 2,4-dinitrotoluene, a precursor to explosives. A complex between Fe(II) ion and 2,4-dinitrotoluene was formed in solution and characterized by ultraviolet-visible absorption spectroscopy using Job's plots and attenuated total reflection-Fourier transform infrared spectroscopy. Surface modification of glassy carbon electrodes were performed with iron nanoparticles via electrochemical reduction of iron(II). The modified electrode was employed for the determination of 2,4-dinitrotoluene. Scanning electron micrographs showed that the iron nanoparticles were incorporated on the surface of glassy carbon electrode. The electrochemical determination of 2,4-dinitrotoluene was performed by cyclic voltammetry using the modified electrode. The iron modified electrode produced larger reduction currents than the unmodified electrode for the same concentration of 2,4-dinitrotoluene. Concentrations of 2,4-dinitrotoluene as low as 10 parts per billion were determined using the modified electrode.
Collapse
Affiliation(s)
- Kristopher Brown
- Department of Natural and Forensic Sciences, Albany State University, Albany, Georgia, USA
| | - Hyungie Doo
- Department of Natural and Forensic Sciences, Albany State University, Albany, Georgia, USA
| | - Honest Makamba
- Department of Natural and Forensic Sciences, Albany State University, Albany, Georgia, USA
| | - Seong S Seo
- Department of Natural and Forensic Sciences, Albany State University, Albany, Georgia, USA
| |
Collapse
|
33
|
Mahmoud KA, Abdel-Wahab A, Zourob M. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1780-1788. [PMID: 26540539 DOI: 10.2166/wst.2015.399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.
Collapse
Affiliation(s)
- Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha, Qatar and Hamad bin Khalifa University, P.O. Box 5825, Education City, Doha, Qatar E-mail:
| | - Ahmed Abdel-Wahab
- Chemical Engineering Department, Texas A&M University at Qatar, Doha, Qatar
| | - Mohammed Zourob
- Centre Énergie, Matériaux et Télécommunications (ÉMT), 1650, boulevard Lionel-Boulet Varennes, Québec, J3X 1S2, Canada and Center of Biomedical Engineering, Cranfield University, Vincent Building, Cranfield, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
34
|
Yan F, Zheng W, Yao L, Su B. Direct electrochemical analysis in complex samples using ITO electrodes modified with permselective membranes consisting of vertically ordered silica mesochannels and micelles. Chem Commun (Camb) 2015; 51:17736-9. [DOI: 10.1039/c5cc08425c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we report a simple and cost-effective method for direct electrochemical detection of redox-active small organic analytes in complex media, such as soil dispersions, human serum and milk, without sample pre-treatment.
Collapse
Affiliation(s)
- Fei Yan
- Institute of Microanalytical Systems
- Department of Chemistry & Center for Chemistry of High-Performance and Novel Materials
- Zhejiang University
- Hangzhou 310058
- China
| | - Wenjing Zheng
- Institute of Microanalytical Systems
- Department of Chemistry & Center for Chemistry of High-Performance and Novel Materials
- Zhejiang University
- Hangzhou 310058
- China
| | - Lina Yao
- Institute of Microanalytical Systems
- Department of Chemistry & Center for Chemistry of High-Performance and Novel Materials
- Zhejiang University
- Hangzhou 310058
- China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry & Center for Chemistry of High-Performance and Novel Materials
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
35
|
Rameshkumar P, Ramaraj R. Electroanalysis of nitrobenzene derivatives and nitrite ions using silver nanoparticles deposited silica spheres modified electrode. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
El Sayed S, Pascual L, Agostini A, Martínez-Máñez R, Sancenón F, Costero AM, Parra M, Gil S. A Chromogenic Probe for the Selective Recognition of Sarin and Soman Mimic DFP. ChemistryOpen 2014; 3:142-5. [PMID: 25478309 PMCID: PMC4232269 DOI: 10.1002/open.201402014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 12/20/2022] Open
Abstract
The synthesis, characterization and sensing features of a novel probe 1 for the selective chromogenic recognition of diisopropylfluorophosphate (DFP), a sarin and soman mimic, in 99:1 (v/v) water/acetonitrile and in the gas phase is reported. Colour modulation is based on the combined reaction of phosphorylation of 1 and fluoride-induced hydrolysis of a silyl ether moiety. As fluoride is a specific reaction product of the reaction between DFP and the −OH group, the probe shows a selective colour modulation in the presence of this chemical. Other nerve agent simulants, certain anions, oxidant species and other organophosphorous compounds were unable to induce colour changes in 1. This is one of the very few examples of a selective detection, in solution and in the gas phase, of a sarin and soman simulant versus other reactive derivatives such as the tabun mimic diethylcyanophosphate (DCNP).
Collapse
Affiliation(s)
- Sameh El Sayed
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia (Spain) E-mail: ; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - Lluís Pascual
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia (Spain) E-mail: ; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - Alessandro Agostini
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia (Spain) E-mail: ; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia (Spain) E-mail: ; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia (Spain) E-mail: ; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ana M Costero
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química Orgánica, Universitat de València Dr. Moliner 50, 46100 Burjassot, Valencia (Spain) E-mail:
| | - Margarita Parra
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química Orgánica, Universitat de València Dr. Moliner 50, 46100 Burjassot, Valencia (Spain) E-mail:
| | - Salvador Gil
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia, Universidad de Valencia (Spain) ; Departamento de Química Orgánica, Universitat de València Dr. Moliner 50, 46100 Burjassot, Valencia (Spain) E-mail:
| |
Collapse
|
37
|
Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Habibi B, Jahanbakhshi M. Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: Voltammetric determination of clonazepam. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Gotor R, Gaviña P, Ochando LE, Chulvi K, Lorente A, Martínez-Máñez R, Costero AM. BODIPY dyes functionalized with 2-(2-dimethylaminophenyl)ethanol moieties as selective OFF–ON fluorescent chemodosimeters for the nerve agent mimics DCNP and DFP. RSC Adv 2014. [DOI: 10.1039/c4ra00710g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hand held sensing kits for detecting nerve agents simulants.
Collapse
Affiliation(s)
- Raúl Gotor
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universidad de Valencia
- Valencia, Spain
| | - Pablo Gaviña
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universidad de Valencia
- Valencia, Spain
| | - Luis E. Ochando
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico
- Unidad Mixta Universidad de Valencia – Universidad Politécnica de Valencia
- Departamento de Geología
- Facultad de Ciencias Biológicas
- Universidad de Valencia
| | - Katherine Chulvi
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universidad de Valencia
- Valencia, Spain
| | - Alejandro Lorente
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universidad de Valencia
- Valencia, Spain
| | - Ramón Martínez-Máñez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico
- Unidad Mixta Universidad Politécnica de Valencia – Universidad de Valencia Departamento de Química
- Universidad Politécnica de Valencia Camino de Vera s/n
- Valencia, Spain
| | - Ana M. Costero
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universidad de Valencia
- Valencia, Spain
| |
Collapse
|
40
|
Fernández E, Vidal L, Iniesta J, Metters JP, Banks CE, Canals A. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 2013; 406:2197-204. [DOI: 10.1007/s00216-013-7415-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/30/2022]
|
41
|
Caygill JS, Collyer SD, Holmes JL, Davis F, Higson SPJ. Electrochemical Detection of TNT at Cobalt Phthalocyanine Mediated Screen-Printed Electrodes and Application to Detection of Airborne Vapours. ELECTROANAL 2013. [DOI: 10.1002/elan.201300327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Li H, Li J, Xu Q, Yang Z, Hu X. A derivative photoelectrochemical sensing platform for 4-nitrophenolate contained organophosphates pesticide based on carboxylated perylene sensitized nano-TiO2. Anal Chim Acta 2013; 766:47-52. [DOI: 10.1016/j.aca.2012.12.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 01/22/2023]
|
43
|
Caygill JS, Collyer SD, Holmes JL, Davis F, Higson SPJ. Disposable screen-printed sensors for the electrochemical detection of TNT and DNT. Analyst 2013; 138:346-52. [DOI: 10.1039/c2an36351h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Pesavento M, D’Agostino G, Alberti G, Biesuz R, Merli D. Voltammetric platform for detection of 2,4,6-trinitrotoluene based on a molecularly imprinted polymer. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6553-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Yue W, Li CW, Xu T, Yang M. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Biosens Bioelectron 2012; 41:675-83. [PMID: 23122749 DOI: 10.1016/j.bios.2012.09.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/16/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
Although silicon technology can be adopted for the fabrication of microfluidic devices with high precision, the capital and operating costs for such technology is often prohibitively expensive. In recent years, many alternative methods have been advocated to reduce the cost of microfabrication but often with reduced qualities in many important features, such as channel resolution, surface smoothness and aspect ratio. In this study, we have developed a microfabrication method that retains high channel quality and aspect ratio by exploring a rarely used solder resist material in combination with screen printing technique to generate masters where PDMS-based microfluidic devices could be fabricated by replica molding from the masters. Using screen printing, different channel heights from 5 to 60 μm on the master were prepared by varying mesh density, controlling solder resist viscosity, and/or adjusting the off-contact gap between a mesh and a substrate, while the entire master fabrication process was completed within 3 h. This simple, low-cost method could generate fine channel features (50 μm) and high aspect ratio (2:1) structures. Microfluidic devices with multi-level structure could be fabricated by multi-steps photolithography using this approach. Moreover, the properties of solder resist enabled the fabrication of flask-shaped well structures by controlled partial exposure and development in a single-step of photolithography, which was potentially used as cell holding reservoirs for cell quantification and cell culture. We believe this fabrication method can be easily adopted by other laboratories to conduct microfluidic researches without specialized equipment.
Collapse
Affiliation(s)
- Wanqing Yue
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Ma Y, Li H, Peng S, Wang L. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal Chem 2012; 84:8415-21. [PMID: 22946839 DOI: 10.1021/ac302138c] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.
Collapse
Affiliation(s)
- Yingxin Ma
- State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Pilehvar S, Mehta J, Dardenne F, Robbens J, Blust R, De Wael K. Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit. Anal Chem 2012; 84:6753-8. [PMID: 22725137 DOI: 10.1021/ac3012522] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel, label-free folding induced aptamer-based electrochemical biosensor for the detection of chloramphenicol (CAP) in the presence of its analogues has been developed. CAP is a broad-spectrum antibiotic that has lost its favor due to its serious adverse toxic effects on human health. Aptamers are artificial nucleic acid ligands (ssDNA or RNA) able to specifically recognize a target such as CAP. In this article, the aptamers are fixed onto a gold electrode surface by a self-assembly approach. In the presence of CAP, the unfolded ssDNA on the electrode surface changes to a hairpin structure, bringing the target molecules close to the surface and triggering electron transfer. Detection limits were determined to be 1.6 × 10(-9) mol L(-1). In addition, thiamphenicol (TAP) and florfenicol (FF), antibiotics with a structure similar to CAP, did not influence the performance of the aptasensor, suggesting a good selectivity of the CAP-aptasensor. Its simplicity and low detection limit (because of the home-selected aptamers) suggest that the electrochemical aptasensor is suitable for practical use in the detection of CAP in milk samples.
Collapse
Affiliation(s)
- Sanaz Pilehvar
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Liu Z, Ma X, Zhang H, Lu W, Ma H, Hou S. Simultaneous Determination of Nitrophenol Isomers Based on β-Cyclodextrin Functionalized Reduced Graphene Oxide. ELECTROANAL 2012. [DOI: 10.1002/elan.201100735] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Current trends in explosive detection techniques. Talanta 2012; 88:14-29. [DOI: 10.1016/j.talanta.2011.11.043] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/28/2011] [Accepted: 11/11/2011] [Indexed: 01/08/2023]
|
50
|
Samsonova JV, Cannavan A, Elliott CT. A Critical Review of Screening Methods for the Detection of Chloramphenicol, Thiamphenicol, and Florfenicol Residues in Foodstuffs. Crit Rev Anal Chem 2012. [DOI: 10.1080/10408347.2012.629951] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|