1
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Xiao X, Yuan C, Li T, Fock J, Svedlindh P, Tian B. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations. Biosens Bioelectron 2022; 215:114560. [PMID: 35841765 DOI: 10.1016/j.bios.2022.114560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast. By applying magnetic actuation, magnetic particles exert forces on target objects for highly selective operation even in non-purified samples. We herein describe a subgroup of magnetic biosensors, namely optomagnetic biosensors, which employ alternating magnetic fields to generate periodic movements of magnetic labels. The optical modulation induced by the dynamics of magnetic labels is then analyzed by photodetectors, providing information of, e.g., hydrodynamic size changes of the magnetic labels. Optomagnetic sensing mechanisms can suppress the noise (by performing lock-in detection), accelerate the reaction (by magnetic force-enhanced molecular collision), and facilitate homogeneous/volumetric detection. Moreover, optomagnetic sensing can be performed using a low magnetic field (<10 mT) without sophisticated light sources or pickup coils, further enhancing its applicability for point-of-care tests. This review concentrates on optomagnetic biosensing techniques of different concepts classified by the magnetic actuation strategy, i.e., magnetic field-enhanced agglutination, rotating magnetic field-based particle rotation, and oscillating magnetic field-induced Brownian relaxation. Optomagnetic sensing principles applied with different actuation strategies are introduced as well. For each representative optomagnetic biosensor, a simple immunoassay strategy-based application is introduced (if possible) for methodological comparison. Thereafter, challenges and perspectives are discussed, including minimization of nonspecific binding, on-chip integration, and multiplex detection, all of which are key requirements in point-of-care diagnostics.
Collapse
Affiliation(s)
- Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Tingting Li
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China.
| |
Collapse
|
3
|
Zhang Z, Liu N, Zhang Z, Xu D, Ma S, Wang X, Zhou T, Zhang G, Wang F. Construction of Aptamer-Based Molecular Beacons with Varied Blocked Structures and Targeted Detection of Thrombin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8738-8745. [PMID: 34270267 DOI: 10.1021/acs.langmuir.1c00994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A kind of blocked aptamer-functionalized molecular beacon (MB) was designed as fluorescence sensors to detect thrombins by binding-induced "turn on" structural transformation. Three MBs named MB(8 + 8), MB(15 + 8), and MB(15 + 6) consisted of two single-stranded oligonucleotides. One long single-stranded oligonucleotide (abbreviated as SS) contained a thrombin aptamer sequence and was modified with a fluorescence group and quenching group on each end side. Another short single-stranded oligonucleotide (written as cDNA) was partially complementary to the long SS. It was interesting to find that the complementary sequence length of cDNA greatly influenced the structure of the MBs. The construction of MB experiments proved that MB(8 + 8) and MB(15 + 8) could form the quenching MBs but MB(15 + 6) could not. MB(8 + 8) was composed of a SS strand paired with a complementary cDNA(8 + 8), which was called one-to-one combination, while MB(15 + 8) was two-to-two combination and MB(15 + 6) was one-to-two combination. When the ratio of SS and cDNA (15 + 8) was 1:1, the quenching efficiency reached maximum. But with the molar ratio of SS and cDNA(8 + 8) increasing, the quenching efficiency increased continuously. Under the optimal conditions that we studied, the detection limit of thrombin by MB(8 + 8) and MB(15 + 8) was 0.19 and 1.2 nM, respectively. In addition, the assay proved to be selective, and the average recovery of thrombin detected by MB(8 + 8) and MB(15 + 8) in diluted serum was 95.4 and 94.5%, respectively.
Collapse
Affiliation(s)
- Zhiqing Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Nana Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zichen Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Dongyan Xu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuai Ma
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiufeng Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Ting Zhou
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Guodong Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
4
|
Zhang H, Yang L, Zhu X, Wang Y, Yang H, Wang Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv Healthc Mater 2020; 9:e2000364. [PMID: 32406199 DOI: 10.1002/adhm.202000364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Rapid and sensitive detection of thrombin is imperative for the early diagnosis, prevention, and treatment of thrombin-related diseases. Here, an ultrasensitive and rapid thrombin biosensor is developed based on rationally designed trifunctional protein HTs, comprising three functional units, including a far-red fluorescent protein smURFP, hydrophobin HGFI, and a thrombin cleavage site (TCS). smURFP is used as a detection signal to eliminate any interference from the autofluorescence of sample matrix to increase detection sensitivity. HGFI serve as an adhesive unit to allow rapid immobilization of HTs on a multiwall plate. The TCS linking HGFI and smURFP function as a sensing element to recognize and detect thrombin. HTs immobilization is symmetrically optimized and characterized. Thrombin assay reveals the specific recognition of active thrombin in samples and the hydrolysis of the immobilized HTs, resulting in a decrease in the fluorescence intensity of the sample in a thrombin concentration-dependent manner. The limit of detection (LOD) is as low as 0.2 am in the serum. To the authors' knowledge, this is the lowest LOD ever reported for any thrombin biosensor. This study sheds light on the engineering of multifunctional proteins for biosensing.
Collapse
Affiliation(s)
- Huayue Zhang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Lu Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Xiaqing Zhu
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Yanyan Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Haitao Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| | - Zefang Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| |
Collapse
|
5
|
Liu Y, Jiang X, Cao W, Sun J, Gao F. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers. SENSORS (BASEL, SWITZERLAND) 2018; 18:E589. [PMID: 29443917 PMCID: PMC5855441 DOI: 10.3390/s18020589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Carboxyl-functionalized semiconducting polymer dots (Pdots) were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers) was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0-50 nM (R² = 0.990) and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0-30 nM (R² = 0.997), with a detection limit of 0.56 nM and a recovery rate of 96.2-104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.
Collapse
Affiliation(s)
- Yizhang Liu
- Department of Food and Environmental Engineering, Vocational and Technical College, Chuzhou 239001, China.
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Xuekai Jiang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Wenfeng Cao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
6
|
Lietard J, Abou Assi H, Gómez-Pinto I, González C, Somoza MM, Damha MJ. Mapping the affinity landscape of Thrombin-binding aptamers on 2΄F-ANA/DNA chimeric G-Quadruplex microarrays. Nucleic Acids Res 2017; 45:1619-1632. [PMID: 28100695 PMCID: PMC5389548 DOI: 10.1093/nar/gkw1357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023] Open
Abstract
In situ fabricated nucleic acids microarrays are versatile and very high-throughput platforms for aptamer optimization and discovery, but the chemical space that can be probed against a given target has largely been confined to DNA, while RNA and non-natural nucleic acid microarrays are still an essentially uncharted territory. 2΄-Fluoroarabinonucleic acid (2΄F-ANA) is a prime candidate for such use in microarrays. Indeed, 2΄F-ANA chemistry is readily amenable to photolithographic microarray synthesis and its potential in high affinity aptamers has been recently discovered. We thus synthesized the first microarrays containing 2΄F-ANA and 2΄F-ANA/DNA chimeric sequences to fully map the binding affinity landscape of the TBA1 thrombin-binding G-quadruplex aptamer containing all 32 768 possible DNA-to-2΄F-ANA mutations. The resulting microarray was screened against thrombin to identify a series of promising 2΄F-ANA-modified aptamer candidates with Kds significantly lower than that of the unmodified control and which were found to adopt highly stable, antiparallel-folded G-quadruplex structures. The solution structure of the TBA1 aptamer modified with 2΄F-ANA at position T3 shows that fluorine substitution preorganizes the dinucleotide loop into the proper conformation for interaction with thrombin. Overall, our work strengthens the potential of 2΄F-ANA in aptamer research and further expands non-genomic applications of nucleic acids microarrays.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.,Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| | | | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, 28006 Madrid, Spain
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
7
|
|
8
|
Zhao Y, Cao M, McClelland JF, Shao Z, Lu M. A photoacoustic immunoassay for biomarker detection. Biosens Bioelectron 2016; 85:261-266. [DOI: 10.1016/j.bios.2016.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 11/24/2022]
|
9
|
Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Guenther A, Tschöpe A, Schotter J. Homogeneous Biosensing Based on Magnetic Particle Labels. SENSORS 2016; 16:s16060828. [PMID: 27275824 PMCID: PMC4934254 DOI: 10.3390/s16060828] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
Abstract
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.
Collapse
Affiliation(s)
- Stefan Schrittwieser
- Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna1220, Austria.
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Marburg 35037, Germany.
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Marburg 35037, Germany.
| | - Sergio Lentijo-Mozo
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, Toulouse 31077, France.
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, Toulouse 31077, France.
| | - Jan Dieckhoff
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig 38106, Germany.
| | - Frank Ludwig
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig 38106, Germany.
| | - Annegret Guenther
- Experimentalphysik, Universität des Saarlandes, Saarbrücken 66123, Germany.
| | - Andreas Tschöpe
- Experimentalphysik, Universität des Saarlandes, Saarbrücken 66123, Germany.
| | - Joerg Schotter
- Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna1220, Austria.
| |
Collapse
|
10
|
Lu L, Wang X, Xiong C, Yao L. Recent advances in biological detection with magnetic nanoparticles as a useful tool. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5370-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC. Aptamer binding assays for proteins: the thrombin example--a review. Anal Chim Acta 2014; 837:1-15. [PMID: 25000852 DOI: 10.1016/j.aca.2014.04.055] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Experimentally selected single-stranded DNA and RNA aptamers are able to bind to specific target molecules with high affinity and specificity. Many analytical methods make use of affinity binding between the specific targets and their aptamers. In the development of these methods, thrombin is the most frequently used target molecule to demonstrate the proof-of-principle. This paper critically reviews more than one hundred assays that are based on aptamer binding to thrombin. This review focuses on homogeneous binding assays, electrochemical aptasensors, and affinity separation techniques. The emphasis of this review is placed on understanding the principles and unique features of the assays. The principles of most assays for thrombin are applicable to the determination of other molecular targets.
Collapse
Affiliation(s)
- Bin Deng
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Yanwen Lin
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Chuan Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Feng Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Zhixin Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Xing-Fang Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
12
|
Chen FY, Wang Z, Li P, Lian HZ, Chen HY. Aptamer-based thrombin assay on microfluidic platform. Electrophoresis 2013; 34:3260-6. [PMID: 24127412 DOI: 10.1002/elps.201300338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/13/2013] [Accepted: 09/22/2013] [Indexed: 11/08/2022]
Abstract
A facile and sensitive aptamer-based protocol has been developed for protein assay on microfluidic platform with fluorescence detection using an off-chip microarray scanner. Aptamer-functionalized magnetic beads were used to capture thrombin that binds to a second aptamer fluorescently labeled by Cy3. Experimental conditions, such as incubation time and temperature, washing time, interfering proteins, and aptamer, etc., were optimized for the microchip method. This work demonstrated there was a good relationship between fluorescence intensity and thrombin concentration in the range of 65-1000 ng/mL with the RSD less than 8%. Notably, an analysis only needs 1 μL volume of sample injection and this system can capture extremely tiny amount thrombin (0.4 fmol). This method has been successfully applied to assay of thrombin in human serum with the recovery of 79.74-95.94%.
Collapse
Affiliation(s)
- Fang-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, P. R. China
| | | | | | | | | |
Collapse
|
13
|
Hecht A, Commiskey P, Shah N, Kopelman R. Bead assembly magnetorotation as a signal transduction method for protein detection. Biosens Bioelectron 2013; 48:26-32. [PMID: 23639345 PMCID: PMC3683359 DOI: 10.1016/j.bios.2013.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
Abstract
This paper demonstrates a proof-of-principle for a new signal transduction method for protein detection called Bead Assembly Magnetorotation (BAM). BAM is based on using the target protein to mediate the formation of aptamer-coated 1 μm magnetic beads into a bead assembly, formed at the bottom of a 1 μL hanging droplet. The size, shape and fractal dimension of this bead assembly all depend on the protein concentration. The protein concentration can be measured in two ways: by magnetorotation, in which the rotational period of the assembly correlates with the protein concentration, or by fractal analysis. Additionally, a microscope-free magnetorotation detection method is introduced, based on a simple laser apparatus built from standard laboratory components. In this paper, we chose to focus on the protein thrombin, a popular choice for proof-of-principle work in this field.
Collapse
Affiliation(s)
- Ariel Hecht
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
14
|
Collins CM, Yui S, Roberts CES, Kojic I. Thrombin detection using a piezoelectric aptamer-linked immunosorbent assay. Anal Biochem 2013; 443:97-103. [PMID: 23994562 DOI: 10.1016/j.ab.2013.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
The development of diagnostic assays using highly targeted specific aptamers with existing detection platforms has been an endeavor with few opportunities until now. Many current commercially available diagnostic platforms make use of detection systems employing capture agents composed of modified antigen-specific antibodies coupled with a variety of detection modalities, including radioimmunoassays, fluorescence-based detection assays, electro/chemiluminescence assays, and immunoradiometric assays. In the studies presented here, a novel frequency-modulating technology from BioScale called Acoustic Membrane MicroParticle (AMMP) detection was used to demonstrate a sensitive and reproducible method of incorporating aptamers as capture and detection agents. The method provides a robust and rapid detection of thrombin in human serum while also eliminating the labor-intensive efforts of Western blot analysis and is not affected by the interfering substances found in serum that often affect optical-based detection systems. In addition, we have demonstrated, for the first time, the adaptation of the AMMP platform to exploit aptamers against a clinically relevant target. The AMMP platform is an ideal medium for using aptamers in commercial assay development for application in a clinical setting.
Collapse
Affiliation(s)
- Cheryl M Collins
- Loxbridge Research, Royal Institution of Great Britain, London W1S 4BS, UK
| | | | | | | |
Collapse
|
15
|
Zhang L, Cui P, Zhang B, Gao F. Aptamer-based turn-on detection of thrombin in biological fluids based on efficient phosphorescence energy transfer from Mn-doped ZnS quantum dots to carbon nanodots. Chemistry 2013; 19:9242-50. [PMID: 23712510 DOI: 10.1002/chem.201300588] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 01/14/2023]
Abstract
This paper presents the first example of a sensitive, selective, and stable phosphorescent sensor based on phosphorescence energy transfer (PET) for thrombin that functions through thrombin-aptamer recognition events. In this work, an efficient PET donor-acceptor pair using Mn-doped ZnS quantum dots labeled with thrombin-binding aptamers (TBA QDs) as donors, and carbon nanodots (CNDs) as acceptors has been constructed. Due to the π-π stacking interaction between aptamer and CNDs, the energy donor and acceptor are taken into close proximity, leading to the phosphorescence quenching of donors, TBA QDs. A maximum phosphorescence quenching efficiency as high as 95.9% is acquired. With the introduction of thrombin to the "off state" of the TBA-QDs-CNDs system, the phosphorescence is "turned on" due to the formation of quadruplex-thrombin complexes, which releases the energy acceptor CNDs from the energy donors. Based on the restored phosphorescence, an aptamer-based turn-on thrombin biosensor has been demonstrated by using the phosphorescence as a signal transduction method. The sensor displays a linear range of 0-40 nM for thrombin, with a detection limit as low as 0.013 nM in pure buffers. The proposed aptasensor has also been used to monitor thrombin in complex biological fluids, including serum and plasma, with satisfactory recovery ranging from 96.8 to 104.3%. This is the first time that Mn-doped ZnS quantum dots and CNDs have been employed as a donor-acceptor pair to construct PET-based biosensors, which combines both the photophysical merits of phosphorescence QDs and the superquenching ability of CNDs and thus affords excellent analytical performance. We believe this proposed method could pave the way to a new design of biosensors using PET systems.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory of Optical Probes and Bioelectrocatalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | | | | | | |
Collapse
|
16
|
A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Biosens Bioelectron 2013; 46:119-23. [PMID: 23524140 DOI: 10.1016/j.bios.2013.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 11/21/2022]
Abstract
In this article, we report a gold nanoparticles (AuNPs) sensing platform based on chemiluminescence resonance energy transfer (CRET) for light on detection of biomolecules. In designing such a CRET-based biosensing platform, the aptamer was first covalently labeled with a chemiluminescent reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). The ABEI labeled aptamer was then hybridized with AuNPs functionalized ssDNA which was complementary to the aptamer, obtaining the aptasensor. The CRET between ABEI and AuNPs in the aptasensor led to the CL quenching of ABEI. In the presence of a target analyte, it formed a complex with aptamer, and released ABEI-aptamer from AuNPs surface that resulted in CL recovery of ABEI. To test this design, a thrombin (used as a model analyte) aptasensor was prepared and evaluated. The results indicate that the proposed approach is simple and provided a linear range of 50-550 pM for thrombin detection with a detection limit of 15 pM. This new methodology can be easily extended to assay other biomolecules by simply changing the recognition sequence with the substrate aptamer.
Collapse
|
17
|
Sinn I, Albertson T, Kinnunen P, Breslauer DN, McNaughton BH, Burns MA, Kopelman R. Asynchronous magnetic bead rotation microviscometer for rapid, sensitive, and label-free studies of bacterial growth and drug sensitivity. Anal Chem 2012; 84:5250-6. [PMID: 22507307 PMCID: PMC3381929 DOI: 10.1021/ac300128p] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multidrug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue toward addressing this global concern. We report on a label-free asynchronous magnetic bead rotation (AMBR) based viscometry method that rapidly detects bacterial growth and determines drug sensitivity by measuring changes in the suspension's viscosity. With this platform, we observed the growth of a uropathogenic Escherichia coli isolate, with an initial concentration of 50 cells per drop, within 20 min; in addition, we determined the gentamicin minimum inhibitory concentration (MIC) of the E. coli isolate within 100 min. We thus demonstrated a label-free, microviscometer platform that can measure bacterial growth and drug susceptibility more rapidly, with lower initial bacterial counts than existing commercial systems, and potentially with any microbial strains.
Collapse
Affiliation(s)
- Irene Sinn
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109-1055
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Ann Arbor, MI 48109-2099
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI 48109-2136
| | - Theodore Albertson
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109-1055
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040
| | - Paivo Kinnunen
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109-1055
- Applied Physics Program, University of Michigan, 2477 Randall Laboratory, Ann Arbor, MI 48109-1120
| | | | - Brandon H. McNaughton
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109-1055
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Ann Arbor, MI 48109-2099
- Applied Physics Program, University of Michigan, 2477 Randall Laboratory, Ann Arbor, MI 48109-1120
| | - Mark A. Burns
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI 48109-2136
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109-1055
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Ann Arbor, MI 48109-2099
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040
- Applied Physics Program, University of Michigan, 2477 Randall Laboratory, Ann Arbor, MI 48109-1120
| |
Collapse
|
18
|
Lee HJ, Kim BC, Oh MK, Kim J. A sensitive and reliable detection of thrombin via enzyme-precipitate-coating-linked aptamer assay. Chem Commun (Camb) 2012; 48:5971-3. [PMID: 22517220 DOI: 10.1039/c2cc30710c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable enzyme precipitate coatings (EPCs) with high enzyme loading were employed to develop a sensitive and reliable detection protocol, termed EPC-linked aptamer assay (EPC-LAA). EPC-LAA achieved the limit of detection to be 0.5 ng per mL of thrombin (13.5 pM), and maintained a reasonably stable detection signal even after storing all the reagents at 40 °C for 66 days.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Virel A, Saa L, Pavlov V. Quantification of prothrombin in human plasma amplified by autocatalytic reaction. Anal Chem 2012; 84:2380-7. [PMID: 22324776 DOI: 10.1021/ac203138y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By site directed mutagenesis, we have produced recombinant mutants of human and mouse prethrombin-2 which are able to convert themselves autocatalytically into α-thrombin. We also have created a new method to amplify the signal of bioanalytical assays based on the autocatalytic activation of these mutated proenzymes. The activation of the mutants by active α-thrombin triggers an autocatalytic reaction which leads to more active thrombin resulting in the amplification of the readout signal. Addition of mutated mouse prethrombin-2 into the conventional assay for prothrombin level in human plasma, employing ecarin and the fluorogenic substrate, resulted in improvement of the detection limit by 2 orders of magnitude.
Collapse
Affiliation(s)
- Ana Virel
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, 20009, San Sebastián, Spain
| | | | | |
Collapse
|
20
|
Song W, Zhu K, Cao Z, Lau C, Lu J. Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst 2012; 137:1396-401. [PMID: 22318238 DOI: 10.1039/c2an16232f] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We introduce here a novel assay for the detection of platelet-derived growth factor BB (PDGF-BB) via hybridization chain reaction (HCR) based on an aptameric system, where stable DNA monomers assemble only upon exposure to a target PDGF-BB aptamer. In this process, two complementary stable species of biotinylated DNA hairpins coexist in solution until the introduction of initiator aptamer strands triggers a cascade of hybridization events that yields nicked double helices analogous to alternating copolymers. In detail, the aptamer firstly opens the hairpins in the solution, creating long concatemers, and then reacts with the antibody captured PDGF-BB on the well surface. Moreover, several experimental conditions including different PDGF-BB aptamers, the spacer length of the selected aptamer and hairpin, etc. are investigated and optimized. Our results show that the coupling of HCR to aptamer triggers for the amplification detection of PDGF-BB achieves a better performance in the fluorescence detection of PDGF-BB as compared to the traditional antibody-antigen-aptamer assays. Upon modification, the approach presented herein could be extended to detect other types of targets. We believe such advancements will represent a significant step towards improved diagnostics and more personalized medical treatment and environmental monitoring.
Collapse
Affiliation(s)
- Wenqing Song
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | | | | | | | | |
Collapse
|