1
|
Støvring N, Heiskanen AR, Emnéus J, Sylvest Keller S. Electrochemical Redox Cycling with Pyrolytic Carbon Stacked-Layer Nanogap Electrodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14375-14388. [PMID: 39969911 DOI: 10.1021/acsami.4c18998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Redox cycling (RC) amplification has been introduced as an efficient strategy to enhance signals in electrochemical sensing at low analyte concentrations of relevant biomarkers such as dopamine. RC amplification requires closely spaced and electrically separate electrodes, preferably with nanogaps. The aim of this study was to establish a method enabling the microfabrication of carbon-based stacked-layer nanogap electrodes (SLNE) designed for RC amplification. Pyrolytic carbon was employed as the electrode material and Al2O3 deposited by atomic layer deposition as the insulating layer in between the two electrodes. SLNE with 89 nm nanogaps were realized without the need for high-resolution lithography methods, and access to the bottom generator electrode was enabled by dry etching of the insulating layer. Electrical separation between collector and generator electrodes was confirmed using resistance measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. Different SLNE designs and redox cycling modes were investigated in terms of capacitive background current, amplification factors, and collection efficiency using the neurotransmitter dopamine as model analyte. A redox cycling mode, here termed differential chronoamperometry (DCA) combining chronoamperometry with differential cyclic voltammetry, was proposed to minimize the effect of background current drift while still operating with steady-state currents. With DCA, a limit of detection (LOD) of 21 nM, a sensitivity of 83 nA μM-1, a linear range from 25 nM to 10 μM, and actual detection at low concentrations of 25 nM were demonstrated for dopamine.
Collapse
Affiliation(s)
- Nicolai Støvring
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Arto R Heiskanen
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
2
|
Perez Sirkin YA, Tagliazucchi M. Revisiting the Mechanisms of Charge Transport in Solutions of Redox-Active Molecules Using Computer Simulations: When and Why Do Analytical Theories Fail? J Phys Chem B 2023; 127:2968-2978. [PMID: 36952568 DOI: 10.1021/acs.jpcb.2c06956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Understanding charge transport is essential for the development of energy-storage applications. This work introduces a new theoretical methodology to model diffusive charge transport in solutions of redox-active molecules by combining Langevin dynamics for the spatial degrees of freedom and a master-equation formalism to describe the electron-hopping events between redox molecules. The model is used to analyze the effects of the concentration of the redox molecules and the strength of the intermolecular interactions on the charge-transport mechanism. In the past, the rate of charge transport has been modeled with the analytical Dahms-Ruff equation; however, this is a mean-field equation, whose range of validity has not been tested with less approximate theories. We show that the Dahms-Ruff equation fails to quantitatively predict the diffusion coefficient for charge transport for large concentrations of the redox species and high bimolecular electron-transfer rates, i.e., the most relevant conditions for energy-storage applications. Under these conditions, the diffusion coefficient for charge transport obtained from simulations is larger than that predicted from the Dahm-Ruff equation because of the formation of transient clusters of redox molecules. Also, intermolecular interactions, which are not taken into account by the Dahms-Ruff equation, play a central role in the charge transport of redox species. We show that the apparent diffusion coefficient experiences a maximum with respect to the strength of the intermolecular attractions. This maximum is traced back to the formation of clusters and their two opposite effects on the diffusion coefficient: electron hopping is fast within a cluster but inefficient between neighboring clusters.
Collapse
Affiliation(s)
- Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
3
|
Sarkar S, Nieuwenhuis AF, Lemay SG. Integrated Glass Microfluidics with Electrochemical Nanogap Electrodes. Anal Chem 2023; 95:4266-4270. [PMID: 36812004 PMCID: PMC9996602 DOI: 10.1021/acs.analchem.2c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We present a framework for the fabrication of chip-based electrochemical nanogap sensors integrated with microfluidics. Instead of polydimethylsiloxane (PDMS), SU-8 aided adhesive bonding of silicon and glass wafers is used to implement parallel flow control. The fabrication process permits wafer-scale production with high throughput and reproducibility. Additionally, the monolithic structures allow simple electrical and fluidic connections, alleviating the need for specialized equipment. We demonstrate the utility of these flow-incorporated nanogap sensors by performing redox cycling measurements under laminar flow conditions.
Collapse
Affiliation(s)
- Sahana Sarkar
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ab F Nieuwenhuis
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G Lemay
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Butler D, Ebrahimi A. Rapid and sensitive detection of viral particles by coupling redox cycling and electrophoretic enrichment. Biosens Bioelectron 2022; 208:114198. [PMID: 35395617 PMCID: PMC8931995 DOI: 10.1016/j.bios.2022.114198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022]
Abstract
The COVID-19 pandemic has highlighted the need for rapid, low-cost, and sensitive virus detection platforms to monitor and mitigate widespread outbreaks. Electrochemical sensors are a viable choice to fill this role but still require improvements to the signal magnitude, especially for early detection and low viral loads. Herein, finite element analysis of a novel biosensor concept for single virion counting using a generator-collector microelectrode design is presented. The proposed design combines a redox-cycling amplified electrochemical current with electrophoresis-driven electrode-particle collision for rapid virus detection. The effects of experimental (e.g. scan rate, collector bias) and geometric factors are studied to optimize the sensor design. Two generator-collector configurations are explored: a ring-disk configuration to analyze sessile droplets and an interdigitated electrode (IDE) design housed in a microchannel. For the ring-disk configuration, we calculate an amplification factor of ∼5 and collector efficiency of ∼0.8 for a generator-collector spacing of 600 nm. For the IDE, the collector efficiency is even larger, approaching unity. The dual-electrode mode is critical for increasing the current and electric field strength. As a result, the current steps upon virus capture are more than an order of magnitude larger compared to single-mode. Additionally, single virus capture times are reduced from over 700 s down to ∼20 s. Overall, the frequency of virus capture and magnitude of the electrochemical current steps depend on the virus properties and electrode configuration, with the IDE capable of single virus detection within seconds owing to better particle confinement in the microchannel.
Collapse
Affiliation(s)
- Derrick Butler
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Center for Biodevices, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Eremina OE, Yarenkov NR, Kapitanova OO, Zelenetskaya AS, Smirnov EA, Shekhovtsova TN, Goodilin EA, Veselova IA. Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)-chitosan-modified SERS-active metallic nanostructured substrates for multiplex determination of dopamine, norepinephrine, and epinephrine. Mikrochim Acta 2022; 189:211. [PMID: 35505261 DOI: 10.1007/s00604-022-05247-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
A unique approach based on Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)-chitosan-modified SERS-active metallic nanostructured substrates is proposed for sensitive and rapid determination of the catecholamines (CA) dopamine, norepinephrine, and epinephrine. The ternary (CA)2Cu(4AAP)2 complexes were characterized by the appearance of new absorbance bands at 555, 600, and 500 nm for dopamine, norepinephrine, and epinephrine, respectively. The new absorbance band matched with a broad surface plasmon resonance band of utilized silver nanoparticles: 450-600 nm, and 633 excitation wavelength. We observed enhancement factors up to 3.6·106 due to the additional resonant enhancement. The multiplexing capabilities of quantitative spectral unmixing for Raman spectra of a group of CAs, which differ by only either hydroxy or methyl group, at the fingerprint region were successfully demonstrated with the direct classic least squares model. The achieved nM limits of detection with only 1.5 mW laser power and analysis of spiked human blood plasma samples proved the possibility of the multiplex determination of the catecholamines at the level of reference concentrations in the blood of healthy people as well as promise for the future facilitation in the precision diagnosis of neuroendocrine tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga E Eremina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Nikita R Yarenkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olesya O Kapitanova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Evgeny A Smirnov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Eugene A Goodilin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Veselova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
8
|
Ito K, Inoue KY, Ino K, Matsue T, Shiku H. A highly sensitive endotoxin sensor based on redox cycling in a nanocavity. Analyst 2019; 144:3659-3667. [DOI: 10.1039/c9an00478e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive endotoxin sensor and novel analytical principle using diffusion coefficient difference was developed using a nanocavity device.
Collapse
Affiliation(s)
- Kentaro Ito
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Kosuke Ino
- Department of Applied Chemistry
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Hitoshi Shiku
- Department of Applied Chemistry
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
9
|
Wahl AJ, Seymour IP, Moore M, Lovera P, O'Riordan A, Rohan JF. Diffusion profile simulations and enhanced iron sensing in generator-collector mode at interdigitated nanowire electrode arrays. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Lee GY, Park JH, Chang YW, Cho S, Kang MJ, Pyun JC. Chronoamperometry-Based Redox Cycling for Application to Immunoassays. ACS Sens 2018; 3:106-112. [PMID: 29276887 DOI: 10.1021/acssensors.7b00681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the chronoamperometry-based redox cycling of 3,3',5,5'-tetramethylbenzidine (TMB) was performed by using interdigitated electrode (IDE). The signal was obtained from two sequential chronoamperometric profiles: (1) with the generator at the oxidative potential of TMB and the collector at the reductive potential of TMB, and (2) with the generator at the reductive potential of TMB and the collector at the oxidative potential of TMB. The chronoamperometry-based redox cycling (dual mode) showed a sensitivity of 1.49 μA/OD, and the redox cycling efficiency was estimated to be 94% (n = 10). The sensitivities of conventional redox cycling with the same interdigitated electrode and chronoamperometry using a single working electrode (single mode) were estimated to be 0.67 μA/OD and 0.18 μA/OD, respectively. These results showed that the chronoamperometry-based redox cycling (dual mode) could be more effectively used to quantify the oxidized TMB than other amperometric methods. The chronoamperometry-based redox cycling (dual mode) was applied to immunoassays using a commercial ELISA kit for medical diagnosis of the human hepatitis B virus surface antigen (hHBsAg). Finally, the chronoamperometry-based redox cycling (dual mode) provided more than a 10-fold higher sensitivity than conventional chronoamperometry using a single working electrode (single mode) when applied to a commercial ELISA kit for medical diagnosis of hHBsAg.
Collapse
Affiliation(s)
- Ga-Yeon Lee
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Jun-Hee Park
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Young Wook Chang
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungbo Cho
- Department
of Biomedical Engineering, Gachon University, Incheon 21936, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jae-Chul Pyun
- Department
of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Wang Y, Narayanan SR, Wu W. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells. ACS NANO 2017; 11:8421-8428. [PMID: 28686412 DOI: 10.1021/acsnano.7b04038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.
Collapse
Affiliation(s)
- Yifei Wang
- Ming Hsieh Department of Electrical Engineering, and ‡Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - S R Narayanan
- Ming Hsieh Department of Electrical Engineering, and ‡Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Wei Wu
- Ming Hsieh Department of Electrical Engineering, and ‡Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Steentjes T, Sarkar S, Jonkheijm P, Lemay SG, Huskens J. Electron Transfer Mediated by Surface-Tethered Redox Groups in Nanofluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603268. [PMID: 27982518 DOI: 10.1002/smll.201603268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Electrochemistry provides a powerful sensor transduction and amplification mechanism that is highly suited for use in integrated, massively parallelized assays. Here, the cyclic voltammetric detection of flexible, linear poly(ethylene glycol) polymers is demonstrated, which have been functionalized with redox-active ferrocene (Fc) moieties and surface-tethered inside a nanofluidic device consisting of two microscale electrodes separated by a gap of <100 nm. Diffusion of the surface-bound polymer chains in the aqueous electrolyte allows the redox groups to repeatedly shuttle electrons from one electrode to the other, resulting in a greatly amplified steady-state electrical current. Variation of the polymer length provides control over the current, as the activity per Fc moiety appears to depend on the extent to which the polymer layers of the opposing electrodes can interpenetrate each other and thus exchange electrons. These results outline the design rules for sensing devices that are based on changing the polymer length, flexibility, and/or diffusivity by binding an analyte to the polymer chain. Such a nanofluidic enabled configuration provides an amplified and highly sensitive alternative to other electrochemical detection mechanisms.
Collapse
Affiliation(s)
- Tom Steentjes
- Molecular NanoFabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Sahana Sarkar
- NanoIonics, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular NanoFabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Serge G Lemay
- NanoIonics, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| |
Collapse
|
13
|
Dual-Plate Gold-Gold Microtrench Electrodes for Generator-Collector Voltammetry without Supporting Electrolyte. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.11.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Adly NY, Bachmann B, Krause KJ, Offenhäusser A, Wolfrum B, Yakushenko A. Three-dimensional inkjet-printed redox cycling sensor. RSC Adv 2017. [DOI: 10.1039/c6ra27170g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical amplification through redox cycling in an all-inkjet-printed device utilizing four different functional inks.
Collapse
Affiliation(s)
- N. Y. Adly
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - B. Bachmann
- Neuroelectronics
- MSB
- Department of Electrical and Computer Engineering
- Technical University of Munich (TUM) & BCCN Munich
- Garching
| | - K. J. Krause
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A. Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - B. Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A. Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8)
- JARA—Fundamentals of Future Information Technology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| |
Collapse
|
15
|
Zafarani HR, Mathwig K, Lemay SG, Sudhölter EJR, Rassaei L. Modulating Selectivity in Nanogap Sensors. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid Reza Zafarani
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Klaus Mathwig
- Pharmaceutical
Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Serge G. Lemay
- MESA+
Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ernst J. R. Sudhölter
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Liza Rassaei
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
16
|
Wolfrum B, Kätelhön E, Yakushenko A, Krause KJ, Adly N, Hüske M, Rinklin P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Acc Chem Res 2016; 49:2031-40. [PMID: 27602780 DOI: 10.1021/acs.accounts.6b00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.
Collapse
Affiliation(s)
- Bernhard Wolfrum
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Enno Kätelhön
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexey Yakushenko
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kay J. Krause
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nouran Adly
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Hüske
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Rinklin
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| |
Collapse
|
17
|
Ikemoto K, Seki T, Kimura S, Nakaoka Y, Tsuchiya S, Sassa F, Yokokawa M, Suzuki H. Microfluidic Separation of Redox Reactions for Coulometry Based on Metallization at the Mixed Potential. Anal Chem 2016; 88:9427-9434. [DOI: 10.1021/acs.analchem.6b01234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhiro Ikemoto
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takafumi Seki
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shohei Kimura
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yui Nakaoka
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shinnosuke Tsuchiya
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Fumihiro Sassa
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masatoshi Yokokawa
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and
Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
18
|
Kanno Y, Ino K, Shiku H, Matsue T. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies. LAB ON A CHIP 2015; 15:4404-4414. [PMID: 26481771 DOI: 10.1039/c5lc01016k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An electrochemical device, which consists of electrode arrays, nanocavities, and microwells, was developed for multi-electrochemical detection with high sensitivity. A local redox cycling-based electrochemical (LRC-EC) system was used for multi-electrochemical detection and signal amplification. The LRC-EC system consists of n(2) sensors with only 2n bonding pads for external connection. The nanocavities fabricated in the sensor microwells enable significant improvement of the signal amplification compared with the previous devices we have developed. The present device was successfully applied for evaluation of embryoid bodies (EBs) from embryonic stem (ES) cells via electrochemical measurements of alkaline phosphatase (ALP) activity in the EBs. In addition, the EBs were successfully trapped in the sensor microwells of the device using dielectrophoresis (DEP) manipulation, which led to high-throughput cell analysis. This device is considered to be useful for multi-electrochemical detection and imaging for bioassays including cell analysis.
Collapse
Affiliation(s)
- Yusuke Kanno
- Graduate School of Environmental Studies, Tohoku University, Japan.
| | - Kosuke Ino
- Graduate School of Environmental Studies, Tohoku University, Japan.
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Japan.
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Japan. and WPI-Advanced Institute for Materials Research, Tohoku University, Japan
| |
Collapse
|
19
|
Xiong J, Chen Q, Edwards MA, White HS. Ion Transport within High Electric Fields in Nanogap Electrochemical Cells. ACS NANO 2015; 9:8520-8529. [PMID: 26190513 DOI: 10.1021/acsnano.5b03522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion transport near an electrically charged electrolyte/electrode interface is a fundamental electrochemical phenomenon that is important in many electrochemical energy systems. We investigated this phenomenon using lithographically fabricated thin-layer electrochemical cells comprising two Pt planar electrodes separated by an electrolyte of nanometer thickness (50-200 nm). By exploiting redox cycling amplification, we observed the influence of the electric double layer on transport of a charged redox couple within the confined electrolyte. Nonclassical steady-state peak shaped voltammograms for redox cycling of the ferrocenylmethyltrimethylammonium redox couple (FcTMA(+/2+)) at low concentrations of supporting electrolyte (≤10 mM) results from electrostatic interactions between the redox ions and the charged Pt electrodes. This behavior contrasts to sigmoidal voltammograms with a diffusion-limited plateau observed in the same electrochemical cells in the presence of sufficient electrolyte to screen the electrode surface charge (200 mM). Moreover, steady-state redox cycling was depressed significantly within the confined electrolyte as the supporting electrolyte concentration was decreased or as the cell thickness was reduced. The experimental results are in excellent agreement with predictions from finite-element simulations coupling the governing equations for ion transport, electric fields, and the redox reactions. Double layer effects on ion transport are generally anticipated in highly confined electrolyte and may have implications for ion transport in thin layer and nanoporous energy storage materials.
Collapse
Affiliation(s)
- Jiewen Xiong
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Qianjin Chen
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Martin A Edwards
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
|
21
|
Krause KJ, Kätelhön E, Lemay SG, Compton RG, Wolfrum B. Sensing with nanopores--the influence of asymmetric blocking on electrochemical redox cycling current. Analyst 2014; 139:5499-503. [PMID: 25237677 DOI: 10.1039/c4an01401d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous redox cycling devices are highly efficient tools for the electrochemical sensing of redox-active molecules. By using a redox-active mediator, this concept can be exploited for the detection of molecular binding events via blocking of the redox cycling current within the nanopores. Here, we investigate the influence of different blocking scenarios inside a nanopore on the resulting redox cycling current. Our analysis is based on random walk simulations and finite element calculations. We distinguish between symmetric and asymmetric pore blocking and show that the current decrease is more pronounced in the case of asymmetric blocking reflecting the diffusion-driven pathway of the redox-active molecules. Using random walk simulations, we further study the impact of pore blocking in the frequency domain and identify relevant features of the power spectral density, which are of particular interest for sensing applications based on fluctuation analysis.
Collapse
Affiliation(s)
- Kay J Krause
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
22
|
Kätelhön E, Mayer D, Banzet M, Offenhäusser A, Wolfrum B. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1137-1143. [PMID: 25161846 PMCID: PMC4143123 DOI: 10.3762/bjnano.5.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on the wafer surface. At each intersection, the crossing bars are separated by a ca. 65 nm high nanocavity, which is stabilized by the surrounding passivation layer. During operation, perpendicular bar electrodes are biased to potentials above and below the redox potential of species under investigation, thus, enabling repeated subsequent reactions at the two electrodes. By this means, a redox cycling current is formed across the gap that can be measured externally. As the nanocavity devices feature a very high current amplification in redox cycling mode, individual sensing spots can be addressed in parallel, enabling high-throughput electrochemical imaging. This paper introduces the design of the device, discusses the fabrication process and demonstrates its capabilities in sequential and parallel data acquisition mode by using a hexacyanoferrate probe.
Collapse
Affiliation(s)
- Enno Kätelhön
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany. Current address: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Dirk Mayer
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marko Banzet
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
23
|
Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim Acta 2014; 182:1-41. [PMID: 25568497 PMCID: PMC4281370 DOI: 10.1007/s00604-014-1308-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/06/2014] [Indexed: 11/27/2022]
Abstract
Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pKa values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The article contains 198 references in the main manuscript and 207 references in the Electronic Supporting Material. Figureᅟ
Collapse
Affiliation(s)
- Bankim J. Sanghavi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 USA
| | - Otto S. Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, 93040 Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, 93040 Germany
| | - Nathan S. Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
24
|
Hammond JL, Gross AJ, Estrela P, Iniesta J, Green SJ, Winlove CP, Winyard PG, Benjamin N, Marken F. Cysteine-Cystine Redox Cycling in a Gold–Gold Dual-Plate Generator-Collector Microtrench Sensor. Anal Chem 2014; 86:6748-52. [DOI: 10.1021/ac501321e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jules L. Hammond
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Andrew J. Gross
- Department
of Chemistry, University of Bath, Bath BA2 7AY U.K
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Jesus Iniesta
- Universidad Alicante, Department of Physical Chemistry
and Institute for Electrochemistry, 03080 Alicante, Spain
| | - Stephen J. Green
- Department
of Physics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4
4QL, U.K
| | - C. Peter Winlove
- Department
of Physics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4
4QL, U.K
| | - Paul G. Winyard
- University of Exeter Medical School, University of Exeter, St. Luke’s Campus, Exeter, EX1
2LU, U.K
| | - Nigel Benjamin
- University of Exeter Medical School, University of Exeter, St. Luke’s Campus, Exeter, EX1
2LU, U.K
| | - Frank Marken
- Department
of Chemistry, University of Bath, Bath BA2 7AY U.K
| |
Collapse
|
25
|
Kätelhön E, Krause KJ, Mathwig K, Lemay SG, Wolfrum B. Noise phenomena caused by reversible adsorption in nanoscale electrochemical devices. ACS NANO 2014; 8:4924-4930. [PMID: 24694343 DOI: 10.1021/nn500941g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We theoretically investigate reversible adsorption in electrochemical devices on a molecular level. To this end, a computational framework is introduced, which is based on 3D random walks including probabilities for adsorption and desorption events at surfaces. We demonstrate that this approach can be used to investigate adsorption phenomena in electrochemical sensors by analyzing experimental noise spectra of a nanofluidic redox cycling device. The evaluation of simulated and experimental results reveals an upper limit for the average adsorption time of ferrocene dimethanol of ∼200 μs. We apply our model to predict current noise spectra of further electrochemical experiments based on interdigitated arrays and scanning electrochemical microscopy. Since the spectra strongly depend on the molecular adsorption characteristics of the detected analyte, we can suggest key indicators of adsorption phenomena in noise spectroscopy depending on the geometric aspect of the experimental setup.
Collapse
Affiliation(s)
- Enno Kätelhön
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich , 52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
26
|
Dawson K, O'Riordan A. Electroanalysis at the nanoscale. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:163-181. [PMID: 24818810 DOI: 10.1146/annurev-anchem-071213-020133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This article reviews the state of the art of silicon chip-based nanoelectrochemical devices for sensing applications. We first describe analyte mass transport to nanoscale electrodes and emphasize understanding the importance of mass transport for the design of nanoelectrode arrays. We then describe bottom-up and top-down approaches to nanoelectrode fabrication and integration at silicon substrates. Finally, we explore recent examples of on-chip nanoelectrodes employed as sensors and diagnostics, finishing with a brief look at future applications.
Collapse
Affiliation(s)
- Karen Dawson
- Nanotechnology Group, Tyndall National Institute, University College Cork, Cork, Ireland;
| | | |
Collapse
|
27
|
Dale SE, Vuorema A, Sillanpää M, Weber J, Wain AJ, Barnes EO, Compton RG, Marken F. Nano-Litre Proton/Hydrogen Titration in a Dual-Plate Platinum-Platinum Generator-Collector Electrode Micro-Trench. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Yu Y, Noël JM, Mirkin MV, Gao Y, Mashtalir O, Friedman G, Gogotsi Y. Carbon Pipette-Based Electrochemical Nanosampler. Anal Chem 2014; 86:3365-72. [DOI: 10.1021/ac403547b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yun Yu
- Department of Chemistry and
Biochemistry, Queens College−CUNY, Flushing, New York 11367, United States
| | - Jean-Marc Noël
- Department of Chemistry and
Biochemistry, Queens College−CUNY, Flushing, New York 11367, United States
| | - Michael V. Mirkin
- Department of Chemistry and
Biochemistry, Queens College−CUNY, Flushing, New York 11367, United States
| | - Yang Gao
- Department of Electrical and Computer Engineering, ‡Department of Materials Science
and Engineering, and §A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, Unites States
| | - Olha Mashtalir
- Department of Electrical and Computer Engineering, ‡Department of Materials Science
and Engineering, and §A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, Unites States
| | - Gary Friedman
- Department of Electrical and Computer Engineering, ‡Department of Materials Science
and Engineering, and §A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, Unites States
| | - Yury Gogotsi
- Department of Electrical and Computer Engineering, ‡Department of Materials Science
and Engineering, and §A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, Unites States
| |
Collapse
|
29
|
Zhu F, Yan J, Pang S, Zhou Y, Mao B, Oleinick A, Svir I, Amatore C. Strategy for Increasing the Electrode Density of Microelectrode Arrays by Utilizing Bipolar Behavior of a Metallic Film. Anal Chem 2014; 86:3138-45. [DOI: 10.1021/ac404202p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Zhu
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, and Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Jiawei Yan
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, and Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | | | - Yongliang Zhou
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, and Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Bingwei Mao
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, and Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Alexander Oleinick
- CNRS UMR 8640
“PASTEUR”, Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, Paris 75005, France
| | - Irina Svir
- CNRS UMR 8640
“PASTEUR”, Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, Paris 75005, France
| | - Christian Amatore
- CNRS UMR 8640
“PASTEUR”, Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
30
|
Hüske M, Stockmann R, Offenhäusser A, Wolfrum B. Redox cycling in nanoporous electrochemical devices. NANOSCALE 2014; 6:589-598. [PMID: 24247480 DOI: 10.1039/c3nr03818a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoscale redox cycling is a powerful technique for detecting electrochemically active molecules, based on fast repetitive oxidation and reduction reactions. An ideal implementation of redox cycling sensors can be realized by nanoporous dual-electrode systems in easily accessible and scalable geometries. Here, we introduce a multi-electrode array device with highly efficient nanoporous redox cycling sensors. Each of the sensors holds up to 209,000 well defined nanopores with minimal pore radii of less than 40 nm and an electrode separation of ~100 nm. We demonstrate the efficiency of the nanopore array by screening a large concentration range over three orders of magnitude with area-specific sensitivities of up to 81.0 mA (cm(-2) mM(-1)) for the redox-active probe ferrocene dimethanol. Furthermore, due to the specific geometry of the material, reaction kinetics has a unique potential-dependent impact on the signal characteristics. As a result, redox cycling experiments in the nanoporous structure allow studies on heterogeneous electron transfer reactions revealing a surprisingly asymmetric transfer coefficient.
Collapse
Affiliation(s)
- Martin Hüske
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
31
|
Hüske M, Offenhäusser A, Wolfrum B. Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling. Phys Chem Chem Phys 2014; 16:11609-16. [DOI: 10.1039/c4cp01027b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel fabrication techniques lead to highly sensitive electrochemical sensors (left). The large-area characteristics of redox-cycling within the sensor's nanopores further cause potential-dependent variations of the overall analyte concentration (right).
Collapse
Affiliation(s)
- Martin Hüske
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology
- For-schungszentrum Jülich
- D-52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology
- For-schungszentrum Jülich
- D-52425 Jülich, Germany
- IV. Institute of Physics
- RWTH Aachen University
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology
- For-schungszentrum Jülich
- D-52425 Jülich, Germany
- IV. Institute of Physics
- RWTH Aachen University
| |
Collapse
|
32
|
Hasnat MA, Gross AJ, Dale SEC, Barnes EO, Compton RG, Marken F. A dual-plate ITO–ITO generator–collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference. Analyst 2014; 139:569-75. [DOI: 10.1039/c3an01826a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Kang S, Nieuwenhuis AF, Mathwig K, Mampallil D, Lemay SG. Electrochemical single-molecule detection in aqueous solution using self-aligned nanogap transducers. ACS NANO 2013; 7:10931-10937. [PMID: 24279688 DOI: 10.1021/nn404440v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrochemical detection of individual molecular tags in nanochannels may enable cost-effective, massively parallel analysis and diagnostics platforms. Here we demonstrate single-molecule detection of prototypical analytes in aqueous solution based on redox cycling in 40 nm nanogap transducers. These nanofluidic devices are fabricated using standard microfabrication techniques combined with a self-aligned approach that minimizes gap size and dead volume. We demonstrate the detection of three common redox mediators at physiological salt concentrations.
Collapse
Affiliation(s)
- Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Ma C, Contento NM, Gibson LR, Bohn PW. Recessed Ring–Disk Nanoelectrode Arrays Integrated in Nanofluidic Structures for Selective Electrochemical Detection. Anal Chem 2013; 85:9882-8. [DOI: 10.1021/ac402417w] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoxiong Ma
- Department of Chemistry and Biochemistry, and ‡Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nicholas M. Contento
- Department of Chemistry and Biochemistry, and ‡Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Larry R. Gibson
- Department of Chemistry and Biochemistry, and ‡Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, and ‡Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
35
|
Kätelhön E, Krause KJ, Singh PS, Lemay SG, Wolfrum B. Noise Characteristics of Nanoscaled Redox-Cycling Sensors: Investigations Based on Random Walks. J Am Chem Soc 2013; 135:8874-81. [DOI: 10.1021/ja3121313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Enno Kätelhön
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Kay J. Krause
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Pradyumna S. Singh
- MESA+ Institute
for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands
| | - Serge G. Lemay
- MESA+ Institute
for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands
| | - Bernhard Wolfrum
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
- Institute
of Physics, RWTH Aachen University, 52074
Aachen, Germany
| |
Collapse
|
36
|
Mampallil D, Mathwig K, Kang S, Lemay SG. Redox Couples with Unequal Diffusion Coefficients: Effect on Redox Cycling. Anal Chem 2013; 85:6053-8. [DOI: 10.1021/ac400910n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dileep Mampallil
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Klaus Mathwig
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G. Lemay
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
37
|
WEBSTER THADDAEUSA, SISMAET HUNTERJ, GOLUCH EDGARD. AMPEROMETRIC DETECTION OF PYOCYANIN IN NANOFLUIDIC CHANNELS. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793984413400114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microfabricated nanofluidic electrode assemblies (NEAs) with integrated palladium references were used to amperometrically monitor changes in pyocyanin concentration. Pyocyanin is an electroactive molecule that is produced by the opportunistic pathogen Pseudomonas aeruginosa and is directly linked to cellular processes that increase both robustness and virulence in this bacterium. This is the first time that pyocyanin has been measured in real time using microfabricated sensors. A linear response in faradaic current (R2= 0.96) was observed over a biomedically relevant range of pyocyanin concentrations (0–100 μM) while continuously measuring the current for 2 h. Measurement of the current that results from the repeated oxidation and reduction of pyocyanin at two closely spaced electrodes inside the device nanochannel yielded a 1.07 μM limit of detection without electrical isolation of the electrochemical cell. Since a reference electrode is integrated inside the nanofluidic channel of these sensors, they can potentially be employed to detect pyocyanin and other redox-active molecules in wide range of medical and environmental settings where space is limited. NEAs were also used with an external Ag/AgCl reference electrode to determine the concentration of pyocyanin in trypticase soy broth samples. This type of analysis is completed in less than 2 min and the detection limit was determined to be 441 nM.
Collapse
Affiliation(s)
- THADDAEUS A. WEBSTER
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, MA 02115, USA
| | - HUNTER J. SISMAET
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, MA 02115, USA
| | - EDGAR D. GOLUCH
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313SN, Boston, MA 02115, USA
| |
Collapse
|
38
|
Lemay SG, Kang S, Mathwig K, Singh PS. Single-molecule electrochemistry: present status and outlook. Acc Chem Res 2013; 46:369-77. [PMID: 23270398 DOI: 10.1021/ar300169d] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of methods for detecting and manipulating matter at the level of individual macromolecules represents one of the key scientific advancements of recent decades. These techniques allow us to get information that is largely unobtainable otherwise, such as the magnitudes of microscopic forces, mechanistic details of catalytic processes, macromolecular population heterogeneities, and time-resolved, step-by-step observation of complex kinetics. Methods based on optical, mechanical, and ionic-conductance signal transduction are particularly developed. However, there is scope for new approaches that can broaden the range of molecular systems that we can study at this ultimate level of sensitivity and for developing new analytical methods relying on single-molecule detection. Approaches based on purely electrical detection are particularly appealing in the latter context, since they can be easily combined with microelectronics or fluidic devices on a single microchip to create large parallel assays at relatively low cost. A form of electrical signal transduction that has so far remained relatively underdeveloped at the single-molecule level is the direct detection of the charge transferred in electrochemical processes. The reason for this is simple: only a few electrons are transferred per molecule in a typical faradaic reaction, a heterogeneous charge-transfer reaction that occurs at the electrode's surface. Detecting this tiny amount of charge is impossible using conventional electrochemical instrumentation. A workaround is to use redox cycling, in which the charge transferred is amplified by repeatedly reducing and oxidizing analyte molecules as they randomly diffuse between a pair of electrodes. For this process to be sufficiently efficient, the electrodes must be positioned within less than 100 nm of each other, and the analyte must remain between the electrodes long enough for the measurement to take place. Early efforts focused on tip-based nanoelectrodes, descended from scanning electrochemical microscopy, to create suitable geometries. However, it has been challenging to apply these technologies broadly. In this Account, we describe our alternative approach based on electrodes embedded in microfabricated nanochannels, so-called nanogap transducers. Microfabrication techniques grant a high level of reproducibility and control over the geometry of the devices, permitting systematic development and characterization. We have employed these devices to demonstrate single-molecule sensitivity. This method shows good agreement with theoretical analysis based on the Brownian motion of discrete molecules, but only once the finite time resolution of the experimental apparatus is taken into account. These results highlight both the random nature of single-molecule signals and the complications that it can introduce in data interpretation. We conclude this Account with a discussion on how scientists can overcome this limitation in the future to create a new experimental platform that can be generally useful for both fundamental studies and analytical applications.
Collapse
Affiliation(s)
- Serge G. Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Klaus Mathwig
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Pradyumna S. Singh
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
39
|
Aggarwal A, Hu M, Fritsch I. Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array. Anal Bioanal Chem 2013; 405:3859-69. [DOI: 10.1007/s00216-013-6738-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/02/2012] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
|
40
|
Nair PR, Alam MA. A compact analytical formalism for current transients in electrochemical systems. Analyst 2013; 138:525-38. [PMID: 23166907 DOI: 10.1039/c2an35346f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micro- and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecular detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed-form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained into the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the responses of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detailed numerical simulations and experimental data from the literature, have broad implications in the design and optimization of nanostructured electrodes for healthcare and energy storage applications.
Collapse
Affiliation(s)
- Pradeep R Nair
- School of ECE, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
41
|
Gibson LR, Branagan SP, Bohn PW. Convective delivery of electroactive species to annular nanoband electrodes embedded in nanocapillary-array membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:90-97. [PMID: 22907773 DOI: 10.1002/smll.201200237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Significant technological drivers motivate interest in the use of reaction sites embedded within nanometer-scale channels, and an important class of these structures is realized by an embedded annular nanoband electrode (EANE) in a cylindrical nanochannel. In this structure, the convective delivery of electroactive species to the nanoelectrode is tightly coupled to the electrochemical overpotential via electroosmotic flow. Simulation results indicate that EANE arrays significantly outperform comparable microband electrode/microchannel structures, producing higher conversion efficiencies at low Peclet number. The results of this in-depth analysis are useful in assessing possible implementation of the EANE geometry for a wide range of electrochemical targets within microscale total analysis systems.
Collapse
Affiliation(s)
- Larry R Gibson
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
42
|
Heo JI, Lim Y, Shin H. The effect of channel height and electrode aspect ratio on redox cycling at carbon interdigitated array nanoelectrodes confined in a microchannel. Analyst 2013; 138:6404-11. [DOI: 10.1039/c3an00905j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Webster TA, Goluch ED. Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes. LAB ON A CHIP 2012; 12:5195-5201. [PMID: 23108351 DOI: 10.1039/c2lc40650k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Miniaturized and integrated components for electrochemical detection in micro- and nano-fluidic devices are of great interest as they directly yield an electrical signal and promise sensitive, label-free, real-time detection. One of the challenges facing electrochemical sensing is the lack of reliable reference electrode options. This paper describes the fabrication and characterization of a microscale palladium hydride reference electrode in a single microfabrication step. The reference electrode was integrated inside of a nanoscale constriction along with a gold working electrode to create a complete electrochemical sensor. After charging the palladium electrode with hydrogen, the device was used to detect pyocyanin concentrations from 1-100 μM, with a 0.597 micromolar detection limit. This is the first time that a palladium hydride reference electrode has been integrated with a microfabricated electrochemical sensor in a nanofluidic setup. The device was then used over the course of 8 days to measure pyocyanin produced by four different Pseudomonas aeruginosa strains in growth media. By utilizing square wave and differential pulse voltammetry, the redox active molecule, pyocyanin, was selectively detected in a complex solution without the use of any electrode surface modification.
Collapse
Affiliation(s)
- Thaddaeus A Webster
- Department of Chemical Engineering, Northeastern University, 120 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Preparation of thiolated polymeric nanocomposite for sensitive electroanalysis of dopamine. Biosens Bioelectron 2012; 36:154-60. [DOI: 10.1016/j.bios.2012.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 11/23/2022]
|
45
|
Kang S, Mathwig K, Lemay SG. Response time of nanofluidic electrochemical sensors. LAB ON A CHIP 2012; 12:1262-1267. [PMID: 22361835 DOI: 10.1039/c2lc21104a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanofluidic thin-layer cells count among the most sensitive electrochemical sensors built to date. Here we study both experimentally and theoretically the factors that limit the response time of these sensors. We find that the key limiting factor is reversible adsorption of the analyte molecules to the surfaces of the nanofluidic system, a direct consequence of its high surface-to-volume ratio. Our results suggest several means of improving the response time of the sensor, including optimizing the device geometry and tuning the electrode biasing scheme so as to minimize adsorption.
Collapse
Affiliation(s)
- Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
46
|
Schottdorf M, Hofmann B, Kätelhön E, Offenhäusser A, Wolfrum B. Frequency-dependent signal transfer at the interface between electrogenic cells and nanocavity electrodes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031917. [PMID: 22587133 DOI: 10.1103/physreve.85.031917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Indexed: 05/31/2023]
Abstract
We present a model to describe the response of chip-based nanocavity sensors during extracellular recording of action potentials. These sensors feature microelectrodes which are embedded in liquid-filled cavities. They can be used for the highly localized detection of electrical signals on a chip. We calculate the sensor's impedance and simulate the propagation of action potentials. Subsequently we apply our findings to analyze cell-chip coupling properties. The results are compared to experimental data obtained from cardiomyocyte-like cells. We show that both the impedance and the modeled action potentials fit the experimental data well. Furthermore, we find evidence for a large seal resistance of cardiomyocytes on nanocavity sensors compared to conventional planar recording systems.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich GmbH, Jülich, Germany.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Lithographically fabricated nanostructures appear in an increasingly wide range of scientific fields, and electroanalytical chemistry is no exception. This article introduces lithography methods and provides an overview of the new capabilities and electrochemical phenomena that can emerge in nanostructures.
Collapse
Affiliation(s)
- Liza Rassaei
- MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | | | | |
Collapse
|
48
|
Hofmann B, Kätelhön E, Schottdorf M, Offenhäusser A, Wolfrum B. Nanocavity electrode array for recording from electrogenic cells. LAB ON A CHIP 2011; 11:1054-1058. [PMID: 21286648 DOI: 10.1039/c0lc00582g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a new nanocavity device for highly localized on-chip recordings of action potentials from individual cells in a network. Microelectrode recordings have become the method of choice for recording extracellular action potentials from high density cultures or slices. Nevertheless, interfacing individual cells of a network with high resolution still remains challenging due to an insufficient coupling of the signal to small electrodes, exhibiting diameters below 10 µm. We show that this problem can be overcome by a new type of sensor that features an electrode, which is accessed via a small aperture and a nanosized cavity. Thus, the properties of large electrodes are combined with a high local resolution and a good seal resistance at the interface. Fabrication of the device can be performed with state-of-the-art clean room technology and sacrificial layer etching allowing integration of the devices into sensor arrays. We demonstrate the capability of such an array by recording the propagation of action potentials in a network of cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Boris Hofmann
- PGI-8/ICS-8, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | |
Collapse
|
49
|
Takeda M, Shiku H, Ino K, Matsue T. Electrochemical chip integrating scalable ring–ring electrode array to detect secreted alkaline phosphatase. Analyst 2011; 136:4991-6. [DOI: 10.1039/c1an15620a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|