1
|
Miyaguchi H. Simultaneous analysis of depurinated nucleic acid stem-loop and free adenine for ricin toxicity assay by hydrophilic interaction liquid chromatography-high-resolution mass spectrometry (HILIC-HRMS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39435592 DOI: 10.1039/d4ay01203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A simple, accurate method for measuring ricin activity was developed by detecting depurinated nucleic acid stem-loops and adenine using a commercially available hydrophilic interaction liquid chromatography (HILIC) column and a quadrupole-Orbitrap tandem mass spectrometer. Ricin in beverages was isolated using magnetic beads conjugated with ricin B-chain antibodies, and then incubated with a 14 mer RNA or a 12 mer RNA/DNA chimera, in which adenosine at the depurination site of RNA was replaced by deoxyadenosine. The adenine and depurinated nucleic acids were separated by HILIC and both analytes were detected by high-resolution mass spectrometry. The depurinated RNA was detectable at concentrations as low as 100 pM (6.5 μg mL-1) in orange juice and coffee, and 10 pM (0.65 μg mL-1) in milk and sake after incubation with the RNA substrate for 4 h. Free adenine was detectable at 10 pM in all matrices, although free adenine was also detected in all blanks and could not be distinguished from the coffee and orange juice blanks at 10 pM. When using the chimera as the substrate, the depurinated chimera and adenine were detected up to concentrations of 10 pM as larger peaks. However, since the depurinated chimera and adenine were also detected in blanks, careful judgment was needed to determine whether they were active. Following the assay, the captured ricin could be analyzed by enzymatic digestion and nano liquid chromatography-high-resolution mass spectrometry. The ricin A chain-specific T7A peptide was detectable at 10 pM for sake and at 100 pM for milk, orange juice, and coffee. Using the present method, a toxicity assay and qualitative analysis of ricin were feasible with a 0.2 mL beverage sample.
Collapse
Affiliation(s)
- Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| |
Collapse
|
2
|
Piquet P, Saadi J, Fenaille F, Kalb SR, Becher F. Rapid detection of ricin at trace levels in complex matrices by asialofetuin-coated beads and bottom-up proteomics using high-resolution mass spectrometry. Anal Bioanal Chem 2024; 416:5145-5153. [PMID: 39046503 PMCID: PMC11377644 DOI: 10.1007/s00216-024-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Ricin is a toxic protein regarded as a potential chemical weapon for bioterrorism or criminal use. In the event of a ricin incident, rapid analytical methods are essential for ricin confirmation in a diversity of matrices, from environmental to human or food samples. Mass spectrometry-based methods provide specific toxin identification but require prior enrichment by antibodies to reach trace-level detection in matrices. Here, we describe a novel assay using the glycoprotein asialofetuin as an alternative to antibodies for ricin enrichment, combined with the specific detection of signature peptides by high-resolution mass spectrometry. Additionally, optimizations made to the assay reduced the sample preparation time from 5 h to 80 min only. Method evaluation confirmed the detection of ricin at trace levels over a wide range of pH and in protein-rich samples, illustrating challenging matrices. This new method constitutes a relevant antibody-free solution for the fast and specific mass spectrometry detection of ricin in the situation of a suspected toxin incident, complementary to active ricin determination by adenine release assays.
Collapse
Affiliation(s)
- Paloma Piquet
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Justyna Saadi
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - François Fenaille
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Suzanne R Kalb
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, 30341, USA
| | - François Becher
- Département Médicaments Et Technologies Pour La Santé (DMTS), INRAE, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France.
| |
Collapse
|
3
|
Liang LH, Ma YD, Yang Y, Yu HL, Xia JM, Zhang T, Liu CC, Liu SL. A protein standard absolute quantification strategy for enhanced absolute quantification of ricin in complex matrices using in vitro synthesized mutant holoprotein as internal standard by ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1708:464373. [PMID: 37717454 DOI: 10.1016/j.chroma.2023.464373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Ricin is a highly toxic protein toxin that poses a potential bioterrorism threat due to its potency and widespread availability. However, the accurate quantification of ricin through absolute mass spectrometry (MS) using a protein standard absolute quantification (PSAQ) strategy is not widely practiced. This limitation primarily arises from the presence of interchain disulfide bonds, which hinder the production of full-length isotope-labeled ricin as an internal standard (IS) in vitro. In this study, we have developed a novel approach for the absolute quantification of ricin in complex matrices using recombinant single-chain and full-length mutant ricin as the protein IS, instead of isotope-labeled ricin, in conjunction with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The amino acid sequence of the ricin mutant internal standard (RMIS) was designed by introducing site mutations in specific amino acids of trypsin/Glu-C enzymatic digestion marker peptides of ricin. To simplify protein expression, the A-chain and B-chain of RMIS were directly linked to replace the original interchain disulfide bonds. The RMISs were synthesized using an Escherichia coli expression system. An appropriate RMIS was selected as the protein IS based on consistent digestion efficiency, UHPLC-MS/MS behavior, antibody recognition function, lectin activity, and proper depurination activity with intact ricin. The RMIS was utilized to simultaneously quantify A- and B-chain marker peptides of ricin through UHPLC-MS/MS. This method was thoroughly validated using a milk matrix. By employing internal protein standards, this quantitative strategy overcomes the challenges posed by variations in extraction recoveries, matrix effects, and digestion efficiency encountered when working with different matrices. Consequently, calibration curves generated from milk matrix-spiked samples were utilized to accurately and precisely quantify ricin in river water and plasma samples. Moreover, the established method successfully detected intact ricin in samples obtained from the sixth Organization for the Prohibition of Chemical Weapons (OPCW) exercise on biotoxin analysis. This study presents a novel PSAQ strategy that enables the accurate quantification of ricin in complex matrices.
Collapse
Affiliation(s)
- Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang-De Ma
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jun-Mei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
4
|
Rasetti-Escargueil C, Avril A. Medical Countermeasures against Ricin Intoxication. Toxins (Basel) 2023; 15:toxins15020100. [PMID: 36828415 PMCID: PMC9966136 DOI: 10.3390/toxins15020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, resulting in apoptosis, inflammation, oxidative stress, and DNA damage, in addition to the classically known rRNA damage. Ricin has been used in traditional medicine throughout the world since prehistoric times. Because ricin toxin is highly toxic and can be readily extracted from beans, it could be used as a bioweapon (CDC B-list). Due to its extreme lethality and potential use as a biological weapon, ricin toxin remains a global public health concern requiring specific countermeasures. Currently, no specific treatment for ricin intoxication is available. This review focuses on the drugs under development. In particular, some examples are reviewed to demonstrate the proof of concept of antibody-based therapy. Chemical inhibitors, small proteins, and vaccines can serve as alternatives to antibodies or may be used in combination with antibodies.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Avenue du Docteur Roux, 75015 Paris, France
- Correspondence:
| | - Arnaud Avril
- Unité Immunopathologies, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
5
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|
6
|
A Simple, Fast and Portable Method for Electrochemical Detection of Adenine Released by Ricin Enzymatic Activity. Toxins (Basel) 2021; 13:toxins13040238. [PMID: 33810228 PMCID: PMC8066795 DOI: 10.3390/toxins13040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
International authorities classify ricin toxin present in castor seed as a potential agent for use in bioterrorism. Therefore, the detection, identification, and characterization of ricin in various sample matrices are considered necessary actions for risk assessment during a suspected exposure. This study reports a portable electrochemical assay for detecting active ricin based on the adenine electro-oxidation released from herring sperm DNA substrate by its catalytic action. Also, kinetic parameters were calculated, and the values were Km of 3.14 µM and Kcat 2107 min−1. A linear response was found in optimized experimental conditions for ricin concentrations ranging from 8 to 120 ng/mL, and with a detection limit of 5.14 ng/mL. This proposed detection strategy emphasizes the possibility of field detection of active ricin in food matrices and can be applied to other endonucleolytic activities.
Collapse
|
7
|
LIANG L, XIA J, LIU C, LIU S. [Highly toxic type Ⅱ ribosome-inactivating proteins ricin and abrin and their detection methods: a review]. Se Pu 2021; 39:260-270. [PMID: 34227307 PMCID: PMC9403808 DOI: 10.3724/sp.j.1123.2020.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 11/25/2022] Open
Abstract
Type Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has N-glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis. The synergistic effect of the A-B chain inactivates the ribosome, inhibits protein synthesis, and exhibits high cytotoxicity. Ricin and abrin that are expressed by the plants Ricinus communis and Abrus precatorius, respectively, are typical type Ⅱ RIPs. The toxicity of ricin and abrin are 385 times and 2885 times, respectively, more that of the nerve agent VX. Owing to their ease of preparation, wide availability, and potential use as a bioterrorism agent, type Ⅱ RIPs have garnered increasing attention in recent years. Ricin is listed as a prohibited substance under schedule 1A of the Chemical Weapons Convention (CWC). The occurrence of ricin-related bioterrorism incidents in recent years has promoted the development of accurate, sensitive, and rapid detection and identification technology for type Ⅱ RIPs. Significant progress has been made in the study of toxicity mechanisms and detection methods of type Ⅱ RIPs, which primarily involve qualitative and quantitative analysis methods including immunological assays, mass spectrometry analysis methods, and toxin activity detection methods based on depurination and cytotoxicity. Immunoassays generally involve the specific recognition of antigens and antibodies, which is based on oligonucleotide molecular recognition elements called aptamers. These methods are fast and highly sensitive, but for highly homologous proteins in complex samples, they provide false positive results. With the rapid development of biological mass spectrometry detection technology, techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are widely used in the identification of proteins. These methods not only provide accurate information on molecular weight and structure of proteins, but also demonstrate accurate quantification. Enzyme digestion combined with mass spectrometry is the predominantly used detection method. Accurate identification of protein toxins can be achieved by fingerprint analysis of enzymatically digested peptides. For analysis of protein toxins in complex samples, abundant peptide markers are obtained using a multi-enzyme digestion strategy. Targeted mass spectrometry analysis of peptide markers is used to obtain accurate qualitative and quantitative information, which effectively improves the accuracy and sensitivity of the identification of type Ⅱ RIP toxins. Although immunoassay and mass spectrometry detection methods can provide accurate identification of type Ⅱ RIPs, they cannot determine whether the toxins will retain potency. The widely used detection methods for activity analysis of type Ⅱ RIPs include depurination assay based on N-glycosidase activity and cytotoxicity assay. Both the methods provide simple, rapid, and sensitive analysis of type Ⅱ RIP toxicity, and complement other detection methods. Owing to the importance of type Ⅱ RIP toxins, the Organization for the Prohibition of Chemical Weapons (OPCW) has proposed clear technical requirements for the identification and analysis of relevant samples. We herein reviewed the structural characteristics, mechanism of action, and the development and application of type Ⅱ RIP detection methods; nearly 70 studies on type Ⅱ RIP toxins and their detection methods have been cited. In addition to the technical requirements of OPCW for the unambiguous identification of biotoxins, the trend of future development of type Ⅱ RIP-based detection technology has been explored.
Collapse
|
8
|
|
9
|
Livet S, Worbs S, Volland H, Simon S, Dorner MB, Fenaille F, Dorner BG, Becher F. Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins (Basel) 2021; 13:toxins13010052. [PMID: 33450857 PMCID: PMC7828309 DOI: 10.3390/toxins13010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Sandrine Livet
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Stéphanie Simon
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (S.W.); (M.B.D.); (B.G.D.)
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France; (S.L.); (H.V.); (S.S.); (F.F.)
- Correspondence: ; Tel.: +33-1-69-08-13-15
| |
Collapse
|
10
|
Liang LH, Cheng X, Yu HL, Yang Y, Mu XH, Chen B, Li XS, Wu JN, Yan L, Liu CC, Liu SL. Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 413:585-597. [PMID: 33184759 DOI: 10.1007/s00216-020-03030-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
The toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry. The ricin in beverages was captured and enriched by biotinylated anti-ricin polyclonal antibodies conjugated to streptavidin magnetic beads. The purified ricin was cleaved using the developed trypsin/Glu-C tandem digestion method and then quantitatively detected by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with isotope-labeled T7A and TG11B selected as IS. The use of trypsin/Glu-C digestion allows shorter peptides, which are more suitable for MS detection, to be obtained than the use of single trypsin digestion. Under the optimized tandem digestion condition, except for T7A in the A-chain, two resulting specific peptides of TG13A, TG28A from the A-chain and two of TG11B, TG33B from the B-chain were chosen as novel marker peptides with high MS response. The uniqueness of the selected marker peptides allows for unambiguous identification of ricin among its homologous proteins in a single run. The MS response of the four novel marker peptides is increased by more than 10 times compared with that of individual corresponding tryptic peptides. Both the marker peptides of A-chain T7A and B-chain TG11B were selected as quantitative peptides based on the highest MS response among the marker peptides from their individual chains. The limit of detection (LOD) of ricin is 0.1 ng/mL in PBS and 0.5 ng/mL in either milk or orange juice. The linear range of calibration curves for ricin were 0.5-300 ng/mL in PBS, 1.0-400 ng/mL in milk, and 1.0-250 ng/mL in orange juice. The method accuracy ranged between 82.6 and 101.8% for PBS, 88.9-105.2% for milk, and 95.3-118.7% for orange juice. The intra-day and inter-day precision had relative standard deviations (%RSD) of 0.3-9.4%, 0.7-8.9%, and 0.2-6.9% in the three matrices respectively. Furthermore, whether T7A or TG11B is used as a quantitative peptide, the quantitative results of ricin are consistent. This study provides not only a practical method for the absolute quantification of ricin in beverage matrices but also a new strategy for the investigation of illegal use of ricin in chemical weapon verification tasks such as OPCW biotoxin sample analysis exercises.
Collapse
Affiliation(s)
- Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Xi Cheng
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Xi-Hui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bo Chen
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Ji-Na Wu
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China.
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
- The Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China.
| |
Collapse
|
11
|
Ye QC, Men C, Li YF, Liu JJ, Huang CZ, Zhen SJ. Catalytic hairpin assembly mediated liposome-encoded magnetic beads for signal amplification of peroxide test strip based point-of-care testing of ricin. Chem Commun (Camb) 2020; 56:14091-14094. [PMID: 33107866 DOI: 10.1039/d0cc05456a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we propose a new peroxide test strip (PTS) based point-of-care testing (POCT) method to detect ricin B-chain qualitatively and quantitatively by using catalytic hairpin assembly (CHA) mediated liposome-encoded magnetic beads for signal amplification. The sensitivity of this PTS based POCT method was improved significantly because it combined CHA signal amplification and liposome-based signal amplification.
Collapse
Affiliation(s)
- Qi Chao Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Liu CC, Liang LH, Yang Y, Yu HL, Yan L, Li XS, Chen B, Liu SL, Xi HL. Direct Acetonitrile-Assisted Trypsin Digestion Method Combined with LC-MS/MS-Targeted Peptide Analysis for Unambiguous Identification of Intact Ricin. J Proteome Res 2020; 20:369-380. [PMID: 33108200 DOI: 10.1021/acs.jproteome.0c00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin is a type II ribosome-inactivating protein toxin consisting of A and B chains linked by one interchain disulfide bond. Because of its high toxicity depending on both chains together, confirming the presence of both A and B chains of intact ricin is required during the investigation of the illegal production and application. Here, we report a novel and sensitive acetonitrile (ACN)-assisted trypsin digestion method for unambiguous identification of intact ricin by simultaneous detection of its marker peptides from A and B chains. Marker peptides were generated with a simple procedure by direct cleaving the native ricin at 45 °C for 4 h using Promega modified sequencing grade trypsin under the assistance of 10% ACN, and then directly analyzed by ultrahigh performance liquid chromatography tandem mass spectrometry. The type of trypsin was found to be one critical factor for cleavage of intact ricin based on a significant difference in the yields of specific peptides generated while using various types of trypsin. A low content of ACN in enzymatic buffer significantly reduced the digestion time from overnight to 4 h. There was commonly a better MS response of marker peptides when using the developed ACN-assisted trypsin digestion method than methanol-assisted trypsin digestion within the same 4 h. Totally, seven specific peptides with high sensitivity and specificity including three in the A-chain (TA7, TA11, and TA10) and four in the B-chain (TB6, TB14-ss-TB16, TB20, and TB18) were obtained as good marker peptides for unambiguous identification of intact ricin. The lowest concentration of native ricin for unambiguous identification was 20 ng/mL, in which three marker peptides from both the A-chain and B-chain could be measured with a minimum of three ion transitions. Combined with affinity enrichment, the developed approach was successfully applied for the measurement of intact ricin from the complicated matrix samples of the second, third, and fourth biotoxin exercises organized by the Organisation for the Prohibition of Chemical Weapons (OPCW). This study has provided a recommended detection method combined with one novel ACN-assisted trypsin digestion with MS for forensic unambiguous confirmation of trace ricin intact with high confidence.
Collapse
Affiliation(s)
- Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.,Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
13
|
Lin B, Daniels BJ, Middleditch MJ, Furkert DP, Brimble MA, Bong J, Stephens JM, Loomes KM. Utility of the Leptospermum scoparium Compound Lepteridine as a Chemical Marker for Manuka Honey Authenticity. ACS OMEGA 2020; 5:8858-8866. [PMID: 32337448 PMCID: PMC7178798 DOI: 10.1021/acsomega.0c00486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/25/2020] [Indexed: 06/01/2023]
Abstract
Manuka honey is a premium food product with unique antimicrobial bioactivity. Concerns with mislabeled manuka honey require robust assays to determine authenticity. Lepteridine is a Leptospermum-specific fluorescent molecule with potential as an authenticity marker. We describe a mass spectrometry-based assay to measure lepteridine based on an isotopically labeled lepteridine standard. Using this assay, lepteridine concentrations in manuka honey samples strongly correlated with concentrations quantitated by either high-performance liquid chromatography-ultraviolet (HPLC-UV) or fluorescence. A derived minimum lepteridine threshold concentration was compared with the New Zealand regulatory definition for manuka honey to determine "manuka honey" authenticity on a set of commercial samples. Both methods effectively distinguished manuka honey from non-manuka honeys. The regulatory definition excludes lepteridine but otherwise includes the quantification of multiple floral markers together with pollen analysis. Our findings suggest that the quantification of lepteridine alone or in combination with leptosperin could be implemented as an effective screening method to identify manuka honey, likely to achieve an outcome similar to the regulatory definition.
Collapse
Affiliation(s)
- Bin Lin
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
| | - Benjamin J. Daniels
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Martin J. Middleditch
- School
of Biological Sciences, The University of
Auckland, 23 Symonds
Street, Auckland 1010, New Zealand
| | - Daniel P. Furkert
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Jessie Bong
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- Comvita
NZ Limited, 23 Wilson
South Road, Paengaroa, PB1, Te Puke 3189, New Zealand
| | - Jonathan M. Stephens
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- Comvita
NZ Limited, 23 Wilson
South Road, Paengaroa, PB1, Te Puke 3189, New Zealand
| | - Kerry M. Loomes
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Liu C, Wu S, Yan Y, Dong Y, Shen X, Huang C. Application of magnetic particles in forensic science. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Liang LH, Liu CC, Chen B, Yan L, Yu HL, Yang Y, Wu JN, Li XS, Liu SL. LC-HRMS Screening and Identification of Novel Peptide Markers of Ricin Based on Multiple Protease Digestion Strategies. Toxins (Basel) 2019; 11:toxins11070393. [PMID: 31284465 PMCID: PMC6669667 DOI: 10.3390/toxins11070393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Both ricin and R. communisagglutinin (RCA120), belonging to the type II ribosome-inactivating proteins (RIPs-Ⅱ), are derived from the seeds of the castor bean plant. They share very similar amino acid sequences, but ricin is much more toxic than RCA120. It is urgently necessary to distinguish ricin and RCA120 in response to public safety. Currently, mass spectrometric assays are well established for unambiguous identification of ricin by accurate analysis of differentiated amino acid residues after trypsin digestion. However, diagnostic peptides are relatively limited for unambiguous identification of trace ricin, especially in complex matrices. Here, we demonstrate a digestion strategy of multiple proteinases to produce novel peptide markers for unambiguous identification of ricin. Liquid chromatography-high resolution MS (LC-HRMS) was used to verify the resulting peptides, among which only the peptides with uniqueness and good MS response were selected as peptide markers. Seven novel peptide markers were obtained from tandem digestion of trypsin and endoproteinase Glu-C in PBS buffer. From the chymotrypsin digestion under reduction and non-reduction conditions, eight and seven novel peptides were selected respectively. Using pepsin under pH 1~2 and proteinase K digestion, six and five peptides were selected as novel peptide markers. In conclusion, the obtained novel peptides from the established digestion methods can be recommended for the unambiguous identification of ricin during the investigation of illegal use of the toxin.
Collapse
Affiliation(s)
- Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China.
| | - Bo Chen
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long Yan
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Ji-Na Wu
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Xiao-Sen Li
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
- The laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China.
| |
Collapse
|
16
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
17
|
Chen D, Bryden WA, Fenselau C. Rapid analysis of ricin using hot acid digestion and MALDI-TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1013-1017. [PMID: 29974543 PMCID: PMC7278220 DOI: 10.1002/jms.4257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 06/21/2018] [Indexed: 05/22/2023]
Abstract
Ricin is a protein toxin of considerable interest in forensics. A novel strategy is reported here for rapid detection of ricin based on microwave-assisted hot acid digestion and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Ricin samples are subjected to aspartate-selective hydrolysis, and biomarker peptide products are characterized by mass spectrometry. Spectra are obtained using post source decay and searched against a protein database. Several advantages are offered by chemical hydrolysis, relative to enzymatic hydrolysis, notably speed, robustness, and the production of heavier biomarkers. Agglutinin contamination is reliably recognized, as is the disulfide bond strongly characteristic of ricin.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| |
Collapse
|
18
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
19
|
Hansbauer EM, Worbs S, Volland H, Simon S, Junot C, Fenaille F, Dorner BG, Becher F. Rapid Detection of Abrin Toxin and Its Isoforms in Complex Matrices by Immuno-Extraction and Quantitative High Resolution Targeted Mass Spectrometry. Anal Chem 2017; 89:11719-11727. [PMID: 28984440 DOI: 10.1021/acs.analchem.7b03189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abrin expressed by the tropical plant Abrus precatorius is highly dangerous with an estimated human lethal dose of 0.1-1 μg/kg body weight. Due to the potential misuse as a biothreat agent, abrin is in the focus of surveillance. Fast and reliable methods are therefore of great importance for early identification. Here, we have developed an innovative and rapid multiepitope immuno-mass spectrometry workflow which is capable of unambiguously differentiating abrin and its isoforms in complex matrices. Toxin-containing samples were incubated with magnetic beads coated with multiple abrin-specific antibodies, thereby concentrating and extracting all the isoforms. Using an ultrasonic bath for digestion enhancement, on-bead trypsin digestion was optimized to obtain efficient and reproducible peptide recovery in only 30 min. Improvements made to the workflow reduced total analysis time to less than 3 h. A large panel of common and isoform-specific peptides was monitored by multiplex LC-MS/MS through the parallel reaction monitoring mode on a quadrupole-Orbitrap high resolution mass spectrometer. Additionally, absolute quantification was accomplished by isotope dilution with labeled AQUA peptides. The newly established method was demonstrated as being sensitive and reproducible with quantification limits in the low ng/mL range in various food and clinical matrices for the isoforms of abrin and also the closely related, less toxic Abrus precatorius agglutinin. This method allows for the first time the rapid detection, differentiation, and simultaneous quantification of abrin and its isoforms by mass spectrometry.
Collapse
Affiliation(s)
- Eva-Maria Hansbauer
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute , Berlin, Germany
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Christophe Junot
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - François Fenaille
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute , Berlin, Germany
| | - François Becher
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| |
Collapse
|
20
|
Brandtzaeg OK, Røen BT, Enger S, Lundanes E, Wilson SR. Multichannel Open Tubular Enzyme Reactor Online Coupled with Mass Spectrometry for Detecting Ricin. Anal Chem 2017; 89:8667-8673. [PMID: 28783436 DOI: 10.1021/acs.analchem.7b02590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For counterterrorism purposes, a selective nano liquid chromatography-mass spectrometry (nanoLC-MS) platform was developed for detecting the highly lethal protein ricin from castor bean extract. Manual sample preparation steps were omitted by implementing a trypsin/Lys-C enzyme-immobilized multichannel reactor (MCR) consisting of 126 channels (8 μm inner diameter in all channels) that performed online digestion of proteins (5 min reaction time, instead of 4-16 h in previous in-solution methods). Reduction and alkylation steps were not required. The MCR allowed identification of ricin by signature peptides in all targeted mode injections performed, with a complete absence of carry-over in blank injections. The MCRs (interior volume ≈ 1 μL) have very low backpressure, allowing for trivial online coupling with commercial nanoLC-MS systems. The open tubular nature of the MCRs allowed for repeatable within/between-reactor preparation and performance.
Collapse
Affiliation(s)
| | - Bent-Tore Røen
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Siri Enger
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
21
|
Determination of ricin intoxication in biological samples by monitoring depurinated 28S rRNA in a unique reverse transcription-ligase-polymerase chain reaction assay. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0377-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Li CH, Xiao X, Tao J, Wang DM, Huang CZ, Zhen SJ. A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens Bioelectron 2017; 91:149-154. [PMID: 28006682 DOI: 10.1016/j.bios.2016.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022]
Abstract
The toxic plant protein ricin is a potential agent for criminal or bioterrorist attacks due to the wide availability and relative ease of preparation. Herein, we developed a novel strategy for the detection of ricin B-chain (RTB) based on isothermal strand-displacement polymerase reaction (ISDPR) by using aptamer as a recognition element and graphene oxide (GO) as a low background platform. In this method, ricin-binding aptamer (RBA) hybridized with a short blocker firstly, and then was immobilized on the surface of streptavidin-coated magnetic beads (MBs). The addition of RTB could release the blocker, which could hybridize with the dye-modified hairpin probe and trigger the ISDPR, resulting in high fluorescence intensity. In the absence of RTB, however, the fluorescence of the dye could be quenched strongly by GO, resulting in the extremely low background signal. Thus, RTB could be sensitively detected by the significantly increased fluorescence signal. The linear range of the current analytical system was from 0.75μg/mL to 100μg/mL and the limit of detection (3σ) was 0.6μg/mL. This method has been successfully utilized for the detection of both the RTB and the entire ricin toxin in real samples, and it could be generalized to any kind of target detection based on an appropriate aptamer.
Collapse
Affiliation(s)
- Chun Hong Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, PR China
| | - Xue Xiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, PR China
| | - Jing Tao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, PR China
| | - Dong Mei Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, PR China; College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, PR China.
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
23
|
Rajoria S, Kumar RB, Gupta P, Alam SI. Postexposure Recovery and Analysis of Biological Agent in a Simulated Biothreat Scenario Using Tandem Mass Spectrometry. Anal Chem 2017; 89:4062-4070. [DOI: 10.1021/acs.analchem.6b04862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sakshi Rajoria
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Pallavi Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| |
Collapse
|
24
|
Fan JR, Zhu J, Wu WG, Huang Y. Plasmonic Metasurfaces Based on Nanopin-Cavity Resonator for Quantitative Colorimetric Ricin Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601710. [PMID: 27709785 DOI: 10.1002/smll.201601710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/27/2016] [Indexed: 06/06/2023]
Abstract
In view of the toxic potential of a bioweapon threat, rapid visual recognition and sensing of ricin has been of considerable interest while remaining a challenging task up to date. In this study, a gold nanopin-based colorimetric sensor is developed realizing a multicolor variation for ricin qualitative recognition and analysis. It is revealed that such plasmonic metasurfaces based on nanopin-cavity resonator exhibit reflective color appearance, due to the excitation of standing-wave resonances of narrow bandwidth in visible region. This clear color variation is a consequence of the reflective color mixing defined by different resonant wavelengths. In addition, the colored metasurfaces appear sharp color difference in a narrow refractive index range, which makes them especially well-suited for sensing applications. Therefore, this antibody-functionalized nanopin-cavity biosensor features high sensitivity and fast response, allowing for visual quantitative ricin detection within the range of 10-120 ng mL-1 (0.15 × 10-9 -1.8 × 10-9 m), a limit of detection of 10 ng mL-1 , and the typical measurement time of less than 10 min. The on-chip integration of such nanopin metasurfaces to portable colorimetric microfluidic device may be envisaged for the quantitative studies of a variety of biochemical molecules.
Collapse
Affiliation(s)
- Jiao-Rong Fan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
- Innovation Center for MicroNanoelectronics and Integrated System, Beijing, 100871, P. R. China
| | - Jia Zhu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
- Innovation Center for MicroNanoelectronics and Integrated System, Beijing, 100871, P. R. China
| | - Wen-Gang Wu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
- Innovation Center for MicroNanoelectronics and Integrated System, Beijing, 100871, P. R. China
| | - Yun Huang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
- Innovation Center for MicroNanoelectronics and Integrated System, Beijing, 100871, P. R. China
| |
Collapse
|
25
|
Alam SI, Uppal A, Gupta P, Kamboj DV. Multiple-reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography-tandem mass spectrometry. Lett Appl Microbiol 2016; 64:217-224. [PMID: 28024103 DOI: 10.1111/lam.12706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/28/2022]
Abstract
Clostridium perfringens epsilon toxin, staphylococcal enterotoxin B and shiga toxin are implicated in a number of diseases and food-borne intoxications and are considered potential agents for bioterrorism and warfare. Artificially generated aerosol is the likely mode of delivery of these for nefarious uses, potentially capable of causing mass destruction to human and animal health by inhalation of toxic bioaerosol. Multiplex and unambiguous detection of these agents is of paramount importance for emergency response in a biothreat scenario and for food safety. Multiple-reaction monitoring (MRM) assay for simultaneous monitoring of the three toxins is reported here using reverse-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Three different peptides with two fragment ions each were considered for quantification and confirmation. One of the three MRM transitions from each toxin, which exhibited the best sensitivity, was selected for multiplexing of the assay. Simulating a biothreat scenario wherein the bioaerosol is collected in 10 ml of buffer, the multiplex assay was tested with blind samples with one or more of the three toxins even in the presence of interfering Escherichia coli lysate proteins.
Collapse
Affiliation(s)
- S I Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Uppal
- Sciex, A Division of DHR Holding India Pvt. Ltd., Gurgaon, India
| | - P Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| | - D V Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
26
|
Wang D, Baudys J, Barr JR, Kalb SR. Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry. Anal Chem 2016; 88:6867-72. [PMID: 27264550 DOI: 10.1021/acs.analchem.6b01486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin is a highly toxic protein which causes cell death by blocking protein synthesis and is considered a potential bioterrorism agent. Rapid and sensitive detection of ricin toxin in various types of sample matrices is needed as an emergency requirement for public health and antibioterrorism response. An in vitro MALDI TOF MS-based activity assay that detects ricin mediated depurination of synthetic substrates was improved through optimization of the substrate, reaction conditions, and sample preparation. In this method, the ricin is captured by a specific polycolonal antibody followed by hydrolysis reaction. The ricin activity is determined by detecting the unique cleavage product of synthetic oligomer substrates. The detection of a depurinated substrate was enhanced by using a more efficient RNA substrate and optimizing buffer components, pH, and reaction temperature. In addition, the factors involved in mass spectrometry analysis, such as MALDI matrix, plate, and sample preparation, were also investigated to improve the ionization of the depurinated product and assay reproducibility. With optimized parameters, the limit of detection of 0.2 ng/mL of ricin spiked in buffer and milk was accomplished, representing more than 2 orders of magnitude enhancement in assay sensitivity. Improving assay's ruggeddness or reproducibility also made it possible to quantitatively detect active ricin with 3 orders of magnitude dynamic range.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Suzanne R Kalb
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| |
Collapse
|
27
|
Stern D, Pauly D, Zydek M, Müller C, Avondet MA, Worbs S, Lisdat F, Dorner MB, Dorner BG. Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor. Biosens Bioelectron 2016; 78:111-117. [DOI: 10.1016/j.bios.2015.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/23/2015] [Accepted: 11/08/2015] [Indexed: 01/26/2023]
|
28
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
29
|
Tang JJ, Sun JF, Lui R, Zhang ZM, Liu JF, Xie JW. New Surface-Enhanced Raman Sensing Chip Designed for On-Site Detection of Active Ricin in Complex Matrices Based on Specific Depurination. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2449-2455. [PMID: 26719952 DOI: 10.1021/acsami.5b12860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quick and accurate on-site detection of active ricin has very important realistic significance in view of national security and defense. In this paper, optimized single-stranded oligodeoxynucleotides named poly(21dA), which function as a depurination substrate of active ricin, were screened and chemically attached on gold nanoparticles (AuNPs, ∼100 nm) via the Au-S bond [poly(21dA)-AuNPs]. Subsequently, poly(21dA)-AuNPs were assembled on a dihydrogen lipoic-acid-modified Si wafer (SH-Si), thus forming the specific surface-enhanced Raman spectroscopy (SERS) chip [poly(21dA)-AuNPs@SH-Si] for depurination of active ricin. Under optimized conditions, active ricin could specifically hydrolyze multiple adenines from poly(21dA) on the chip. This depurination-induced composition change could be conveniently monitored by measuring the distinct attenuation of the SERS signature corresponding to adenine. To improve sensitivity of this method, a silver nanoshell was deposited on post-reacted poly(21dA)-AuNPs, which lowered the limit of detection to 8.9 ng mL(-1). The utility of this well-controlled SERS chip was successfully demonstrated in food and biological matrices spiked with different concentrations of active ricin, thus showing to be very promising assay for reliable and rapid on-site detection of active ricin.
Collapse
Affiliation(s)
- Ji-Jun Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, People's Republic of China
| | - Jie-Fang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Rui Lui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Zong-Mian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- Institute of Environment and Health, Jianghan University , Wuhan, Hubei 430056, People's Republic of China
| | - Jian-Wei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, People's Republic of China
| |
Collapse
|
30
|
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins (Basel) 2015; 7:4987-5010. [PMID: 26703726 PMCID: PMC4690109 DOI: 10.3390/toxins7124859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Collapse
|
31
|
Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR. Recommended Immunological Assays to Screen for Ricin-Containing Samples. Toxins (Basel) 2015; 7:4967-86. [PMID: 26703725 PMCID: PMC4690108 DOI: 10.3390/toxins7124858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023] Open
Abstract
Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories’ capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods “dangerous” samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Marc-André Avondet
- Federal Department of Defence, Civil Protection and Sport-SPIEZ Laboratory, Spiez 3700, Switzerland.
| | - Dobryan M Tracz
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Lisa Schmidt
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Cindi R Corbett
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
32
|
Worbs S, Skiba M, Söderström M, Rapinoja ML, Zeleny R, Russmann H, Schimmel H, Vanninen P, Fredriksson SÅ, Dorner BG. Characterization of Ricin and R. communis Agglutinin Reference Materials. Toxins (Basel) 2015; 7:4906-34. [PMID: 26703723 PMCID: PMC4690106 DOI: 10.3390/toxins7124856] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon "gold standards" are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization-time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Söderström
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Marja-Leena Rapinoja
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Reinhard Zeleny
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Heiko Russmann
- Bundeswehr Research Institute for Protective Technologies and NBC Protection, Humboldtstr. 100, 29633 Munster, Germany.
| | - Heinz Schimmel
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Paula Vanninen
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Sten-Åke Fredriksson
- FOI, Swedish Defence Research Agency, CBRN Defence and Security, Cementvagen 20, 901 82 Umeå, Sweden.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| |
Collapse
|
33
|
Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins (Basel) 2015; 7:4881-94. [PMID: 26610568 PMCID: PMC4690104 DOI: 10.3390/toxins7124854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.
Collapse
|
34
|
Dupré M, Gilquin B, Fenaille F, Feraudet-Tarisse C, Dano J, Ferro M, Simon S, Junot C, Brun V, Becher F. Multiplex Quantification of Protein Toxins in Human Biofluids and Food Matrices Using Immunoextraction and High-Resolution Targeted Mass Spectrometry. Anal Chem 2015; 87:8473-80. [DOI: 10.1021/acs.analchem.5b01900] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mathieu Dupré
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Benoit Gilquin
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - François Fenaille
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Cécile Feraudet-Tarisse
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Julie Dano
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Myriam Ferro
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - Stéphanie Simon
- CEA, DSV, iBiTec-S, Laboratoire d’études
et de recherches en immunoanalyse, 91191 Gif-sur-Yvette, France
| | - Christophe Junot
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| | - Virginie Brun
- Université
Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France
- CEA, iRTSV-BGE, F-38000 Grenoble, France
- INSERM, BGE, F-38000 Grenoble, France
| | - François Becher
- CEA, DSV, iBiTec-S, Laboratoire d’études
du métabolisme des médicaments, 91191 Gif-sur-Yvette, France
| |
Collapse
|
35
|
Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, McGrath SC, Morse SA, Barr JR. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 2015; 95:72-83. [PMID: 25576235 PMCID: PMC5303535 DOI: 10.1016/j.toxicon.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/06/2015] [Indexed: 11/22/2022]
Abstract
The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity.
Collapse
Affiliation(s)
- David M Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Lisa G McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Samantha M Prezioso
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Andrew J Carter
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Yulanda M Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Sara C McGrath
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Stephen A Morse
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - John R Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA.
| |
Collapse
|
36
|
Bozza WP, Tolleson WH, Rivera Rosado LA, Zhang B. Ricin detection: Tracking active toxin. Biotechnol Adv 2015; 33:117-123. [DOI: 10.1016/j.biotechadv.2014.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022]
|
37
|
Zengin A, Tamer U, Caykara T. Fabrication of a SERS based aptasensor for detection of ricin B toxin. J Mater Chem B 2015; 3:306-315. [DOI: 10.1039/c4tb00290c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(N-acryoyl-l-valine, AVAL) brushes were grafted onto a silicon substrateviaRAFT polymerization, and then ricin B aptamer was covalently conjugated to the poly(AVAL) brushes to recognize and detect ricin B toxinviaSERS-based sandwich assay.
Collapse
Affiliation(s)
- Adem Zengin
- Faculty of Science
- Department of Chemistry
- Gazi University
- Ankara
- Turkey
| | - Ugur Tamer
- Faculty of Pharmacy
- Department of Analytical Chemistry
- Gazi University
- Ankara
- Turkey
| | - Tuncer Caykara
- Faculty of Science
- Department of Chemistry
- Gazi University
- Ankara
- Turkey
| |
Collapse
|
38
|
Fredriksson SÅ, Artursson E, Bergström T, Östin A, Nilsson C, Åstot C. Identification of RIP-II Toxins by Affinity Enrichment, Enzymatic Digestion and LC-MS. Anal Chem 2014; 87:967-74. [DOI: 10.1021/ac5032918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sten-Åke Fredriksson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Elisabet Artursson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Tomas Bergström
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Anders Östin
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Calle Nilsson
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | - Crister Åstot
- Swedish Defence Research Agency (FOI), CBRN Defence and Security, SE-901 82 Umeå, Sweden
| |
Collapse
|
39
|
Chenau J, Fenaille F, Simon S, Filali S, Volland H, Junot C, Carniel E, Becher F. Detection of Yersinia pestis in environmental and food samples by intact cell immunocapture and liquid chromatography-tandem mass spectrometry. Anal Chem 2014; 86:6144-52. [PMID: 24847944 DOI: 10.1021/ac501371r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Yersinia pestis is the causative agent of bubonic and pneumonic plague, an acute and often fatal disease in humans. In addition to the risk of natural exposure to plague, there is also the threat of a bioterrorist act, leading to the deliberate spread of the bacteria in the environment or food. We report here an immuno-liquid chromatography-tandem mass spectrometry (immuno-LC-MS/MS) method for the direct (i.e., without prior culture), sensitive, and specific detection of Y. pestis in such complex samples. In the first step, a bottom-up proteomics approach highlighted three relevant protein markers encoded by the Y. pestis-specific plasmids pFra (murine toxin) and pPla (plasminogen activator and pesticin). Suitable proteotypic peptides were thoroughly selected to monitor the three protein markers by targeted MS using the selected reaction monitoring (SRM) mode. Immunocapture conditions were optimized for the isolation and concentration of intact bacterial cells from complex samples. The immuno-LC-SRM assay has a limit of detection of 2 × 10(4) CFU/mL in milk or tap water, which compares well with those of state-of-the-art immunoassays. Moreover, we report the first direct detection of Y. pestis in soil, which could be extremely useful in confirming Y. pestis persistence in the ground.
Collapse
Affiliation(s)
- Jérôme Chenau
- Service de Pharmacologie et d'Immunoanalyse, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA) , 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang W, Liqing W, Fei D, Bin Y, Yi Y, Jing W. Development of an SI-Traceable HPLC-Isotope Dilution Mass Spectrometry Method To Quantify β-Lactoglobulin in Milk Powders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3073-3080. [PMID: 24628306 DOI: 10.1021/jf4054337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
β-Lactoglobulin (β-LG) is one of the major allergenic proteins in milk. There is an urgent demand for an accurate and traceable method to develop β-LG certified reference material (CRM). In this work, β-LG was enzymatically digested and a specific peptide was chosen for quantitation by isotope-dilution mass spectrometry (IDMS). With amino acid CRMs as standards, the results could be traced to SI unit. By the proposed method, the recovery ranged from 86.0% to 118.3% with CVs <9.0%. The LOD and LOQ were 4.8 × 10-5 g/g and 1.6 × 10-4 g/g of β-LG in milk powder, respectively. Ten samples from domestic market were analyzed with CVs <5.6%, and the relative expanded uncertainties ranged from 4.2% to 5.9% (k = 2). With the CRMs, it is expected that the comparability of β-LG quantitation results will be improved among different laboratories.
Collapse
Affiliation(s)
- Wang Yang
- College of Science, Beijing University of Chemical Technology , Beijing, 100029, People's Republic of China
| | - Wu Liqing
- Division of Medical and Biological Measurement, National Institute of Metrology , Beijing, People's Republic of China
| | - Duan Fei
- College of Science, Beijing University of Chemical Technology , Beijing, 100029, People's Republic of China
| | - Yang Bin
- Division of Medical and Biological Measurement, National Institute of Metrology , Beijing, People's Republic of China
| | - Yang Yi
- College of Science, Beijing University of Chemical Technology , Beijing, 100029, People's Republic of China
| | - Wang Jing
- Division of Medical and Biological Measurement, National Institute of Metrology , Beijing, People's Republic of China
| |
Collapse
|
41
|
Ma X, Tang J, Li C, Liu Q, Chen J, Li H, Guo L, Xie J. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 2014; 406:5147-55. [DOI: 10.1007/s00216-014-7710-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
42
|
Tevell Åberg A, Björnstad K, Hedeland M. Mass Spectrometric Detection of Protein-Based Toxins. Biosecur Bioterror 2013; 11 Suppl 1:S215-26. [DOI: 10.1089/bsp.2012.0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Annica Tevell Åberg
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kristian Björnstad
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Amoako KK, Janzen TW, Shields MJ, Hahn KR, Thomas MC, Goji N. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology. Int J Food Microbiol 2013; 165:319-25. [DOI: 10.1016/j.ijfoodmicro.2013.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
44
|
Pittman CT, Guido J, Hamelin EI, Blake TA, Johnson RC. Analysis of a ricin biomarker, ricinine, in 989 individual human urine samples. J Anal Toxicol 2013; 37:237-40. [PMID: 23471955 PMCID: PMC4547525 DOI: 10.1093/jat/bkt010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ricinine (3-cyano-4-methoxy-N-methyl-2-pyridone) is a urinary biomarker that can be measured to confirm human exposure to castor bean products such as ricin. Because many consumer products contain castor oil, another castor bean product, ricinine may be detectable in the general population. The following study characterized urinary ricinine concentrations from 989 individuals who were presumed to be unexposed to ricin. An automated diagnostic method was utilized to simplify the analysis of this large sample set. Sample preparation included a 96-well polystyrene divinylbenzene high throughput extraction and preconcentration step. Purified samples were analyzed by an efficient dual column, reversed-phase liquid chromatography separation and (13)C-isotope dilution tandem mass spectrometry. In this convenience sample set, only 1.2% of the urine specimens had detectable amounts of ricinine, randomly distributed between 0.186 and 4.15 ng/mL.
Collapse
Affiliation(s)
- Christopher T. Pittman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Atlanta, GA 30341
| | - John Guido
- Oak Ridge Institute for Scientific Education, MC-100-44, P.O. Box 117, Oak Ridge, TN 37831
| | - Elizabeth I. Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Atlanta, GA 30341
| | - Thomas A. Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Atlanta, GA 30341
| | - Rudolph C. Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Atlanta, GA 30341
| |
Collapse
|
45
|
HUEBNER M, WUTZ K, SZKOLA A, NIESSNER R, SEIDEL M. A Glyco-chip for the Detection of Ricin by an Automated Chemiluminescence Read-out System. ANAL SCI 2013; 29:461-6. [DOI: 10.2116/analsci.29.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Maria HUEBNER
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Klaus WUTZ
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Agathe SZKOLA
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Reinhard NIESSNER
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| | - Michael SEIDEL
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich
| |
Collapse
|
46
|
Alam SI, Kumar B, Kamboj DV. Multiplex Detection of Protein Toxins Using MALDI-TOF-TOF Tandem Mass Spectrometry: Application in Unambiguous Toxin Detection from Bioaerosol. Anal Chem 2012; 84:10500-7. [DOI: 10.1021/ac3028678] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior-474002, India
| | - Bhoj Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior-474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior-474002, India
| |
Collapse
|
47
|
Seyer A, Fenaille F, Féraudet-Tarisse C, Volland H, Popoff MR, Tabet JC, Junot C, Becher F. Rapid Quantification of Clostridial Epsilon Toxin in Complex Food and Biological Matrixes by Immunopurification and Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2012; 84:5103-9. [DOI: 10.1021/ac300880x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices. PLoS One 2012; 7:e35360. [PMID: 22532852 PMCID: PMC3330811 DOI: 10.1371/journal.pone.0035360] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices.
Collapse
|
49
|
Evaluation and comparison of three enzyme-linked immunosorbent assay formats for the detection of ricin in milk and serum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2011.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 2011; 3:1332-72. [PMID: 22069699 PMCID: PMC3210461 DOI: 10.3390/toxins3101332] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022] Open
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
Collapse
Affiliation(s)
- Sylvia Worbs
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Street 96, Giessen 35392, Germany;
| | - Diana Pauly
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Marc-André Avondet
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin Schaer
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin B. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Brigitte G. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| |
Collapse
|