1
|
Wu J, Du Y, Wang Z, Lu L, Wang X, Guo G. Mesoporous PtIr alloy single-particle: A novel SECM-tip for in situ monitoring NO of single-cell. Biosens Bioelectron 2025; 267:116744. [PMID: 39305820 DOI: 10.1016/j.bios.2024.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
As a vital factor in cell metabolism, nitric oxide (NO) is associated with nitrosative stress and subsequent inflammations and diseases. In situ, real-time NO monitoring is challenging due to its relative trace concentration and fast diffusion in cell. Scanning electrochemical microscopy (SECM) is suited uniquely for single-cell analysis, and its electrochemical response to targets can be further enhanced by improving the interfacial properties of its tip. Here, an ultramicroelectrodes (UMEs) modification strategy based on bimetallic single-particle was proposed for the first time. This mesoporous platinum/iridium alloy single-particle (mPtIr SP) interface using micelle-assisted electrodeposition was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). And the nucleation kinetic progress which can be defined as "oil-in-water-like" electrodeposition was discussed in detail. The high sensitivity (203.86 μA/μM·cm2) and good selectivity for NO detection benefits from the high catalysis of the PtIr alloy and the high mass transfer properties of the porous interface. In particular, this novel UME can real-time monitor NO release from a single MCF-7 cell stimulated by perfluorooctanoic acid (PFOA), providing new ideas for contaminant toxicity assessment, health diagnostics, and disease treatment.
Collapse
Affiliation(s)
- Jiening Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Yuying Du
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Ziqi Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China; Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, PR China.
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
2
|
Adeel M, Asif K, Canzonieri V, Barai HR, Rahman MM, Daniele S, Rizzolio F. Controlled, partially exfoliated, self-supported functionalized flexible graphitic carbon foil for ultrasensitive detection of SARS-CoV-2 spike protein. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 359:131591. [PMID: 35221530 PMCID: PMC8860393 DOI: 10.1016/j.snb.2022.131591] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/20/2023]
Abstract
This paper reports on an ultrasensitive and label-free electrochemical immunosensor for monitoring the SARS-CoV-2 spike protein (SARS-CoV-2 SP). A self-supported electrode, which can simultaneously serve as an antibody immobilization matrix and electron transport channel, was initially fabricated by a controlled partial exfoliation of a flexible graphitic carbon foil (GCF). Mild acidic treatment enabled the partial oxidation and exfoliation (down to a few layers) of the flexible GCF; this also provided a high percentage of oxygen functionality and an enhanced surface roughness. The substrate electrode was further functionalized with ethylenediamine (EDA) to provide a suitable platform with even a higher surface roughness, for the covalent immobilization of an anti-SARS-CoV-2 antibody. The change in the current response for the [Fe(CN)6]3-/4- redox couple, induced by the binding of SARS-CoV-2 SP to the antibody immobilized on the electrode surface, was used to determine the SARS-CoV-2 SP concentration. The immunosensor thus prepared could detect SARS-CoV-2 SP within 30 min with high reproducibility and specificity over a wide concentration range (0.2-100 ng/mL). Detection limits of 25 pg/mL and 27 pg/mL were found in a phosphate buffer solution (pH 7.4), and diluted blood plasma, respectively. The immunosensor was also employed to detect SARS-CoV-2 SP in artificial human saliva.
Collapse
Affiliation(s)
- Muhammad Adeel
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Kanwal Asif
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, South Korea
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
3
|
Characterization of Inherently Chiral Electrosynthesized Oligomeric Films by Voltammetry and Scanning Electrochemical Microscopy (SECM). Molecules 2020; 25:molecules25225368. [PMID: 33212850 PMCID: PMC7698396 DOI: 10.3390/molecules25225368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022] Open
Abstract
A voltammetric and scanning electrochemical microscopy (SECM) investigation was performed on an inherently chiral oligomer-coated gold electrode to establish its general properties (i.e., conductivity and topography), as well as its ability to discriminate chiral electroactive probe molecules. The electroactive monomer (S)-2,2′-bis(2,2′-bithiophene-5-yl)-3,3′-bibenzothiophene ((S)-BT2T4) was employed as reagent to electrodeposit, by cyclic voltammetry, the inherently chiral oligomer film of (S)-BT2T4 (oligo-(S)-BT2T4) onto the Au electrode surface (resulting in oligo-(S)-BT2T4-Au). SECM measurements, performed in either feedback or competition mode, using the redox mediators [Fe(CN)6]4− and [Fe(CN)6]3− in aqueous solutions, and ferrocene (Fc), (S)-FcEA, (R)-FcEA and rac-FcEA (FcEA is N,N-dimethyl-1-ferrocenylethylamine) in CH3CN solutions, indicated that the oligomer film, as produced, was uncharged. The use of [Fe(CN)6]3− allowed establishing that the oligomer film behaved as a porous insulating membrane, presenting a rather rough surface. This was inferred from both the approach curves and linear and bidimensional SECM scans, which displayed negative feedback effects. The oligomer film acquired semiconducting or fully conducting properties when the Au electrode was biased at potential more positive than 0.6 V vs. Ag|AgCl|KCl. Under the latter conditions, the approach curves displayed positive feedback effects. SECM measurements, performed in competition mode, allowed verifying the discriminating ability of the oligo-(S)-BT2T4 film towards the (S)-FcEA and (R)-FcEA redox mediators, which confirmed the results obtained by cyclic voltammetry. SECM linear scans indicated that the enantiomeric discriminating ability of the oligo-(S)-BT2T4 was even across its entire surface.
Collapse
|
4
|
Hydrogel-filled micropipette contact systems for solid state electrochemical measurements. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04651-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Astrauskas R, Ivanauskas F, Morkvenaite‐Vilkonciene I, Ramanavicius A. Mathematical Modelling of the Influence of Ultra‐micro Electrode Geometry on Approach Curves Registered by Scanning Electrochemical Microscopy. ELECTROANAL 2019. [DOI: 10.1002/elan.201900313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rokas Astrauskas
- Institute of Computer Science, Faculty of Mathematics and InformaticsVilnius University, Didlaukio 47 Vilnius Lithuania
| | - Feliksas Ivanauskas
- Institute of Computer Science, Faculty of Mathematics and InformaticsVilnius University, Didlaukio 47 Vilnius Lithuania
| | - Inga Morkvenaite‐Vilkonciene
- Department of Mechatronics and RoboticsVilnius Gediminas Technical University, J. Basanaviciaus 28 03224 Vilnius Lithuania
- Department of Electrochemical Material ScienceState Research Institute Centre for Physical Sciences and Technology, Sauletekio 3 Vilnius Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of ChemistryVilnius University, Naugarduko 24 Vilnius Lithuania
- Laboratory of BionanotechnologyState Research Institute Centre for Physical Sciences and Technology, Sauletekio 3 Vilnius Lithuania
| |
Collapse
|
6
|
Barton ZJ, Rodríguez-López J. Cyclic Voltammetry Probe Approach Curves with Alkali Amalgams at Mercury Sphere-Cap Scanning Electrochemical Microscopy Probes. Anal Chem 2017; 89:2708-2715. [PMID: 28230350 DOI: 10.1021/acs.analchem.6b04093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method of precisely positioning a Hg-based ultramicroelectrode (UME) for scanning electrochemical microscopy (SECM) investigations of any substrate. Hg-based probes are capable of performing amalgamation reactions with metal cations, which avoid unwanted side reactions and positive feedback mechanisms that can prove problematic for traditional probe positioning methods. However, prolonged collection of ions eventually leads to saturation of the amalgam accompanied by irreversible loss of Hg. In order to obtain negative feedback positioning control without risking damage to the SECM probe, we implement cyclic voltammetry probe approach surfaces (CV-PASs), consisting of CVs performed between incremental motor movements. The amalgamation current, peak stripping current, and integrated stripping charge extracted from a shared CV-PAS give three distinct probe approach curves (CV-PACs), which can be used to determine the tip-substrate gap to within 1% of the probe radius. Using finite element simulations, we establish a new protocol for fitting any CV-PAC and demonstrate its validity with experimental results for sodium and potassium ions in propylene carbonate by obtaining over 3 orders of magnitude greater accuracy and more than 20-fold greater precision than existing methods. Considering the timescales of diffusion and amalgam saturation, we also present limiting conditions for obtaining and fitting CV-PAC data. The ion-specific signals isolated in CV-PACs allow precise and accurate positioning of Hg-based SECM probes over any sample and enable the deployment of CV-PAS SECM as an analytical tool for traditionally challenging conditions.
Collapse
Affiliation(s)
- Zachary J Barton
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Barton ZJ, Rodríguez-López J. Fabrication and Demonstration of Mercury Disc-Well Probes for Stripping-Based Cyclic Voltammetry Scanning Electrochemical Microscopy. Anal Chem 2017; 89:2716-2723. [PMID: 28230351 DOI: 10.1021/acs.analchem.6b04022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zachary J. Barton
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Zhou X, Gossage ZT, Simpson BH, Hui J, Barton ZJ, Rodríguez-López J. Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO 2 Thin Films Modified by Subsurface Aluminum Nanodimers. ACS NANO 2016; 10:9346-9352. [PMID: 27623233 DOI: 10.1021/acsnano.6b04004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Detecting metal plasmonic enhancements on the activity of semiconducting photoanodes for water oxidation is often obscured by the inherent electroactivity and instability of the metal in electrolyte. Here, we show that thin TiO2 photoanodes modified by subsurface Al nanodimers (AlNDs) display enhancements that are consistent with plasmon modes. We directly observed enhancements by mapping the oxygen evolution rates on TiO2/AlND patterns using scanning electrochemical microscopy (SECM) while exciting the surface plasmons of the nanodimers. This study highlights the importance of sample configuration for the in situ characterization of metal/photoanode interactions and suggests a route for Al-based plasmonics applied to photoelectrochemistry.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zachary T Gossage
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Burton H Simpson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jingshu Hui
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zachary J Barton
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Rudolph D, Bates D, DiChristina TJ, Mizaikoff B, Kranz C. Detection of Metal-reducing Enzyme Complexes by Scanning Electrochemical Microscopy. ELECTROANAL 2016. [DOI: 10.1002/elan.201600333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Douglas Rudolph
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332-0230 U.S.A
| | - David Bates
- School of Biology; Georgia Institute of Technology; Atlanta GA 30332-0230 U.S.A
| | | | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
10
|
Burgess M, Hernández-Burgos K, Cheng KJ, Moore JS, Rodríguez-López J. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy. Analyst 2016; 141:3842-50. [DOI: 10.1039/c6an00203j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Elucidating optimal ionic interactions for improving the reactivity of redox polymers.
Collapse
Affiliation(s)
- Mark Burgess
- Joint Center for Energy Storage Research
- USA
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
| | - Kenneth Hernández-Burgos
- Joint Center for Energy Storage Research
- USA
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
| | - Kevin J. Cheng
- Joint Center for Energy Storage Research
- USA
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
| | - Jeffrey S. Moore
- Joint Center for Energy Storage Research
- USA
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
| | - Joaquín Rodríguez-López
- Joint Center for Energy Storage Research
- USA
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
| |
Collapse
|
11
|
Yu Y, Sun T, Mirkin MV. Scanning Electrochemical Microscopy of Single Spherical Nanoparticles: Theory and Particle Size Evaluation. Anal Chem 2015; 87:7446-53. [DOI: 10.1021/acs.analchem.5b01690] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yun Yu
- Department of Chemistry and
Biochemistry, Queens College - CUNY, Flushing, New York 11367, United States
- The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Tong Sun
- Department of Chemistry and
Biochemistry, Queens College - CUNY, Flushing, New York 11367, United States
- The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Michael V. Mirkin
- Department of Chemistry and
Biochemistry, Queens College - CUNY, Flushing, New York 11367, United States
- The Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
12
|
|
13
|
Barton ZJ, Rodríguez-López J. Lithium Ion Quantification Using Mercury Amalgams as in Situ Electrochemical Probes in Nonaqueous Media. Anal Chem 2014; 86:10660-7. [DOI: 10.1021/ac502517b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zachary J. Barton
- Department of Chemistry, University of Illinois at Urbana−Champaign, 58 Roger Adams Laboratory, 600 South
Matthews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana−Champaign, 58 Roger Adams Laboratory, 600 South
Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Souto RM, González-García Y, Battistel D, Daniele S. In Situ Scanning Electrochemical Microscopy (SECM) Detection of Metal Dissolution during Zinc Corrosion by Means of Mercury Sphere-Cap Microelectrode Tips. Chemistry 2011; 18:230-6. [DOI: 10.1002/chem.201102325] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Indexed: 11/09/2022]
|
15
|
Ishimatsu R, Kim J, Jing P, Striemer CC, Fang DZ, Fauchet PM, McGrath JL, Amemiya S. Ion-selective permeability of an ultrathin nanoporous silicon membrane as probed by scanning electrochemical microscopy using micropipet-supported ITIES tips. Anal Chem 2011; 82:7127-34. [PMID: 20690617 DOI: 10.1021/ac1005052] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the application of scanning electrochemical microscopy (SECM) to the measurement of the ion-selective permeability of porous nanocrystalline silicon membrane as a new type of nanoporous material with potential applications in analytical, biomedical, and biotechnology device development. The reliable measurement of high permeability in the molecularly thin nanoporous membrane to various ions is important for greater understanding of its structure-permeability relationship and also for its successful applications. In this work, this challenging measurement is enabled by introducing two novel features into amperometric SECM tips based on the micropipet-supported interface between two immiscible electrolyte solutions (ITIES) to reveal the important ion-transport properties of the ultrathin nanopore membrane. The tip of a conventional heat-pulled micropipet is milled using the focused ion beam (FIB) technique to be smoother, better aligned, and subsequently, approach closer to the membrane surface, which allows for more precise and accurate permeability measurement. The high membrane permeability to small monovalent ions is determined using FIB-milled micropipet tips to establish a theoretical formula for the membrane permeability that is controlled by free ion diffusion across water-filled nanopores. Moreover, the ITIES tips are rendered selective for larger polyions with biomedical importance, i.e., polyanionic pentasaccharide Arixtra and polycationic peptide protamine, to yield the membrane permeability that is lower than the corresponding diffusion-limited permeability. The hindered transport of the respective polyions is unequivocally ascribed to electrostatic and steric repulsions from the wall of the nanopores, i.e., the charge and size effects.
Collapse
Affiliation(s)
- Ryoichi Ishimatsu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mirkin MV, Nogala W, Velmurugan J, Wang Y. Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys Chem Chem Phys 2011; 13:21196-212. [DOI: 10.1039/c1cp22376c] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Salles MO, Battistel D, Lima AS, Bertotti M, Daniele S. Ex Situ Scanning Electrochemical Microscopy (SECM) Investigation of Bismuth- and Bismuth/Lead Alloy Film-Modified Gold Electrodes in Alkaline Medium. ELECTROANAL 2010. [DOI: 10.1002/elan.201000528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Denuault G. The Contribution of Microelectrodes to Electroanalytical Chemistry: From Reaction Mechanisms and Scanning Electrochemical Microscopy to Ocean Sensors. Isr J Chem 2010. [DOI: 10.1002/ijch.201000041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Velmurugan J, Mirkin MV. Fabrication of Nanoelectrodes and Metal Clusters by Electrodeposition. Chemphyschem 2010; 11:3011-7. [DOI: 10.1002/cphc.201000321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Deiss F, Combellas C, Fretigny C, Sojic N, Kanoufi F. Lithography by Scanning Electrochemical Microscopy with a Multiscaled Electrode. Anal Chem 2010; 82:5169-75. [DOI: 10.1021/ac100399q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frédérique Deiss
- Groupe Nanosystèmes Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux 1, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac, France, Physico-Chimie des Electrolytes, des Colloïdes et Sciences Analytiques, ESPCI ParisTech, CNRS UMR 7195, and Physico-chimie des Polymères et Milieux Dispersés Sciences et Ingénierie de la Matière Molle, ESPCI ParisTech, CNRS UMR 7615, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Catherine Combellas
- Groupe Nanosystèmes Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux 1, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac, France, Physico-Chimie des Electrolytes, des Colloïdes et Sciences Analytiques, ESPCI ParisTech, CNRS UMR 7195, and Physico-chimie des Polymères et Milieux Dispersés Sciences et Ingénierie de la Matière Molle, ESPCI ParisTech, CNRS UMR 7615, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Christian Fretigny
- Groupe Nanosystèmes Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux 1, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac, France, Physico-Chimie des Electrolytes, des Colloïdes et Sciences Analytiques, ESPCI ParisTech, CNRS UMR 7195, and Physico-chimie des Polymères et Milieux Dispersés Sciences et Ingénierie de la Matière Molle, ESPCI ParisTech, CNRS UMR 7615, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Neso Sojic
- Groupe Nanosystèmes Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux 1, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac, France, Physico-Chimie des Electrolytes, des Colloïdes et Sciences Analytiques, ESPCI ParisTech, CNRS UMR 7195, and Physico-chimie des Polymères et Milieux Dispersés Sciences et Ingénierie de la Matière Molle, ESPCI ParisTech, CNRS UMR 7615, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Frédéric Kanoufi
- Groupe Nanosystèmes Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255, Université Bordeaux 1, ENSCPB, 16 avenue Pey-Berland, 33607 Pessac, France, Physico-Chimie des Electrolytes, des Colloïdes et Sciences Analytiques, ESPCI ParisTech, CNRS UMR 7195, and Physico-chimie des Polymères et Milieux Dispersés Sciences et Ingénierie de la Matière Molle, ESPCI ParisTech, CNRS UMR 7615, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
21
|
Lefrou C, Cornut R. Analytical expressions for quantitative scanning electrochemical microscopy (SECM). Chemphyschem 2010; 11:547-56. [PMID: 20058287 DOI: 10.1002/cphc.200900600] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Scanning electrochemical microscopy (SECM), is a recent analytical technique in electrochemistry, which was developed in the 1990s and uses microelectrodes to probe various surfaces. Even with the well-known disc microelectrodes, the system geometry is not as simple as in regular electrochemistry. As a consequence even the simplest experiments, the so-called positive and negative feedback approach curves, cannot be described with exact analytical expressions. This review gathers all the analytical expressions available in the SECM literature in steady-state feedback experiments. Some of them are claimed as general expressions, other are presented as approximate. Their validity is discussed in the light of the current understanding and computer facilities.
Collapse
Affiliation(s)
- Christine Lefrou
- LEPMI, Laboratoire d'Electrochimie et Physicochimie des Matériaux et des Interfaces, UMR 5631 CNRS-Grenoble-INP-Université Joseph Fourier, 1130 rue de la piscine, BP 75, Domaine Universitaire, 38402 Saint Martin d'Hères Cedex, France.
| | | |
Collapse
|
22
|
Daniele S, Ciani I, Battistel D. Effect of the Insulating Shield Thickness on the Steady-State Diffusion-Limiting Current of Sphere Cap Microelectrodes. Anal Chem 2007; 80:253-9. [DOI: 10.1021/ac701631y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salvatore Daniele
- Department of Physical Chemistry, University of Venice, Calle Larga, S. Marta, 2137, 30123 Venice, Italy
| | - Ilenia Ciani
- Department of Physical Chemistry, University of Venice, Calle Larga, S. Marta, 2137, 30123 Venice, Italy
| | - Dario Battistel
- Department of Physical Chemistry, University of Venice, Calle Larga, S. Marta, 2137, 30123 Venice, Italy
| |
Collapse
|