1
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
2
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Joven ZE, Raj P, Barman I. Material-agnostic characterization of spatially offset Raman spectroscopy in turbid media via Monte Carlo simulations. Analyst 2024; 149:5463-5475. [PMID: 39397651 DOI: 10.1039/d4an01044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Spatially offset Raman spectroscopy (SORS) is a transformative method for probing subsurface chemical compositions in turbid media. This systematic study of Monte Carlo simulations provides closed-form characterizations of key SORS parameters, such as the distribution of spatial origins of collected Raman photons and optimal SORS geometry to selectively interrogate a subsurface region of interest. These results are unified across an extensive range of material properties by multiplying spatial dimensions by the medium's effective attenuation coefficient, which can be calculated when the absorption and reduced scattering coefficients are known from the literature or experimentation. This method of spatial nondimensionalization is validated via goodness-of-fit analysis on the aggregate models and by training a subsurface sample localization model on a heterogeneous population of materials. The findings reported here advance the understanding of SORS phenomena while providing a quantitative and widely applicable foundation for designing and interpreting SORS experiments, facilitating its application in disciplines such as biomedical, materials science, and cultural heritage fields.
Collapse
Affiliation(s)
- Zuriel Erikson Joven
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
4
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
5
|
Hu J, Xing J, Shao P, Ma X, Li P, Liu P, Zhang R, Chen W, Lei W, Xu RX. Raman spectroscopy with an improved support vector machine for discrimination of thyroid and parathyroid tissues. JOURNAL OF BIOPHOTONICS 2024; 17:e202400084. [PMID: 38890800 DOI: 10.1002/jbio.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
The objective of this study was to discriminate thyroid and parathyroid tissues using Raman spectroscopy combined with an improved support vector machine (SVM) algorithm. In thyroid surgery, there is a risk of inadvertently removing the parathyroid glands. At present, there is a lack of research on using Raman spectroscopy to discriminate parathyroid and thyroid tissues. In this article, samples were obtained from 43 individuals with thyroid and parathyroid tissues for Raman spectroscopy analysis. This study employed partial least squares (PLS) to reduce dimensions of data, and three optimization algorithms are used to improve the classification accuracy of SVM algorithm model in spectral analysis. The results show that PLS-GA-SVM algorithm has higher diagnostic accuracy and better reliability. The sensitivity of this algorithm is 94.67% and the accuracy is 94.44%. It can be concluded that Raman spectroscopy combined with the PLS-GA-SVM diagnostic algorithm has significant potential for discriminating thyroid and parathyroid tissues.
Collapse
Affiliation(s)
- Jie Hu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Jinyu Xing
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Pengfei Shao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Xiaopeng Ma
- First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Peikun Li
- General Surgery Department, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Liu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Ru Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Wei Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Wang Lei
- General Surgery Department, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
6
|
Chisanga M, Masson JF. Machine Learning-Driven SERS Nanoendoscopy and Optophysiology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:313-338. [PMID: 38701442 DOI: 10.1146/annurev-anchem-061622-012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
Collapse
Affiliation(s)
- Malama Chisanga
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| | - Jean-Francois Masson
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
7
|
Stanek E, Majka Z, Czamara K, Mazurkiewicz J, Kaczor A. Spatially Offset Raman Spectroscopy toward In Vivo Assessment of the Adipose Tissue in Cardiometabolic Pathologies. Anal Chem 2024; 96:10373-10379. [PMID: 38865715 PMCID: PMC11209658 DOI: 10.1021/acs.analchem.4c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Spatially offset Raman spectroscopy (SORS) enhanced the capabilities of Raman spectroscopy for the depth-resolved analysis of biological and diffusely scattering samples. This technique offers selective probing of subsurface layers, providing molecular insights without invasive procedures. While SORS has found application in biomedical research, up to now, studies have focused mainly on the detection of mineralization of bones and tissues. Herein, for the first time, SORS is used to assess the soft, organic tissue beneath the skin's surface. In this study, we demonstrate the diagnostic utility of a hand-held SORS device for evaluating the chemical composition of the adipose tissue. We compared perigonadal white adipose tissue (gWAT) in a murine model of atherosclerosis, heart failure, and high-fat diet (HFD) induced obesity. Our results reveal distinct chemical differences in gWAT between HFD-fed and control mice, showcasing the potential of SORS for intravital adipose tissue phenotype characterization. Furthermore, our findings underscore the effectiveness of SORS as a valuable tool for noninvasive assessment of the adipose tissue composition, holding potential diagnostic significance for metabolic disorders.
Collapse
Affiliation(s)
- Ewa Stanek
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, 11 Lojasiewicza Str., 30-348 Krakow, Poland
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Zuzanna Majka
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Joanna Mazurkiewicz
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, 11 Lojasiewicza Str., 30-348 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty
of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| |
Collapse
|
8
|
Aeindartehran L, Sadri Z, Rahimi F, Alinejad T. Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research. Methods Appl Fluoresc 2024; 12:032002. [PMID: 38697201 DOI: 10.1088/2050-6120/ad46e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Zahra Sadri
- Department of Biological Science, Southern Methodist University, Dallas, Texas 75205, United States of America
| | - Fateme Rahimi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou 325015, Zhejiang, People's Republic of China
- Institute of Cell Growth Factor, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
9
|
Troncoso-Afonso L, Vinnacombe-Willson GA, García-Astrain C, Liz-Márzan LM. SERS in 3D cell models: a powerful tool in cancer research. Chem Soc Rev 2024; 53:5118-5148. [PMID: 38607302 PMCID: PMC11104264 DOI: 10.1039/d3cs01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/13/2024]
Abstract
Unraveling the cellular and molecular mechanisms underlying tumoral processes is fundamental for the diagnosis and treatment of cancer. In this regard, three-dimensional (3D) cancer cell models more realistically mimic tumors compared to conventional 2D cell cultures and are more attractive for performing such studies. Nonetheless, the analysis of such architectures is challenging because most available techniques are destructive, resulting in the loss of biochemical information. On the contrary, surface-enhanced Raman spectroscopy (SERS) is a non-invasive analytical tool that can record the structural fingerprint of molecules present in complex biological environments. The implementation of SERS in 3D cancer models can be leveraged to track therapeutics, the production of cancer-related metabolites, different signaling and communication pathways, and to image the different cellular components and structural features. In this review, we highlight recent progress in the use of SERS for the evaluation of cancer diagnosis and therapy in 3D tumoral models. We outline strategies for the delivery and design of SERS tags and shed light on the possibilities this technique offers for studying different cellular processes, through either biosensing or bioimaging modalities. Finally, we address current challenges and future directions, such as overcoming the limitations of SERS and the need for the development of user-friendly and robust data analysis methods. Continued development of SERS 3D bioimaging and biosensing systems, techniques, and analytical strategies, can provide significant contributions for early disease detection, novel cancer therapies, and the realization of patient-tailored medicine.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
| | - Clara García-Astrain
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Márzan
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
10
|
Kotturi D, Paterson S, McShane M. Surface-Enhanced Spatially Offset Raman Spectroscopy in Tissue. BIOSENSORS 2024; 14:81. [PMID: 38392000 PMCID: PMC10886963 DOI: 10.3390/bios14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One aim of personalized medicine is to use continuous or on-demand monitoring of metabolites to adjust prescription dosages in real time. Surface-enhanced spatially offset Raman spectroscopy (SESORS) is an optical technique capable of detecting surface-enhanced Raman spectroscopy (SERS)-active targets under a barrier, which may enable frequent metabolite monitoring. Here we investigate how the intensity of the signal from SERS-active material varies spatially through tissue, both experimentally and in a computational model. Implant-sized, SERS-active hydrogel was placed under different thicknesses of contiguous tissue. Emission spectra were collected at the air-tissue boundary over a range of offsets from the excitation site. New features were added to the Monte Carlo light-tissue interaction model to modify the optical properties after inelastic scattering and to calculate the distribution of photons as they exit the model. The Raman signals were detectable through all barrier thicknesses, with strongest emission for the case of 0 mm offset between the excitation and detector. A steep decline in the signal intensities occurred for offsets greater than 2 mm. These results did not match published SORS work (where targets were much larger than an implant). However, the model and experimental results agree in showing the greatest intensities at 0 mm offset and a steep gradient in the intensities with increasing offset. Also, the model showed an increase in the number of photons when the new, longer wavelengths were used following the Stokes shift for scattering and the graphical display of the exiting photons was helpful in the determination and confirmation of the optimal offset.
Collapse
Affiliation(s)
- Dayle Kotturi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA (S.P.)
| | - Sureyya Paterson
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA (S.P.)
| | - Mike McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA (S.P.)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Eremina OE, Schaefer S, Czaja AT, Awad S, Lim MA, Zavaleta C. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications. Analyst 2023; 148:5915-5925. [PMID: 37850265 PMCID: PMC10947999 DOI: 10.1039/d3an01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Sarah Schaefer
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Samer Awad
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Matthew A Lim
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Xie H, Zhang Y, Wu Z, Bao Z, Lin L, Ye J. Locating Three-Dimensional Position of Deep-Seated SERS Phantom Lesions in Thick Tissues Using Tomographic Transmission Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44665-44675. [PMID: 37704185 DOI: 10.1021/acsami.3c07792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Locating distinct objects within a thick scattering medium remains a long-standing challenge in the fields of materials science, health, and engineering. Transmission Raman spectroscopy (TRS) with the use of surface-enhanced Raman scattering (SERS) nanoparticles has proven to be an effective approach to detect deep-seated lesions inside thick biological tissues. However, it has not yet been proven to spatially locate deep lesions in three dimensions using optical modalities. Herein, we present the concept of tomographic TRS and report its successful use for accurately locating SERS nanoparticles in elongated rod-like thick tissues. Our work starts with theoretical simulations of Raman photon propagation in tissues. We discovered a linear relationship between the Raman spectral peak ratio and propagation distance of Raman photons in tissues, allowing us to predict the location of lesions tagged by SERS NPs. Based on this, we propose a two-step tomographic TRS strategy, which includes axial scanning and ring scanning. We demonstrate the robustness of our approach using ex vivo thick tissue (4.5 cm in thickness) and locate an embedded SERS phantom lesion, with a ring scanning step of 10-30°. We successfully locate multiple SERS phantom lesions in the ex vivo porcine muscle stack with high accuracy (absolute error of <2 mm). Our method is rapid, efficient, and of low cost compared to current tomographic medical imaging techniques. This work advances Raman techniques for three-dimensional positioning and offers new insights toward practical diagnosis applications.
Collapse
Affiliation(s)
- Haoqiang Xie
- State Key Laboratory of Systems Medicine for Cancer, School of biomedical engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yumin Zhang
- State Key Laboratory of Systems Medicine for Cancer, School of biomedical engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- State Key Laboratory of Systems Medicine for Cancer, School of biomedical engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zhouzhou Bao
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of biomedical engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of biomedical engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
13
|
Wu L, Tang X, Wu T, Zeng W, Zhu X, Hu B, Zhang S. A review on current progress of Raman-based techniques in food safety: From normal Raman spectroscopy to SESORS. Food Res Int 2023; 169:112944. [PMID: 37254368 DOI: 10.1016/j.foodres.2023.112944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Frequently occurrence of food safety incidents has induced global concern over food safety. To ensure food quality and safety, an increasing number of rapid and sensitive analytical methods have been developed for analysis of all kinds of food composition and contaminants. As one of the high-profile analytical techniques, Raman spectroscopy has been widely applied in food analysis with simple, rapid, sensitive, and nondestructive detection performance. Research on Raman techniques is a direction of great interest to many fields, especially in food safety. Hence, it is crucial to gain insight into recent advances on the use of Raman-based techniques in food safety applications. In this review, we introduce Raman techniques from normal Raman spectroscopy to developed ones (e.g., surface enhanced Raman scattering (SERS), spatially offset Raman spectroscopy (SORS), surface-enhanced spatially offset Raman spectroscopy (SESORS)), in view of their history and development, principles, design, and applications. In addition, future challenges and trends of these techniques are discussed regarding to food safety.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China.
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Xiangwei Zhu
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| |
Collapse
|
14
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
15
|
Zhang Y, Chen R, Liu F, Miao P, Lin L, Ye J. In Vivo Surface-Enhanced Transmission Raman Spectroscopy under Maximum Permissible Exposure: Toward Photosafe Detection of Deep-Seated Tumors. SMALL METHODS 2023; 7:e2201334. [PMID: 36572635 DOI: 10.1002/smtd.202201334] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Indexed: 06/18/2023]
Abstract
The detection of deep-seated lesions is of great significance for biomedical applications. However, due to the strong photon absorption and scattering of biological tissues, it is challenging to realize in vivo deep optical detections, particularly for those using the safe laser irradiance below clinical maximum permissible exposure (MPE). In this work, the combination of ultra-bright surface-enhanced Raman scattering (SERS) nanotags and transmission Raman spectroscopy (TRS) is reported to achieve the non-invasive and photosafe detection of "phantom" lesions deeply hidden in biological tissues, under the guidance of theoretical calculations showing the importance of SERS nanotags' brightness and the expansion of laser beam size. Using a home-built TRS system with a laser power density of 0.264 W cm-2 (below the MPE criteria), we successfully demonstrated the detection of SERS nanotags through up to 14-cm-thick ex vivo porcine tissues, as well as in vivo imaging of "phantom" lesions labeled by SERS nanotags in a 1.5-cm-thick unshaved mouse under MPE. This work highlights the potential of transmission Raman-guided identification and non-invasive imaging toward clinically photosafe cancer diagnoses.
Collapse
Affiliation(s)
- Yumin Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ruoyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Li Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
16
|
Berry M, McCabe SM, Sloan-Dennison S, Laing S, Shand NC, Graham D, Faulds K. Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31613-31624. [PMID: 35801671 PMCID: PMC9305698 DOI: 10.1021/acsami.2c05611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A fundamental question crucial to surface-enhanced spatially offset Raman spectroscopy (SESORS) imaging and implementing it in a clinical setting for in vivo diagnostic purposes is whether a SESORS image can be used to determine the exact location of an object within tissue? To address this question, multiple experimental factors pertaining to the optical setup in imaging experiments using an in-house-built point-collection-based spatially offset Raman spectroscopy (SORS) system were investigated to determine those critical to the three-dimensional (3D) positioning capability of SESORS. Here, we report the effects of the spatial offset magnitude and geometry on locating nanoparticles (NPs) mixed with silica powder as an imaging target through tissue and outline experimental techniques to allow for the correct interpretation of SESORS images to ascertain the correct location of NPs in the two-dimensional x, y-imaging plane at depth. More specifically, the effect of "linear offset-induced image drag" is presented, which refers to a spatial distortion in SESORS images caused by the magnitude and direction of the linear offset and highlight the need for an annular SORS collection geometry during imaging to neutralize these asymmetric effects. Additionally, building on these principles, the concept of "ratiometric SESORS imaging" is introduced for the location of buried inclusions in three dimensions. Together these principles are vital in developing a methodology for the location of surface-enhanced Raman scattering-active inclusions in three dimensions. This approach utilizes the relationship between the magnitude of the spatial offset, the probed depth, and ratiometric analysis of the NP and tissue Raman intensities to ultimately image and spatially discriminate between two distinct NP flavors buried at different depths within a 3D model for the first time. This research demonstrates how to accurately identify multiple objects at depth in tissue and their location using SESORS which addresses a key capability in moving SESORS closer to use in biomedical applications.
Collapse
Affiliation(s)
- Matthew
E. Berry
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Samantha M. McCabe
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Sian Sloan-Dennison
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Stacey Laing
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Neil C. Shand
- The
Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, U.K.
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| |
Collapse
|
17
|
Berry ME, McCabe SM, Shand NC, Graham D, Faulds K. Depth prediction of nanotags in tissue using surface enhanced spatially offset Raman scattering (SESORS). Chem Commun (Camb) 2022; 58:1756-1759. [PMID: 35029618 DOI: 10.1039/d1cc04455a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A model for the prediction of the depth of two 'flavours' of surface enhanced Raman scattering (SERS) active nanotags embedded within porcine tissue is demonstrated using ratiometric analysis. Using a handheld spatially offset Raman (SORS) instrument, SESORS signals could be detected from nanotags at depths down to 48 mm for the first time using a backscattering SORS geometry.
Collapse
Affiliation(s)
- Matthew E Berry
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Samantha M McCabe
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Neil C Shand
- Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, SP4 0JQ, UK
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
18
|
Sloan-Dennison S, Laing S, Graham D, Faulds K. From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chem Commun (Camb) 2021; 57:12436-12451. [PMID: 34734952 PMCID: PMC8609625 DOI: 10.1039/d1cc04805h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is a non-invasive technique that allows specific chemical information to be obtained from various types of sample. The detailed molecular information that is present in Raman spectra permits monitoring of biochemical changes that occur in diseases, such as cancer, and can be used for the early detection and diagnosis of the disease, for monitoring treatment, and to distinguish between cancerous and non-cancerous biological samples. Several techniques have been developed to enhance the capabilities of Raman spectroscopy by improving detection sensitivity, reducing imaging times and increasing the potential applicability for in vivo analysis. The different Raman techniques each have their own advantages that can accommodate the alternative detection formats, allowing the techniques to be applied in several ways for the detection and diagnosis of cancer. This feature article discusses the various forms of Raman spectroscopy, how they have been applied for cancer detection, and the adaptation of the techniques towards their use for in vivo cancer detection and in clinical diagnostics. Despite the advances in Raman spectroscopy, the clinical application of the technique is still limited and certain challenges must be overcome to enable clinical translation. We provide an outlook on the future of the techniques in this area and what we believe is required to allow the potential of Raman spectroscopy to be achieved for clinical cancer diagnostics.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
19
|
|
20
|
Nicolson F, Kircher MF, Stone N, Matousek P. Spatially offset Raman spectroscopy for biomedical applications. Chem Soc Rev 2021; 50:556-568. [PMID: 33169761 PMCID: PMC8323810 DOI: 10.1039/d0cs00855a] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/24/2022]
Abstract
In recent years, Raman spectroscopy has undergone major advancements in its ability to probe deeply through turbid media such as biological tissues. This progress has been facilitated by the advent of a range of specialist techniques based around spatially offset Raman spectroscopy (SORS) to enable non-invasive probing of living tissue through depths of up to 5 cm. This represents an improvement in depth penetration of up to two orders of magnitude compared to what can be achieved with conventional Raman methods. In combination with the inherently high molecular specificity of Raman spectroscopy, this has therefore opened up entirely new prospects for a range of new analytical applications across multiple fields including medical diagnosis and disease monitoring. This article discusses SORS and related variants of deep Raman spectroscopy such as transmission Raman spectroscopy (TRS), micro-SORS and surface enhanced spatially offset Raman spectroscopy (SESORS), and reviews the progress made in this field during the past 5 years including advances in non-invasive cancer diagnosis, monitoring of neurotransmitters, and assessment of bone disease.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical SchoolBostonMA 02215USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical SchoolBostonMA 02215USA
- Department of Radiology, Brigham & Women's Hospital & Harvard Medical SchoolBostonMA 022115USA
| | - Nick Stone
- School of Physics and Astronomy, University of ExeterExeterEX4 4QLUK
- Royal Devon and Exeter NHS Foundation TrustBarrack RoadExeterDevonEX2 5DWUK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRIHarwellOxfordOX11 0QXUK
| |
Collapse
|
21
|
Distinct stratification of normal liver, hepatocellular carcinoma (HCC), and anticancer nanomedicine-treated- tumor tissues by Raman fingerprinting for HCC therapeutic monitoring. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102352. [PMID: 33418135 DOI: 10.1016/j.nano.2020.102352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/22/2023]
Abstract
Hepatocellular carcinomas (HCCs) are highly vascularized neoplasms with poor prognosis. Nanomedicine possesses great potential to deliver therapeutics and diagnostics. The new aspect of this study is that we have monitored, for the first time, the Raman responses to microtubule targeted vascular disrupting agents (MTVDA), MTVDA encapsulated non-targeted, and targeted cetuximab polymeric nanocomplexes delivery of combinatorial therapeutics in HCC tumor tissues of mice. Biochemical differences majorly demarcated apoptotic lipid bodies, and characteristic amide-I features. HCC tumor and healthy liver tissues could be stratified. Raman spectroscopy served as an excellent, rapid, sensitive and cost-effective approach for anticancer nanomedicine distinct stratification of MTVDA encapsulated targeted cetuximab polymeric nanocomplex combinatorials, a significant potential for HCC therapeutic monitoring.
Collapse
|
22
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
23
|
Vardaki MZ, Kourkoumelis N. Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review. Biomed Eng Comput Biol 2020; 11:1179597220948100. [PMID: 32884391 PMCID: PMC7440735 DOI: 10.1177/1179597220948100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnostics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an informed range of options for potential use to the researchers.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
24
|
Payne TD, Moody AS, Wood AL, Pimiento PA, Elliott JC, Sharma B. Raman spectroscopy and neuroscience: from fundamental understanding to disease diagnostics and imaging. Analyst 2020; 145:3461-3480. [PMID: 32301450 DOI: 10.1039/d0an00083c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroscience would directly benefit from more effective detection techniques, leading to earlier diagnosis of disease. The specificity of Raman spectroscopy is unparalleled, given that a molecular fingerprint is attained for each species. It also allows for label-free detection with relatively inexpensive instrumentation, minimal sample preparation, and rapid sample analysis. This review summarizes Raman spectroscopy-based techniques that have been used to advance the field of neuroscience in recent years.
Collapse
Affiliation(s)
- Taylor D Payne
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- National Center of Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Avery L Wood
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Paula A Pimiento
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - James C Elliott
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
25
|
Le D, Dhamecha D, Gonsalves A, Menon JU. Ultrasound-Enhanced Chemiluminescence for Bioimaging. Front Bioeng Biotechnol 2020; 8:25. [PMID: 32117914 PMCID: PMC7016203 DOI: 10.3389/fbioe.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue imaging has emerged as an important aspect of theragnosis. It is essential not only to evaluate the degree of the disease and thus provide appropriate treatments, but also to monitor the delivery of administered drugs and the subsequent recovery of target tissues. Several techniques including magnetic resonance imaging (MRI), computational tomography (CT), acoustic tomography (AT), biofluorescence (BF) and chemiluminescence (CL), have been developed to reconstruct three-dimensional images of tissues. While imaging has been achieved with adequate spatial resolution for shallow depths, challenges still remain for imaging deep tissues. Energy loss is usually observed when using a magnetic field or traditional ultrasound (US), which leads to a need for more powerful energy input. This may subsequently result in tissue damage. CT requires exposure to radiation and a high dose of contrast agent to be administered for imaging. The BF technique, meanwhile, is affected by strong scattering of light and autofluorescence of tissues. The CL is a more selective and sensitive method as stable luminophores are produced from physiochemical reactions, e.g. with reactive oxygen species. Development of near infrared-emitting luminophores also bring potential for application of CL in deep tissues and whole animal studies. However, traditional CL imaging requires an enhancer to increase the intensity of low-level light emissions, while reducing the scattering of emitted light through turbid tissue environment. There has been interest in the use of focused ultrasound (FUS), which can allow acoustic waves to propagate within tissues and modulate chemiluminescence signals. While light scattering is decreased, the spatial resolution is increased with the assistance of US. In this review, chemiluminescence detection in deep tissues with assistance of FUS will be highlighted to discuss its potential in deep tissue imaging.
Collapse
Affiliation(s)
| | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
26
|
Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev 2020; 49:7428-7453. [DOI: 10.1039/d0cs01019g] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes recent progress made using Raman spectroscopy and machine learning for potential universal medical diagnostic applications.
Collapse
Affiliation(s)
| | - Igor K. Lednev
- Department of Chemistry
- University at Albany
- SUNY
- Albany
- USA
| |
Collapse
|
27
|
Wallace GQ, Masson JF. From single cells to complex tissues in applications of surface-enhanced Raman scattering. Analyst 2020; 145:7162-7185. [DOI: 10.1039/d0an01274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This tutorial review explores how three of the most common methods for introducing nanoparticles to single cells for surface-enhanced Raman scattering measurements can be adapted for experiments with complex tissues.
Collapse
Affiliation(s)
- Gregory Q. Wallace
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| | - Jean-François Masson
- Département de Chimie
- Centre Québécois des Matériaux Fonctionnels (CQMF)
- and Regroupement Québécois des Matériaux de Pointe (RQMP)
- Université de Montréal
- Montréal
| |
Collapse
|
28
|
Mosca S, Dey P, Tabish TA, Palombo F, Stone N, Matousek P. Determination of inclusion depth in ex vivo animal tissues using surface enhanced deep Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960092. [PMID: 31595708 DOI: 10.1002/jbio.201960092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 05/23/2023]
Abstract
This work presents recent developments in spatially offset and transmission Raman spectroscopy for noninvasive detection and depth prediction of a single SERS inclusion located deep inside ex vivo biological tissues. The concept exploits the differential attenuation of Raman bands brought about by their different absorption due to tissue constituents enabling to predict the inclusion depth. Four different calibration models are tested and evaluated to predict the depth of surface enhanced Raman scattering labelled nanoparticles, within an up to 40 mm slab of porcine tissue. An external measurement carried out in transmission mode, with a noninvasively built model on the analysed sample, is shown to be insensitive to variations of the overall thickness of the tissue yielding an average root-mean-square error of prediction of 6.7%. The results pave the way for future noninvasive deep Raman spectroscopy in vivo enabling to localise cancer biomarkers for an early diagnosis of multiple diseases.
Collapse
Affiliation(s)
- Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, Didcot, OX11 0QX, UK
| | - Priyanka Dey
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Tanveer A Tabish
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
29
|
Nicolson F, Andreiuk B, Andreou C, Hsu HT, Rudder S, Kircher MF. Non-invasive In Vivo Imaging of Cancer Using Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS). Am J Cancer Res 2019; 9:5899-5913. [PMID: 31534527 PMCID: PMC6735365 DOI: 10.7150/thno.36321] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Rationale: The goal of imaging tumors at depth with high sensitivity and specificity represents a significant challenge in the field of biomedical optical imaging. 'Surface enhanced Raman scattering' (SERS) nanoparticles (NPs) have been employed as image contrast agents and can be used to specifically target cells in vivo. By tracking their unique "fingerprint" spectra, it becomes possible to determine their precise location. However, while the detection of SERS NPs is very sensitive and specific, conventional Raman spectroscopy imaging devices are limited in their inability to probe through tissue depths of more than a few millimetres, due to scattering and absorption of photons by biological tissues. Here, we combine the use of "Spatially Offset Raman spectroscopy" (SORS) with that of "surface-enhanced resonance Raman spectroscopy" (SERRS) in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESO(R)RS) to image deep-seated glioblastoma multiforme (GBM) tumors in vivo in mice through the intact skull. Methods: A SORS imaging system was built in-house. Proof of concept SORS imaging was achieved using a PTFE-skull-tissue phantom. Imaging of GBMs in the RCAS-PDGF/N-tva transgenic mouse model was achieved through the use of gold nanostars functionalized with a resonant Raman reporter to create SERRS nanostars. These were then encapsulated in a thin silica shell and functionalized with a cyclic-RGDyK peptide to yield integrin-targeting SERRS nanostars. Non-invasive in vivo SORS image acquisition of the integrin-targeted nanostars was then performed in living mice under general anesthesia. Conventional non-SORS imaging was used as a direct comparison. Results: Using a low power density laser, GBMs were imaged via SESORRS in mice (n = 5) and confirmed using MRI and histopathology. The results demonstrate that via utilization of the SORS approach, it is possible to acquire clear and distinct Raman spectra from deep-seated GBMs in mice in vivo through the skull. SESORRS images generated using classical least squares outlined the tumors with high precision as confirmed via MRI and histology. Unlike SESORRS, conventional Raman imaging of the same areas did not provide a clear delineation of the tumor. Conclusion: To the best of our knowledge this is the first report of in vivo SESO(R)RS imaging. In a relevant brain tumor mouse model we demonstrate that this technique can overcome the limitations of conventional Raman imaging with regards to penetration depth. This work therefore represents a significant step forward in the potential clinical translation of SERRS nanoparticles for high precision cancer imaging.
Collapse
|
30
|
Gardner B, Matousek P, Stone N. Subsurface Chemically Specific Measurement of pH Levels in Biological Tissues Using Combined Surface-Enhanced and Deep Raman. Anal Chem 2019; 91:10984-10987. [PMID: 31322859 PMCID: PMC7006966 DOI: 10.1021/acs.analchem.9b01015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
There
is much interest in using nanosensors to monitor biologically
relevant species such as glucose, or cellular pH, as these often become
dysregulated in diseases such as cancer. This information is often
inaccessible at depth in biological tissue, due to the highly scattering
nature of tissue. Here we show that gold nanoparticles labeled with
pH-sensitive reporter molecules can monitor pH at depth in biological
tissues. This was achieved using deep Raman spectroscopy (spatially
offset Raman and transmission Raman) in combination with surface-enhanced
Raman spectroscopy, allowing chemical information to be retrieved
significantly deeper than conventional Raman spectroscopy permits.
Combining these approaches with chemometrics enabled pH changes to
be monitored with an error of ±∼0.1 pH units noninvasively
through 22 mm of soft tissue. This development opens the opportunity
for the next generation of light-based medical diagnostic methods,
such as monitoring of cancers, known to significantly alter pH levels.
Collapse
Affiliation(s)
- Benjamin Gardner
- Biomedical Physics, School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences , University of Exeter , Exeter , EX4 4QL , United Kingdom
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Harwell Oxford , OX11 0QX , United Kingdom
| | - Nicholas Stone
- Biomedical Physics, School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences , University of Exeter , Exeter , EX4 4QL , United Kingdom
| |
Collapse
|
31
|
Pan C, Li X, Sun J, Li Z, Zhang L, Qian W, Wang P, Dong J. A Multiplexed SERS-Active Microneedle for Simultaneous Redox Potential and pH Measurements in Rat Joints. ACS APPLIED BIO MATERIALS 2019; 2:2102-2108. [DOI: 10.1021/acsabm.9b00117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenyan Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaochen Li
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Zhang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Peimin Wang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jian Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou, 215123, China
| |
Collapse
|
32
|
Noonan J, Asiala SM, Grassia G, MacRitchie N, Gracie K, Carson J, Moores M, Girolami M, Bradshaw AC, Guzik TJ, Meehan GR, Scales HE, Brewer JM, McInnes IB, Sattar N, Faulds K, Garside P, Graham D, Maffia P. In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Am J Cancer Res 2018; 8:6195-6209. [PMID: 30613292 PMCID: PMC6299693 DOI: 10.7150/thno.28665] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular immune-inflammatory responses play a crucial role in the progression and outcome of atherosclerosis. The ability to assess localized inflammation through detection of specific vascular inflammatory biomarkers would significantly improve cardiovascular risk assessment and management; however, no multi-parameter molecular imaging technologies have been established to date. Here, we report the targeted in vivo imaging of multiple vascular biomarkers using antibody-functionalized nanoparticles and surface-enhanced Raman scattering (SERS). Methods: A series of antibody-functionalized gold nanoprobes (BFNP) were designed containing unique Raman signals in order to detect intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin using SERS. Results: SERS and BFNP were utilized to detect, discriminate and quantify ICAM-1, VCAM-1 and P-selectin in vitro on human endothelial cells and ex vivo in human coronary arteries. Ultimately, non-invasive multiplex imaging of adhesion molecules in a humanized mouse model was demonstrated in vivo following intravenous injection of the nanoprobes. Conclusion: This study demonstrates that multiplexed SERS-based molecular imaging can indicate the status of vascular inflammation in vivo and gives promise for SERS as a clinical imaging technique for cardiovascular disease in the future.
Collapse
|
33
|
Nicolson F, Jamieson LE, Mabbott S, Plakas K, Shand NC, Detty MR, Graham D, Faulds K. Multiplex imaging of live breast cancer tumour models through tissue using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chem Commun (Camb) 2018; 54:8530-8533. [PMID: 30010164 DOI: 10.1039/c8cc04267e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Through utilizing the depth penetration capabilities of SESORS, multiplexed imaging and classification of three singleplex nanotags and a triplex of nanotags within breast cancer tumour models is reported for the first time through depths of 10 mm using a handheld SORS instrument.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Bao Z, Zhang Y, Tan Z, Yin X, Di W, Ye J. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging. Biomaterials 2018; 163:105-115. [PMID: 29455067 DOI: 10.1016/j.biomaterials.2018.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022]
Abstract
The sentinel lymph node (SLN) biopsy is gaining in popularity as a procedure to investigate the lymphatic metastasis of malignant tumors. The commonly used techniques to identify the SLNs in clinical practice are blue dyes-guided visualization, radioisotope-based detection and near-infrared fluorescence imaging. However, all these methods have not been found to perfectly fit the clinical criteria with issues such as short retention time in SLN, poor spatial resolution, autofluorescence, low photostability and high cost. In this study, we have reported a new type of nanoprobes, named, gap-enhanced Raman tags (GERTs) for the SLN Raman imaging. With the advantageous features including unique "fingerprint" Raman signal, strong Raman enhancement, high photostability, good biocompatibility and extra-long retention time, we have demonstrated that GERTs are greatly favorable for high-contrast and deep SLN Raman imaging, which meanwhile reveals the dynamic migration behavior of the probes entering the SLN. In addition, a quantitative volumetric Raman imaging (qVRI) data-processing method is employed to acquire a high-resolution 3-dimensional (3D) margin of SLN as well as the content variation of GERTs in the SLN. Moreover, SLN detection could be realized via a cost-effective commercial portable Raman scanner. Therefore, GERTs hold the great potential to be translated in clinical application for accurate and intraoperative location of the SLN.
Collapse
Affiliation(s)
- Zhouzhou Bao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuqing Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ziyang Tan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xia Yin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
36
|
Wu Y, Yu W, Yang B, Li P. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy. Analyst 2018; 143:2363-2368. [DOI: 10.1039/c8an00540k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CTAB-functionalized Au NP film as SERS active substrate prepared by the evaporation-driven self-assembly strategy demonstrated high sensitivity and reproducibility for the detection of different food additives.
Collapse
Affiliation(s)
- Yiping Wu
- Department of Chemical and Materials Engineering
- Hefei University
- Hefei
- Anhui
- China
| | - Wenfang Yu
- Department of Chemical and Materials Engineering
- Hefei University
- Hefei
- Anhui
- China
| | - Benhong Yang
- Department of Chemical and Materials Engineering
- Hefei University
- Hefei
- Anhui
- China
| | - Pan Li
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
37
|
Panneerselvam R, Liu GK, Wang YH, Liu JY, Ding SY, Li JF, Wu DY, Tian ZQ. Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun (Camb) 2018; 54:10-25. [DOI: 10.1039/c7cc05979e] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This feature article discusses developmental bottleneck issues in surface Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades and future perspectives.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Guo-Kun Liu
- Department of the Environment & Ecology
- State Key Laboratory of Marine Environmental Science
- Xiamen University
- Xiamen 361102
- China
| | - Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- Xiamen University
- Xiamen 361005
- China
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
38
|
Nicolson F, Jamieson LE, Mabbott S, Plakas K, Shand NC, Detty MR, Graham D, Faulds K. Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer. Analyst 2018; 143:5965-5973. [DOI: 10.1039/c8an01249k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced resonance Raman spectroscopy (SERRS).
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Lauren E. Jamieson
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Samuel Mabbott
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Konstantinos Plakas
- Department of Chemistry
- University at Buffalo
- The State University of New York
- USA
| | | | - Michael R. Detty
- Department of Chemistry
- University at Buffalo
- The State University of New York
- USA
| | - Duncan Graham
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| |
Collapse
|
39
|
Nicolson F, Jamieson LE, Mabbott S, Plakas K, Shand NC, Detty MR, Graham D, Faulds K. Towards establishing a minimal nanoparticle concentration for applications involving surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) in vivo. Analyst 2018; 143:5358-5363. [DOI: 10.1039/c8an01860j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of SERRS nanotags at picomolar concentrations through 5 mm of tissue using SESORS.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Lauren E. Jamieson
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Samuel Mabbott
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Konstantinos Plakas
- Department of Chemistry
- University at Buffalo
- The State University of New York
- New York 14260
- USA
| | | | - Michael R. Detty
- Department of Chemistry
- University at Buffalo
- The State University of New York
- New York 14260
- USA
| | - Duncan Graham
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| |
Collapse
|
40
|
|
41
|
Li P, Zhou B, Cao X, Tang X, Yang L, Hu L, Liu J. Functionalized Acupuncture Needle as Surface-Enhanced Resonance Raman Spectroscopy Sensor for Rapid and Sensitive Detection of Dopamine in Serum and Cerebrospinal Fluid. Chemistry 2017; 23:14278-14285. [DOI: 10.1002/chem.201702607] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Pan Li
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Binbin Zhou
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Xiaomin Cao
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Xianghu Tang
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Liangbao Yang
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Ling Hu
- School of Acupuncture and Osteology; Institution Anhui University of Chinese Medicine; No. 103 Meishan Road Hefei P.R. China
| | - Jinhuai Liu
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| |
Collapse
|
42
|
|
43
|
Asiala SM, Shand NC, Faulds K, Graham D. Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25488-25494. [PMID: 28662336 DOI: 10.1021/acsami.7b09197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface-enhanced, spatially offset Raman spectroscopy (SESORS) combines the remarkable enhancements in sensitivity afforded by surface-enhanced Raman spectroscopy (SERS) with the non-invasive, subsurface sampling capabilities of spatially offset Raman spectroscopy. Taken together, these techniques show great promise for in vivo Raman measurements. Herein, we present a step forward for this technique, demonstrating SESORS through tissue analogues of six known and varied thicknesses, with a large number of distinct spatial offsets, in a backscattering optical geometry. This is accomplished by spin-coating SERS-active nanoparticles (NPs) on glass slides and monitoring the relative spectral contribution from the NPs and tissue sections, respectively, as a function of both the tissue thickness and the spatial offset of the collection probe. The results show that SESORS outperforms SERS alone for this purpose, the NP signal can be attained at tissue thicknesses of >6.75 mm, and greater tissue thicknesses require greater spatial offsets to maximize the NP signal, all with an optical geometry optimized for utility. This demonstration represents a step forward toward the implementation of SESORS for non-invasive, in vivo analysis.
Collapse
Affiliation(s)
- Steven M Asiala
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde , 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Neil C Shand
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde , 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde , 99 George Street, Glasgow G1 1RD, United Kingdom
| |
Collapse
|
44
|
Vardaki MZ, Sheridan H, Stone N, Matousek P. Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Using a Beam Enhancing Element. APPLIED SPECTROSCOPY 2017; 71:1849-1855. [PMID: 28756706 DOI: 10.1177/0003702817691540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study demonstrates experimentally a method to enable prediction of depth of a chemical species buried in a turbid medium by using transmission Raman spectroscopy alone. The method allows the prediction of the depth of a single, chemically distinct layer within a turbid matrix by performing two measurements, with and without a beam enhancing element, or "photon diode." The samples employed consisted of two different polymers, of total thickness 3.6 mm, whose optical properties are loosely relevant to pharmaceutical applications. A polymer layer of low-density polyethylene (LDPE) was placed at different positions within multiple layers of the polytetrafluoroethylene (PTFE) matrix and Raman spectra were recorded in each case. Both univariate and multivariate analyses were utilized to determine whether the depth of the LDPE layer could be predicted using the obtained data. The best-achieved RMSE of prediction was 4.2% of the total sample size (i.e., +/- 0.15 mm) with the multivariate approach.
Collapse
Affiliation(s)
- Martha Z Vardaki
- 1 School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Hannah Sheridan
- 2 Natural Sciences, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Nicholas Stone
- 1 School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Pavel Matousek
- 3 Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, UK
| |
Collapse
|
45
|
Jamieson LE, Asiala SM, Gracie K, Faulds K, Graham D. Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:415-437. [PMID: 28301754 DOI: 10.1146/annurev-anchem-071015-041557] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since its discovery in 1974, surface-enhanced Raman scattering (SERS) has gained momentum as an important tool in analytical chemistry. SERS is used widely for analysis of biological samples, ranging from in vitro cell culture models, to ex vivo tissue and blood samples, and direct in vivo application. New insights have been gained into biochemistry, with an emphasis on biomolecule detection, from small molecules such as glucose and amino acids to larger biomolecules such as DNA, proteins, and lipids. These measurements have increased our understanding of biological systems, and significantly, they have improved diagnostic capabilities. SERS probes display unique advantages in their detection sensitivity and multiplexing capability. We highlight key considerations that are required when performing bioanalytical SERS measurements, including sample preparation, probe selection, instrumental configuration, and data analysis. Some of the key bioanalytical measurements enabled by SERS probes with application to in vitro, ex vivo, and in vivo biological environments are discussed.
Collapse
Affiliation(s)
- Lauren E Jamieson
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Steven M Asiala
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Kirsten Gracie
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| |
Collapse
|
46
|
Soliman M, Ding Y, Tetard L. Nanoscale subsurface imaging. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:173001. [PMID: 28140334 DOI: 10.1088/1361-648x/aa5b4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to probe structures and functional properties of complex systems at the nanoscale, both at their surface and in their volume, has drawn substantial attention in recent years. Besides detecting heterogeneities, cracks and defects below the surface, more advanced explorations of chemical or electrical properties are of great interest. In this article, we review some approaches developed to explore heterogeneities below the surface, including recent progress in the different aspects of metrology in optics, electron microscopy, and scanning probe microscopy. We discuss the principle and mechanisms of image formation associated with each technique, including data acquisition, data analysis and modeling for nanoscale structural and functional imaging. We highlight the advances based on atomic force microscopy (AFM). Our discussion first introduces methods providing structural information of the buried structures, such as position in the volume and geometry. Next we present how functional properties including conductivity, capacitance, and composition can be extracted from the modalities available to date and how they could eventually enable tomography reconstructions of systems such as overlay structures in transistors or living systems. Finally we propose a perspective regarding the outstanding challenges and needs to push the field forward.
Collapse
Affiliation(s)
- M Soliman
- NanoScience Technology Center, 12424 Research Parkway, University of Central Florida, Orlando, FL, 32826, United States of America. Materials Science and Engineering, 12760 Pegasus Drive, University of Central Florida, Orlando, FL, 32816, United States of America
| | | | | |
Collapse
|
47
|
Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, Faulds K, Forbes SJ, Campbell CJ. Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med 2017; 2:12. [PMID: 29302348 PMCID: PMC5665621 DOI: 10.1038/s41536-017-0014-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.
Collapse
Affiliation(s)
- Katherine J. I. Ember
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Marieke A. Hoeve
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Sarah L. McAughtrie
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| | - Mads S. Bergholt
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Benjamin J. Dwyer
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Molly M. Stevens
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Karen Faulds
- 0000000121138138grid.11984.35Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Building, 99 George Street, Glasgow, G1 1RD UK
| | - Stuart J. Forbes
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Colin J. Campbell
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| |
Collapse
|
48
|
Sowoidnich K, Churchwell JH, Buckley K, Goodship AE, Parker AW, Matousek P. Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels. Analyst 2017; 142:3219-3226. [DOI: 10.1039/c7an00408g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study provides a deeper understanding of bone's optical properties which is essential to the development of SORS-based diagnostic tools.
Collapse
Affiliation(s)
- Kay Sowoidnich
- Central Laser Facility
- Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot OX11 0QX
- UK
| | - John H. Churchwell
- UCL Institute of Orthopaedics and Musculoskeletal Science
- Royal National Orthopaedic Hospital
- London HA7 4LP
- UK
| | - Kevin Buckley
- Central Laser Facility
- Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot OX11 0QX
- UK
| | - Allen E. Goodship
- UCL Institute of Orthopaedics and Musculoskeletal Science
- Royal National Orthopaedic Hospital
- London HA7 4LP
- UK
| | - Anthony W. Parker
- Central Laser Facility
- Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot OX11 0QX
- UK
| | - Pavel Matousek
- Central Laser Facility
- Research Complex at Harwell
- STFC Rutherford Appleton Laboratory
- Didcot OX11 0QX
- UK
| |
Collapse
|
49
|
Henry AI, Sharma B, Cardinal MF, Kurouski D, Van Duyne RP. Surface-Enhanced Raman Spectroscopy Biosensing: In Vivo Diagnostics and Multimodal Imaging. Anal Chem 2016; 88:6638-47. [PMID: 27268724 DOI: 10.1021/acs.analchem.6b01597] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This perspective presents recent developments in the application of surface-enhanced Raman spectroscopy (SERS) to biosensing, with a focus on in vivo diagnostics. We describe the concepts and methodologies developed to date and the target analytes that can be detected. We also discuss how SERS has evolved from a "point-and-shoot" stand-alone technique in an analytical chemistry laboratory to an integrated quantitative analytical tool for multimodal imaging diagnostics. Finally, we offer a guide to the future of SERS in the context of clinical diagnostics.
Collapse
Affiliation(s)
- Anne-Isabelle Henry
- Northwestern University , Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bhavya Sharma
- Northwestern University , Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Fernanda Cardinal
- Northwestern University , Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dmitry Kurouski
- Northwestern University , Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Richard P Van Duyne
- Northwestern University , Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Abstract
Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering this information in real-time, non-invasively, and in an automated manner. This review presents the various instrumentation considerations relevant to the clinical implementation of Raman spectroscopy and reviews a subset of interesting applications that have successfully demonstrated the efficacy of this technique for clinical diagnostics and monitoring in large (n ≥ 50) in vivo human studies.
Collapse
Affiliation(s)
- Isaac Pence
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|