1
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
2
|
Chio WIK, Xie H, Zhang Y, Lan Y, Lee TC. SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Quang ATN, Nguyen TA, Vu SV, Lo TNH, Park I, Vo KQ. Facile tuning of tip sharpness on gold nanostars by the controlled seed-growth method and coating with a silver shell for detection of thiram using surface enhanced Raman spectroscopy (SERS). RSC Adv 2022; 12:22815-22825. [PMID: 36105964 PMCID: PMC9376760 DOI: 10.1039/d2ra03396h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Developing SERS substrates based on individual gold and silver metals, either with rough surfaces or bare nanoparticles, has certain limitations in practical analysis applications. In order to improve the range of applications of the noble metallic substrates, a comprehensive approach has been proposed for preparing non-traditional SERS nano-substrates by combining tip-enhanced gold nanostars and Raman signal amplification of the silver layer. This preparation process is conducted in two steps, including tuning the sharpness and length of tips by a modified seed growth method followed by coating the silver layer on the formed star-shaped nanoparticles. The obtained AuNS-Ag covered with an average size of around 100 nm exhibited interesting properties as a two-component nano-substrate to amplify the activities in SERS for detecting thiram. The controllable and convenient preparation route of gold nanostars is based on the comproportionation reaction of Au seed particles with Au(iii) ions, achieved by governing the stirring times of the mixture of the Au seed and the growth solution. Thus, the citrate-seed particles decreased in size (below 2 nm) and grew into nanostars with sharp tips. The thickness of Ag covering the Au particles' surface also was appropriately controlled and the tips were still exposed to the outside, which is a benefit for matching with the source excitation wavelength to achieve good SERS performance. The Raman signals of thiram can be instantly and remarkably detected with the enhancement of the substrates. Thiram can be determined without any pretreatment. It was found that the limit of detection for thiram is 0.22 ppm, and the limit of quantification is 0.73 ppm. These experimental results shed some light on developing the SERS method for detecting pesticide residue. Developing SERS substrates based on the star-like morphology of gold nanoparticles covered by a silver layer to overcome limitations in practical analysis application.![]()
Collapse
Affiliation(s)
- Anh Thi Ngoc Quang
- Institute of Applied Technology, Thu Dau Mot University, 6 Tran Van On Street, Phu Hoa Ward, Thu Dau Mot City, Binh Duong Province, Vietnam
| | - Thu Anh Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 70000, Vietnam
| | - Sy Van Vu
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 70000, Vietnam
| | - Tien Nu Hoang Lo
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Cheonan, 31056, South Korea
| | - In Park
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Cheonan, 31056, South Korea
- KITECH School, University of Science and Technology (UST), 176 Gajeong-dong, Yuseong-gu, Daejeon, 34113, South Korea
| | - Khuong Quoc Vo
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 70000, Vietnam
| |
Collapse
|
4
|
Renard D, Tian S, Ahmadivand A, DeSantis CJ, Clark BD, Nordlander P, Halas NJ. Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. ACS NANO 2019; 13:3117-3124. [PMID: 30807101 DOI: 10.1021/acsnano.8b08445] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aluminum nanocrystals have emerged as an earth-abundant material for plasmonics applications. Al nanocrystals readily oxidize in aqueous-based solutions, however, transforming into highly stratified γ-AlOOH nanoparticles with a 700% increase in surface area in a matter of minutes. Here we show that by functionalizing Al nanocrystals with the bioinspired polymer polydopamine, their stability in aqueous media is dramatically increased, maintaining their integrity in aqueous solution for over 2 weeks with no discernible structural changes. Polydopamine functionalization also provides a molecular capture layer that enables the capture of polycyclic aromatic hydrocarbon pollutants in H2O samples and their detection by surface-enhanced Raman spectroscopy, when polydopamine-stabilized Al nanocrystal aggregates are used as substrates. This approach was used to detect a prime carcinogenic H2O pollutant, benzo[a]pyrene with a sensitivity in the sub part-per-billion range.
Collapse
|
5
|
Williams C, Royo F, Aizpurua-Olaizola O, Pazos R, Boons GJ, Reichardt NC, Falcon-Perez JM. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J Extracell Vesicles 2018. [PMID: 29535851 PMCID: PMC5844028 DOI: 10.1080/20013078.2018.1442985] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed, recent reports show that the presence of glycoconjugates is involved in EV biogenesis, in cellular recognition and in the efficient uptake of EVs by recipient cells. It is clear that a full understanding of EV biology will require researchers to focus also on EV glycosylation through glycomics approaches. This review outlines the major glycomics techniques that have been applied to EVs in the context of the recent findings. Beyond understanding the mechanisms by which EVs mediate their physiological functions, glycosylation also provides opportunities by which to engineer EVs for therapeutic and diagnostic purposes. Studies characterising the glycan composition of EVs have highlighted glycome changes in various disease states, thus indicating potential for EV glycans as diagnostic markers. Meanwhile, glycans have been targeted as molecular handles for affinity-based isolation in both research and clinical contexts. An overview of current strategies to exploit EV glycosylation and a discussion of the implications of recent findings for the burgeoning EV industry follows the below review of glycomics and its application to EV biology.
Collapse
Affiliation(s)
- Charles Williams
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Felix Royo
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain
| | - Oier Aizpurua-Olaizola
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Raquel Pazos
- Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Juan M Falcon-Perez
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,CIBER-BBN, San Sebastian, Spain.,IKERBASQUE Basque Foundation for science, Bilbao, Spain
| |
Collapse
|
6
|
Bi A, Yang S, Liu M, Wang X, Liao W, Zeng W. Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra05651f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Formaldehyde (FA), as a vital industrial chemical, is widely used in building materials and numerous living products.
Collapse
Affiliation(s)
- Anyao Bi
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Shuqi Yang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Min Liu
- Department of Pharmacy
- Xiangya Hospital
- Central South University
- Changsha 410008
- China
| | - Xiaobo Wang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Weihua Liao
- Molecular Imaging Research Center
- Central South University
- Changsha
- China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| |
Collapse
|
7
|
Hu W, Sun DW, Pu H, Pan T. Recent Developments in Methods and Techniques for Rapid Monitoring of Sugar Metabolism in Fruits. Compr Rev Food Sci Food Saf 2016; 15:1067-1079. [DOI: 10.1111/1541-4337.12225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Weihong Hu
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
| | - Da-Wen Sun
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
- Food Refrigeration and Computerized Food Technology, Univ. College Dublin, Agriculture and Food Science Centre; Natl. Univ. of Ireland; Belfield Dublin 4 Ireland
| | - Hongbin Pu
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
| | - Tingtiao Pan
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
| |
Collapse
|
8
|
Zhang Z, Zhao C, Ma Y, Li G. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy. Analyst 2015; 139:3614-21. [PMID: 24875278 DOI: 10.1039/c4an00200h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxic formaldehyde is sometimes used illegally as a food preservative, however, on-site rapid analysis of trace formaldehyde in aquatic products remains a challenge. In this work, a simple on-site rapid quantification method for trace volatile formaldehyde in aquatic products was developed by a derivative reaction-based surface enhanced Raman spectroscopy (SERS) technique coupled with a homemade portable purge-sampling device. Trace formaldehyde separated from complicated aquatic matrices via a purge-sampling procedure was reacted with a derivative reagent to produce a Raman-active analyte for consequent SERS analysis. Au/SiO2 nanoparticles (NPs) were employed as the enhancement substrate to achieve significant enhancement of Raman signal intensity. Conditions of derivative reaction and SERS detection were optimized in detail, and the selectivity of this analytical method was also evaluated based on related analogs. Under optimal conditions, an extremely low detection limit of 0.17 μg L(-1) was achieved. Trace volatile formaldehyde can be found in fresh squid and shrimp samples without obvious matrix interference, and this was quantified to be 0.13-0.21 mg kg(-1) using the described method. The recoveries of spiked aquatic product samples were found to be 70.0-89.1% with RSDs of 2.3-7.2% (n = 3). The results suggest that the proposed method is reliable and suitable for on-site rapid analysis of trace formaldehyde in aquatic products.
Collapse
Affiliation(s)
- Zhuomin Zhang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
9
|
Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review. Anal Chim Acta 2015; 877:19-32. [DOI: 10.1016/j.aca.2015.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
|
10
|
Guerrini L, Arenal R, Mannini B, Chiti F, Pini R, Matteini P, Alvarez-Puebla RA. SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9420-9428. [PMID: 25897657 DOI: 10.1021/acsami.5b01056] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein misfolded proteins are among the most toxic endogenous species of macromolecules. These chemical entities are responsible for neurodegenerative disorders such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob's and different non-neurophatic amyloidosis. Notably, these oligomers show a combination of marked heterogeneity and low abundance in body fluids, which have prevented a reliable detection by immunological methods so far. Herein we exploit the selectivity of proteins to react with metallic ions and the sensitivity of surface-enhanced Raman spectroscopy (SERS) toward small electronic changes in coordination compounds to design and engineer a reliable optical sensor for protein misfolded oligomers. Our strategy relies on the functionalization of Au nanoparticle-decorated polystyrene beads with an effective metallorganic Raman chemoreceptor, composed by Al(3+) ions coordinated to 4-mercaptobenzoic acid (MBA) with high Raman cross-section, that selectively binds aberrant protein oligomers. The mechanical deformations of the MBA phenyl ring upon complexation with the oligomeric species are registered in its SERS spectrum and can be quantitatively correlated with the concentration of the target biomolecule. The SERS platform used here appears promising for future implementation of diagnostic tools of aberrant species associated with protein deposition diseases, including those with a strong social and economic impact, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Luca Guerrini
- †Universitat Rovira i Virgili and Centro de Tecnologia Quimica de Cataluña, C/de Marcel·lí Domingo s/n, N5, 43007 Tarragona, Spain
- ‡Medcom Advance SA, Viladecans Busines Park, Edificio Brasil, C/Bertran i Musitu, 83-85, 08840 Viladecans, Barcelona, Spain
| | - Raul Arenal
- §Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- ∥Fundación ARAID, 50018 Zaragoza, Spain
| | - Benedetta Mannini
- ⊥Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Fabrizio Chiti
- ⊥Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Roberto Pini
- #Institute of Applied Physics Nello Carrara, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Paolo Matteini
- #Institute of Applied Physics Nello Carrara, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Ramon A Alvarez-Puebla
- †Universitat Rovira i Virgili and Centro de Tecnologia Quimica de Cataluña, C/de Marcel·lí Domingo s/n, N5, 43007 Tarragona, Spain
- ‡Medcom Advance SA, Viladecans Busines Park, Edificio Brasil, C/Bertran i Musitu, 83-85, 08840 Viladecans, Barcelona, Spain
- ○ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Mutter ST, Blanch EW. Carbohydrate Secondary and Tertiary Structure Using Raman Spectroscopy. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Feng L, Yu H, Liu Y, Hu X, Li J, Xie A, Zhang J, Dong W. Construction of efficacious hepatoma-targeted nanomicelles non-covalently functionalized with galactose for drug delivery. Polym Chem 2014. [DOI: 10.1039/c4py01022a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
New cytotoxic annonaceous acetogenin mimetics having a nitrogen-heterocyclic terminal and their application to cell imaging. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Sun F, Bai T, Zhang L, Ella-Menye JR, Liu S, Nowinski AK, Jiang S, Yu Q. Sensitive and Fast Detection of Fructose in Complex Media via Symmetry Breaking and Signal Amplification Using Surface-Enhanced Raman Spectroscopy. Anal Chem 2014; 86:2387-94. [DOI: 10.1021/ac4040983] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fang Sun
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Tao Bai
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Lei Zhang
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Jean-Rene Ella-Menye
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Sijun Liu
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Ann K. Nowinski
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Qiuming Yu
- Department of Chemical Engineering, and ‡Department of
Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Kong KV, Ho CJH, Gong T, Lau WKO, Olivo M. Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens Bioelectron 2014; 56:186-91. [PMID: 24487255 DOI: 10.1016/j.bios.2013.12.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 11/19/2022]
Abstract
In this work, we propose a novel glucose binding mechanism on a highly sensitive SERS substrate, in order to overcome challenges in specific glucose detection in bio-fluids. We make use of phenylboronic acid as a receptor for saccharide capture onto the substrate and the ability of the captured glucose molecule to undergo secondary binding with an alkyne-functionalized boronic acid to form a glucose-alkyne-boronic acid complex. The formation of this complex shows high selectivity for glucose, over other saccharides. In addition, the alkyne group of the alkyne-functionalized boronic acid exhibits a distinct Raman peak at 1996 cm(-1) in a biological silent region (1800-2800 cm(-1)) where most endogenous molecules, including glucose, show no Raman scattering, thus offering a high sensitivity over other SERS glucose sensing. The substrate offers long-term stability, as well as high SERS enhancement to the glucose-alkyne boronic acid complex on substrate. In addition, the reversibility of SERS signals at various incubation stages also shows reusability capabilities, whereas positive results in clinical urine samples demonstrate clinical feasibility. All these strongly suggest that this newly developed SERS-based assay offers great potential in glucose sensing.
Collapse
Affiliation(s)
- Kien Voon Kong
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Chris Jun Hui Ho
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Tianxun Gong
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | | | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore; School of Physics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
16
|
Roy S, Covert PA, FitzGerald WR, Hore DK. Biomolecular Structure at Solid–Liquid Interfaces As Revealed by Nonlinear Optical Spectroscopy. Chem Rev 2014; 114:8388-415. [DOI: 10.1021/cr400418b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sandra Roy
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Paul A. Covert
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - William R. FitzGerald
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Dennis K. Hore
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| |
Collapse
|
17
|
Xu L, Yuan L, Liu S. Macroinitiator triggered polymerization for versatile immunoassay. RSC Adv 2014. [DOI: 10.1039/c3ra45504a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Gong Z, Wang C, Wang C, Tang C, Cheng F, Du H, Fan M, Brolo AG. A silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst 2014; 139:5283-9. [DOI: 10.1039/c4an00968a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A surface enhanced Raman scattering (SERS) hydrogel substrate, capable of extracting small amounts of organic species from surfaces of different types of materials with variable roughness, has been fabricated.
Collapse
Affiliation(s)
- Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
| | - Canchen Wang
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
| | - Cong Wang
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
- Chengdu, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
- Chengdu, China
| | - Fansheng Cheng
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
- Chengdu, China
| | - Hongjie Du
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
- Chengdu Development Center of Science and Technology
- China Academy of Engineering Physics
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu, China
| | | |
Collapse
|
19
|
Carbohydrate Secondary and Tertiary Structure Using Raman Spectroscopy. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_36-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Kong KV, Lam Z, Lau WKO, Leong WK, Olivo M. A Transition Metal Carbonyl Probe for Use in a Highly Specific and Sensitive SERS-Based Assay for Glucose. J Am Chem Soc 2013; 135:18028-31. [DOI: 10.1021/ja409230g] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kien Voon Kong
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Zhiyong Lam
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, Singapore
| | | | - Weng Kee Leong
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, Singapore
| | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
- Department
of Pharmacy, National University of Singapore, Singapore
- School
of Physics, National University of Ireland, Galway, Ireland
| |
Collapse
|
21
|
Affiliation(s)
- Yunqing Wang
- Key Laboratory of Coastal Zone
Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bing Yan
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan
250100, China
| | - Lingxin Chen
- Key Laboratory of Coastal Zone
Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
22
|
Abstract
Because of the potential applications of biosensors in clinical diagnosis, biomedical research, environmental analysis, and food quality control, researchers are very interested in developing sensitive, selective, rapid, reliable, and low-cost versions of these devices. A classic biosensor directly transduces ligand-target binding events into a measurable physical readout. Because of the limited detection sensitivity and selectivity in earlier biosensors, researchers have developed a number of sensing/signal amplification strategies. Through the use of nanostructured or long chain polymeric materials to increase the upload of signal tags for amplification of the signal readout associated with the ligand-target binding events, researchers have achieved high sensitivity and exceptional selectivity. Very recently, target-triggered polymerization-assisted signal amplification strategies have been exploited as a new biosensing mechanism with many attractive features. This strategy couples a small initiator molecule to the DNA/protein detection probe prior to DNA hybridization or DNA/protein and protein/protein binding events. After ligand-target binding, the in-situ polymerization reaction is triggered. As a result, tens to hundreds of small monomer signal reporter molecules assemble into long chain polymers at the location where the initiator molecule was attached. The resulting polymer materials changed the optical and electrochemical properties at this location, which make the signal easily distinguishable from the background. The assay time ranged from minutes to hours and was determined by the degree of amplification needed. In this Account, we summarize a series of electrochemical and optical biosensors that employ target-triggered polymerization. We focus on the use of atom transfer radical polymerization (ATRP), as well as activator generated electron transfer for atom transfer radical polymerization (AGET ATRP) for in-situ formation of polymer materials for optically or electrochemically transducing DNA hybridization and protein-target binding. ATRP and AGET ATRP can tolerate a wide range of functional monomers. They also allow for the preparation of well-controlled polymers with narrow molecular weight distribution, which was predetermined by the concentration ratio of the consumed monomer to the introduced initiator. Because the reaction initiator can be attached to a variety of detection probes through well-established cross-linking reactions, this technique could be expanded as a universal strategy for the sensitive detection of DNA and proteins. We see enormous potential for this new sensing technology in the development of portable DNA/protein sensors for point-of-need applications.
Collapse
Affiliation(s)
- Yafeng Wu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
23
|
Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 2011; 403:27-54. [PMID: 22205182 DOI: 10.1007/s00216-011-5631-x] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/10/2011] [Accepted: 12/01/2011] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the 'real' enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.
Collapse
Affiliation(s)
- Dana Cialla
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Kho KW, Fu CY, Dinish US, Olivo M. Clinical SERS: are we there yet? JOURNAL OF BIOPHOTONICS 2011; 4:667-684. [PMID: 21922673 DOI: 10.1002/jbio.201100047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/06/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
Surface Enhanced Raman Spectroscopy or SERS has witnessed many successes over the past 3 decades, owing particularly to its simplicity of use as well as its highly-multiplexing capability. This article provides an overview of SERS and its applicability in the field of bio-medicine. We will preview recent developments in SERS substrate designs, and the various sensing technologies that are based on the SERS phenomenon. An overview of the clinical applications of SERS is also included. Finally, we provide an opinion on the future trends of this unique spectroscopic technique.
Collapse
Affiliation(s)
- Kiang Wei Kho
- Bio-photonics Group, School of Physics, National University of Ireland, Galway, Ireland; National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | | | | | | |
Collapse
|
25
|
Jiang Z, Kun L, Ouyang H, Liang A, Jiang H. A Simple and Sensitive Fluorescence Quenching Method for the Determination of H2O2 Using Rhodamine B and Fe3O4 Nanocatalyst. J Fluoresc 2011; 21:2015-20. [DOI: 10.1007/s10895-011-0902-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/20/2011] [Indexed: 11/24/2022]
|