1
|
Xu X, Tang L, Yu Y, Zhang J, Zhou X, Zhou T, Xuan C, Tian Q, Pan D. Cooperative amplification of Prussian blue as a signal indicator and functionalized metal-organic framework-based electrochemical biosensor for an ultrasensitive HE4 assay. Biosens Bioelectron 2024; 262:116541. [PMID: 38959719 DOI: 10.1016/j.bios.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Human epididymis protein 4 (HE4), a diagnostic biomarker of ovarian cancer, is crucial for monitoring the early stage of the disease. Hence, it is highly important to develop simple, inexpensive, and user-friendly biosensors for sensitive and quantitative HE4 assays. Herein, a new sandwich-type electrochemical immunosensor based on Prussian blue (PB) as a signal indicator and functionalized metal-organic framework nanocompositesas efficient signal amplifiers was fabricated for quantitative analysis of HE4. In principle, ketjen black (KB) and AuNPs modified on TiMOF (TiMOF-KB@AuNPs) could accelerate electron transfer on the electrode surface and act as a matrix for the immobilization of antibodies via cross-linking to improve the determination sensitivity. The PB that covalently binds to labeled antibodies endows the biosensors with intense electrochemical signals. Furthermore, the concentration of HE4 could be indirectly detected by monitoring the electroactivity of PB. Benefiting from the high signal amplification ability of the PB and MOF nanocomposites, this strategy displayed a wide linear range (0.1-80 ng mL-1) and a lower detection limit (0.02 ng mL-1). Hence, this study demonstrated great promise for application in clinical ovarian cancer diagnosis and treatment, and provided a new platform for detecting other cancer biomarkers.
Collapse
Affiliation(s)
- Xuanming Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China; Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lian Tang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Deng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China.
| |
Collapse
|
2
|
Ravitchandiran A, AlGarni S, AlSalhi MS, Rajaram R, Malik T, Angaiah S. ZnFe(PBA)@Ti 3C 2T x nanohybrid-based highly sensitive non-enzymatic electrochemical sensor for the detection of glucose in human sweat. Sci Rep 2024; 14:23835. [PMID: 39394386 PMCID: PMC11470011 DOI: 10.1038/s41598-024-75623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
The ZnFe prussian blue analogue [ZnFe(PBA)] was infused with Ti3C2Tx (MXene) denoted as ZnFe(PBA)@Ti3C2Tx and was prepared by an in-situ sonication method to use as a non-enzymatic screen printed electrode sensor. The advantage of non-enzymatic sensors is their excellent sensitivity, rapid detection, low cost and simple design. The synthesized ZnFe(PBA)@Ti3C2Tx was characterized for its physical and chemical characterization by XRD, Raman, XPS, EDAX, and FESEM analysis. It possessed multiple functionalized layers and a cubic structure in the nanohybrid. Further, the sensor was investigated by using electroanalytical studies such as cyclic voltammetry and chronoamperometry analysis. The enhanced surface area with a cubic structure of ZnFe(PBA) and the excellent electrical response of Ti3C2 nanosheet support the advancement of a non-enzymatic electrochemical glucose sensor with improved sensitivity of 973.42 µA mM-1 cm-2 with the limit of detection (LOD) of 3.036 µM (S/N = 3) and linear detection range (LDR) from 0.01 to 1 mM.
Collapse
Affiliation(s)
- Arrthi Ravitchandiran
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India
| | - Saad AlGarni
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajamohan Rajaram
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Subramania Angaiah
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
3
|
Ashrafi AM, Mukherjee A, Saadati A, Matysik FM, Richtera L, Adam V. Enhancing the substrate selectivity of enzyme mimetics in biosensing and bioassay: Novel approaches. Adv Colloid Interface Sci 2024; 331:103233. [PMID: 38924801 DOI: 10.1016/j.cis.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A substantial development in nanoscale materials possessing catalytic activities comparable with natural enzymes has been accomplished. Their advantages were owing to the excellent sturdiness in an extreme environment, possibilities of their large-scale production resulting in higher profitability, and easy manipulation for modification. Despite these advantages, the main challenge for artificial enzyme mimetics is the lack of substrate selectivity where natural enzymes flourish. This review addresses this vital problem by introducing substrate selectivity strategies to three classes of artificial enzymes: molecularly imprinted polymers, nanozymes (NZs), and DNAzymes. These rationally designed strategies enhance the substrate selectivity and are discussed and exemplified throughout the review. Various functional mechanisms associated with applying enzyme mimetics in biosensing and bioassays are also given. Eventually, future directives toward enhancing the substrate selectivity of biomimetics and related challenges are discussed and evaluated based on their efficiency and convenience in biosensing and bioassays.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41 Dolni Brezany, Czech Republic.
| | - Arezoo Saadati
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Ayman Saleh M, Khorrami Jahromi A, Shieh H, Siavash Moakhar R, Del Real Mata C, Mahshid S. A reagentless molecularly imprinted polymer-based electrochemical biosensor for single-step detection of troponin I in biofluids. Analyst 2024; 149:4020-4028. [PMID: 38961728 DOI: 10.1039/d4an00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Reagentless molecular-imprinted polymer (MIP) electrochemical biosensors can offer the next generation of biosensing platforms for the detection of biomarkers owing to their simplicity, cost-efficacy, tunability, robustness, and accuracy. In this work, a novel combination of Prussian blue (PB), coated as an embedded redox probe on a gold working electrode (GWE), and a signal-off MIP assay has been proposed in an electrochemical format for the detection of troponin I (TnI) in biofluids. TnI is a variant exclusive to heart muscles, and its elevated level in the bloodstream is indicative of acute myocardial infarction (AMI). The proposed lab-manufactured PB/MIP electrochemical biosensor, consisting of a simple signal-off MIP assay and a PB redox probe embedded on the GWE surface, is the first of its kind that allows for reagentless, label-free, and single-step electrochemical biosensing of proteins. The preparation steps of the biosensor were fully characterized by cyclic voltammetry (CV), atomic force microscopy (AFM), and Raman spectroscopy. Finally, the performance of the optimized biosensor was investigated through the determination of various concentrations of TnI, ranging from 10 to 100 pg mL-1 within 5 min, in serum and plasma with limits of detection less than 3.6 pg mL-1, and evaluation of selectivity towards TnI using some relevant proteins that exist in biofluids with higher concentrations.
Collapse
Affiliation(s)
- Mahmoud Ayman Saleh
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | | | - Hamed Shieh
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | | | | | - Sara Mahshid
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
- Department of Experimental Medicine, McGill University, Montréal, Quebec, H3G 2M1, Canada.
| |
Collapse
|
5
|
Liu G, Hou S, Li S, Ling J, Xu G, Li J. A molecularly imprinted sensor for single-molecule detection of pesticide metabolite at the amol/L level sensitized by water-soluble luminol derivative encapsulated liposome via click reaction. Biosens Bioelectron 2023; 242:115714. [PMID: 37816285 DOI: 10.1016/j.bios.2023.115714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
A novel luminol derivative, 4-[(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)amino]-4-oxobut-2-enoic acid (ALD) with electrochemiluminescence intensity and stability characteristics similar to luminol, but higher solubility in near neutral solution, was designed and synthesized in this study. Using this derivative, a molecular imprinted electrochemiluminescence sensor (MIECLS) was prepared for the sensitive and selective determination of 2-amino-5-mercapto-1,3,4-thiadiazole (AMT), a metabolite of bismerthiazol, thiediazole copper, thiazole zinc, and other pesticides. The ALD probes encapsulated in liposomes are immobilized on the molecularly imprinted film by light-triggered click reaction, and the concurrent release of multiple probes allows for highly sensitive detection. In the AMT concentration range of 1.00 × 10-18 - 5.00 × 10-13 mol/L, the relation between ECL response and log AMT concentration is linear. With a detection limit of 5.25 × 10-19 mol/L (about 4 - 6 molecules in 10 μL of the sample), the sensor allows for high sensitivity analysis of ultra-trace amounts of small organic compounds. In general, the ECL-based single-molecule detection technique proposed herein might be a promising alternative to fluorescence single-molecule detection.
Collapse
Affiliation(s)
- Guangyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shili Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Shiyu Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jun Ling
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guobao Xu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
6
|
Singh B, Bhat A, Dutta L, Pati KR, Korpan Y, Dahiya I. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. BIOSENSORS 2023; 13:867. [PMID: 37754101 PMCID: PMC10527191 DOI: 10.3390/bios13090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Antibiotics have emerged as ground-breaking medications for the treatment of infectious diseases, but due to the excessive use of antibiotics, some drugs have developed resistance to microorganisms. Because of their structural complexity, most antibiotics are excreted unchanged, polluting the water, soil, and natural resources. Additionally, food items are being polluted through the widespread use of antibiotics in animal feed. The normal concentrations of antibiotics in environmental samples typically vary from ng to g/L. Antibiotic residues in excess of these values can pose major risks the development of illnesses and infections/diseases. According to estimates, 300 million people will die prematurely in the next three decades (by 2050), and the WHO has proclaimed "antibiotic resistance" to be a severe economic and sociological hazard to public health. Several antibiotics have been recognised as possible environmental pollutants (EMA) and their detection in various matrices such as food, milk, and environmental samples is being investigated. Currently, chromatographic techniques coupled with different detectors (e.g., HPLC, LC-MS) are typically used for antibiotic analysis. Other screening methods include optical methods, ELISA, electrophoresis, biosensors, etc. To minimise the problems associated with antibiotics (i.e., the development of AMR) and the currently available analytical methods, electrochemical platforms have been investigated, and can provide a cost-effective, rapid and portable alternative. Despite the significant progress in this field, further developments are necessary to advance electrochemical sensors, e.g., through the use of multi-functional nanomaterials and advanced (bio)materials to ensure efficient detection, sensitivity, portability, and reliability. This review summarises the use of electrochemical biosensors for the detection of antibiotics in milk/milk products and presents a brief introduction to antibiotics and AMR followed by developments in the field of electrochemical biosensors based on (i) immunosensor, (ii) aptamer (iii) MIP, (iv) enzyme, (v) whole-cell and (vi) direct electrochemical approaches. The role of nanomaterials and sensor fabrication is discussed wherever necessary. Finally, the review discusses the challenges encountered and future perspectives. This review can serve as an insightful source of information, enhancing the awareness of the role of electrochemical biosensors in providing information for the preservation of the health of the public, of animals, and of our environment, globally.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Abhijnan Bhat
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Lesa Dutta
- Department of Chemistry, Central University of Punjab, VPO Ghudda, Bathinda 151401, Punjab, India
| | - Kumari Riya Pati
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Yaroslav Korpan
- Institute of Molecular Biology and Genetics NAS of Ukraine, Department of Biomolecular Electronics, 03143 Kyiv, Ukraine
| | - Isha Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| |
Collapse
|
7
|
Welgama HK, Crawley MR, McKone JR, Cook TR. Investigations of Nanoparticle Suspensions of Prussian Blue and Its Copper Analogue: Amine Functionalization and Electrochemical Studies. Inorg Chem 2023; 62:1455-1465. [PMID: 36638826 DOI: 10.1021/acs.inorgchem.2c03545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prussian blue (PB) and its analogues are promising materials for electrochemical energy storage, yet their use in flow-type devices is limited by their lack of redox responsiveness as colloidal suspensions. We have investigated the redox chemistry amine functionalization of PB along with its Cu analogue (CuPBA). No redox response of colloidal PB was observed and suspensions of CuPBA formed films on electrode surfaces with and without applied potentials; the films were redox-active but the material that remained suspended in solution did not participate in redox chemistry. Propylamine (pa), ethylenediamine (en), or tetramethylethylenediamine (TMEDA) were added in an attempt to maintain well dispersed suspensions through nanoparticle surface functionalization. Propylamine modifications resulted in a loss of the CuPBA network and subsequent precipitation of insoluble materials. Coordination of ethylenediamine prompted the formation of Cu and Fe monomers ([Cu(en)2]m+/[Fe(CN)6]n-]) that remained soluble in aqueous electrolytes. In the absence of supporting electrolytes, these monomers formed a one-dimensional (1D) polymeric structure (Cu2Fe-1D). TMEDA modification preserved the CuPBA extended structure with only modest precipitate formation over 30 min. The redox responsiveness of these suspensions depended on conditions; in 1 M KCl, no redox chemistry was observed for the CuPBA. In pH 4 potassium hydrogen phthalate buffer, a signal was observed that was attributed to the Fe centers of CuPBA. Under these conditions, the material precipitated in ∼15 min and the signal was lost. Although the Fe centers in these networks are redox-active, additional work is needed to realize longer-term redox activity and stability. Ligand modifications can alter the properties of these networks but within a given ligand class, e.g., amines, the effects can vary greatly from the deconstruction of the framework to preventing film formation.
Collapse
Affiliation(s)
- Heshali K Welgama
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - James R McKone
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
8
|
Zhao T, Wang JW, Zhang HS, Zheng X, Chen YP, Tang H, Jiang JH. Development of Dual-Nanopore Biosensors for Detection of Intracellular Dopamine and Dopamine Efflux from Single PC12 Cell. Anal Chem 2022; 94:15541-15545. [DOI: 10.1021/acs.analchem.2c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Hong-Shuai Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Xin Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Yi-Ping Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
9
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
10
|
Liu Z, Yin ZZ, Zheng G, Zhang H, Zhou M, Li S, Kong Y. Dual-template molecularly imprinted electrochemical biosensor for IgG-IgM combined assay based on a dual-signal strategy. Bioelectrochemistry 2022; 148:108267. [PMID: 36148758 DOI: 10.1016/j.bioelechem.2022.108267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023]
Abstract
Detection of immunoglobulins (Igs) is of clinical significance for early diagnosis and timely treatment of diseases. Herein, a dual-template molecularly imprinted (DTMI) electrochemical biosensor was developed for IgG-IgM combined assay. In this DTMI electrochemical biosensor, Prussian blue (PB) and thionine (TH) decorated on graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs), respectively, were utilized as the dual-signal probes, and Au nanoparticles (AuNPs) were used for Igs anchoring and signal amplification. Polypyrrole (PPy) was electrodeposited on the biosensor surface and acted as the molecularly imprinted polymers (MIPs). After the removal of the IgG and IgM templates, the resultant DTMI electrochemical biosensor was used for IgG-IgM combined assay, and the concentrations of IgG and IgM could be indicated by the changes in the peak currents of PB (ΔIPB) and TH (ΔITH), respectively. The DTMI electrochemical biosensor displayed a wide linear range and a low limit of detection (LOD) for both IgG (28.80 pg mL-1) and IgM (0.58 pg mL-1). Finally, the developed DTMI biosensor was used for IgG-IgM combined assay in clinical serum samples, and the results were comparable to those obtained by conventional immunoturbidimetry, implying its great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Zixuan Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Guojun Zheng
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Min Zhou
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Shan Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
11
|
Li J, Wu C, Yuan C, Shi Z, Zhang K, Zou Z, Xiong L, Chen J, Jiang Y, Sun W, Tang K, Yang H, Li CM. Single-Atom Iron Anchored on 2-D Graphene Carbon to Realize Bridge-Adsorption of O-O as Biomimetic Enzyme for Remarkably Sensitive Electrochemical Detection of H 2O 2. Anal Chem 2022; 94:14109-14117. [PMID: 35727990 DOI: 10.1021/acs.analchem.2c01001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM-1 cm-2, which is much higher than that (6.5 μA mM-1 cm-2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of -O-O- for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.
Collapse
Affiliation(s)
- Juan Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chao Wu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chengsong Yuan
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 40038, China
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Kaiyue Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zhuo Zou
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Lulu Xiong
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jie Chen
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yali Jiang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Kanglai Tang
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 40038, China
| | - Hongbin Yang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.,Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 200671, China
| |
Collapse
|
12
|
Kongkaew S, Meng L, Limbut W, Kanatharana P, Thavarungkul P, Mak WC. Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14302-14313. [PMID: 34859679 PMCID: PMC8675137 DOI: 10.1021/acs.langmuir.1c02121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Flexible electronics have gained more attention for emerging electronic devices such as sensors, biosensors, and batteries with advantageous properties including being thin, lightweight, flexible, and low-cost. The development of various forms of allotropic carbon papers provided a new dry-manufacturing route for the fabrication of flexible and wearable electronics, while the electrochemical performance and the bending stability are largely influenced by the bulk morphology and the micro-/nanostructured domains of the carbon papers. Here, we evaluate systematically the intrinsic physicoelectrochemical properties of allotropic carbon-based conducting papers as flexible electrodes including carbon-nanotubes-paper (CNTs-paper), graphene-paper (GR-paper), and carbon-fiber-paper (CF-paper), followed by functionalization of the allotropic carbon papers for the fabrication of flexible electrodes. The morphology, chemical structure, and defects originating from the allotropic nanostructured carbon materials were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, followed by evaluating the electrochemical performance of the corresponding flexible electrodes by cyclic voltammetry and electrochemical impedance spectroscopy. The electron-transfer rate constants of the CNTs-paper and GR-paper electrodes were ∼14 times higher compared with the CF-paper electrode. The CNTs-paper and GR-paper electrodes composed of nanostructured carbon showed significantly higher bending stabilities of 5.61 and 4.96 times compared with the CF-paper. The carbon-paper flexible electrodes were further functionalized with an inorganic catalyst, Prussian blue (PB), forming the PB-carbon-paper catalytic electrode and an organic conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), forming the PEDOT-carbon-paper capacitive electrode. The intrinsic attribute of different allotropic carbon electrodes affects the deposition of PB and PEDOT, leading to different electrocatalytic and capacitive performances. These findings are insightful for the future development and fabrication of advanced flexible electronics with allotropic carbon papers.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Lingyin Meng
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Warakorn Limbut
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wing Cheung Mak
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
13
|
Single-atom Au catalyst loaded on CeO2: A novel single-atom nanozyme electrochemical H2O2 sensor. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Liu G, Ling J, Li J. Extremely Sensitive Molecularly Imprinted ECL Sensor with Multiple Probes Released from Liposomes Immobilized by a Light-Triggered Click Reaction. ACS Sens 2021; 6:4185-4192. [PMID: 34662113 DOI: 10.1021/acssensors.1c01763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A molecularly imprinted electrochemiluminescence sensor was prepared for sensitive and selective determination of aminotriazole via a novel strategy of multiple Ru(bpy)3Cl2 probes released from liposomes immobilized by a light-triggered click reaction. This sensing strategy provides a platform for trace detection of amino-containing pesticides. The target on the molecularly imprinted membrane connected to the Ru(bpy)3Cl2-encapsulated liposomes via the click reaction. After the destabilizing agent Triton X-100 was added, numerous Ru(bpy)3Cl2 molecules were released by liposomes on the molecularly imprinted polymer electrode. The ECL response of the sensor was linearly proportional to the logarithm of the aminotriazole concentration ranging from 5.00 × 10-18 to 1.00 × 10-12 mol/L, and the detection limit was 1.15 × 10-18 mol/L. The sensitivity of the detection was significantly improved, and the analysis process was simplified.
Collapse
Affiliation(s)
- Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jun Ling
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
15
|
Specific adsorption and highly sensitive detection of methyl red in wastewater using an iron paste electrode modified with a molecularly imprinted polymer. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Wu Y, Lu L, Yu Z, Wang X. Electrochemical sensor based on the Mn 3O 4/CeO 2 nanocomposite with abundant oxygen vacancies for highly sensitive detection of hydrogen peroxide released from living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1672-1680. [PMID: 33861233 DOI: 10.1039/d1ay00085c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Based on the strategy of increasing the number of oxygen vacancies to improve the catalytic performance, we have developed a novel electrochemical sensor based on the multivalent metal oxides cerium dioxide and manganous oxide (Mn3O4/CeO2) for reliable determination of extracellular hydrogen peroxide (H2O2) released from living cells. The Mn3O4/CeO2 nanocomposite was characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical performance of the Mn3O4/CeO2 nanocomposite modified glassy carbon electrode (Mn3O4/CeO2/GCE) was investigated. Owing to the abundant oxygen vacancies and strong synergistic effect between the multivalent Ce and Mn, the sensor exhibited excellent catalytic activity and selectivity for the electrochemical detection of H2O2 with a low quantitation limit of 2 nM. Moreover, Mn3O4/CeO2/GCE exhibited excellent reproducibility, repeatability, and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was able to determine H2O2 released from living cells with satisfactory results. The results showed that the Mn3O4/CeO2 sensor is a promising candidate for a nanoenzymatic H2O2 sensor with the possibility of applications in physiology and diagnosis.
Collapse
Affiliation(s)
- Yalin Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | | | | | | |
Collapse
|
17
|
The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review. MICROMACHINES 2021; 12:mi12030308. [PMID: 33804280 PMCID: PMC8000799 DOI: 10.3390/mi12030308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.
Collapse
|
18
|
Ti 3C 2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta 2021; 224:121879. [PMID: 33379088 DOI: 10.1016/j.talanta.2020.121879] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Exosomes carrying abundant information have aroused great interest as effective biomarkers in liquid biopsy and are therefore ideal candidates for the early diagnosis of cancer and treatment monitoring. Herein, we developed a sensitive electrochemical biosensor using in situ generation of Fe₄[Fe(CN)6]₃ (Prussian Blue) on the surface of Ti3C2 MXene (two-dimensional transition-metal carbides) as hybrid nanoprobes (PB-MXene) for the detection of exosomes and their surface protein. A CD63 aptamer-modified poly(amidoamine) (PAMAM)-Au NP electrode interface was fabricated that can specifically bind with CD63 protein on the exosomes derived from OVCAR cells. In addition, the CD63-modified Ti3C2 MXene was used as a nanocarrier to accommodate numerous aptamers and was adsorbed on the exosomes. The Ti3C2 MXene can realize the in situ generation and high-efficiency loading of PB and further amplify the electrochemical signal at a low potential, thus avoiding the interference of the electrochemical active species. The dual amplification effect enables highly selective and sensitive electrochemical detection of exosomes. The limit of detection (LOD) was 229 particles μL-1 with a linear range from 5 × 102 particles μL-1 to 5 × 105 particles μL-1. An electrochemical biosensor can detect exosomes secreted by various cancer cells such as HeLa, OVCAR and BT474, and shows a high specificity even in serum samples, thus demonstrating its great potential in the application of clinical diagnostics. This proposed electrochemical biosensor provides a facile and efficient tool for the early diagnosis of cancers.
Collapse
|
19
|
Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6. Talanta 2021; 222:121596. [DOI: 10.1016/j.talanta.2020.121596] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
|
20
|
Zhang G, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. Dual-mode of electrochemical-colorimetric imprinted sensing strategy based on self-sacrifice beacon for diversified determination of cardiac troponin I in serum. Biosens Bioelectron 2020; 167:112502. [DOI: 10.1016/j.bios.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
|
21
|
Chen C, Xiong D, Gu M, Lu C, Yi FY, Ma X. MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35365-35374. [PMID: 32657131 DOI: 10.1021/acsami.0c09689] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The fabrication of two-dimensional (2D) metal-organic frameworks (MOFs) and Prussian blue analogues (PBAs) combines the advantages of 2D materials, MOFs and PBAs, resolving the poor electronic conductivity and slow diffusion of MOF materials for electrochemical applications. In this work, 2D leaflike zeolitic imidazolate frameworks (Co-ZIF and Fe-ZIF) as sacrificial templates are in situ converted into PBAs, realizing the successful fabrication of PBA/ZIF nanocomposites on nickel foam (NF), namely, CoCo-PBA/Co-ZIF/NF, FeFe-PBA/Fe-ZIF/NF, CoFe-PBA/Co-ZIF/NF, and Fe/CoCo-PBA/Co-ZIF/NF. Such fabrication can effectively reduce transfer resistance and greatly enhance electron- and mass-transfer efficiency due to the electrochemically active PBA particles and NF substrate. These fabricated electrodes as multifunctional sensors achieve highly selective and sensitive glucose and H2O2 biosensing with a very wide detective linear range, extremely low limit of detection (LOD), and good stability. Among them, CoFe-PBA/Co-ZIF/NF exhibits the best sensing performance with a very wide linear range from 1.4 μM to 1.5 mM, a high sensitivity of 5270 μA mM-1 cm-2, a low LOD of 0.02 μM (S/N = 3), and remarkable stability and selectivity toward glucose. What is more, it can realize excellent detection of glucose in human serum, demonstrating its practical applications. Furthermore, this material as a multifunctional electrochemical sensor also manifests superior detection performance against hydrogen peroxide with a wide linear range of 0.2-6.0 mM, a high sensitivity of 196 μA mM-1 cm-2, and a low limit of detection of 1.08 nM (S/N = 3). The sensing mechanism for enhanced performance for glucose and H2O2 is discussed and proved by experiments in detail.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Minli Gu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Department of Chemistry & Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
22
|
Wang D, Liu Y, Xu Z, Zhao D, Liu Y, Liu Z. Multitemplate molecularly imprinted polymeric solid-phase microextraction fiber coupled with HPLC for endocrine disruptor analysis in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
24
|
Joshi A, Kim KH. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens Bioelectron 2020; 153:112046. [DOI: 10.1016/j.bios.2020.112046] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
|
25
|
Ma F, Yan Y, Yu Z, Wu Y, Liu X. Freestanding flexible molecularly imprinted nanocomposite membranes for selective separation applications: an imitated core–shell PEI@SiO 2-based MIM design. NEW J CHEM 2020. [DOI: 10.1039/d0nj03489d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of molecularly imprinted membranes (MIMs) has promoted applications of membrane-based separation technology, which has shown considerable advantages in water treatment, chemical separation and drug purification.
Collapse
Affiliation(s)
- Faguang Ma
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- China
- Institute of Green Chemistry and Chemical Technology
| | - Yan Yan
- Institute of Green Chemistry and Chemical Technology
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
| | - Zhixin Yu
- Institute of Green Chemistry and Chemical Technology
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
| | - Xinlin Liu
- School of Energy and Power Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
26
|
Li S, Li J, Ma X, Liu C, Pang C, Luo J. Highly selective molecular imprinting electrochemiluminescence switch sensor for biotoxin L-canavanine measurement. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Duan D, Si X, Ding Y, Li L, Ma G, Zhang L, Jian B. A novel molecularly imprinted electrochemical sensor based on double sensitization by MOF/CNTs and Prussian blue for detection of 17β-estradiol. Bioelectrochemistry 2019; 129:211-217. [PMID: 31200251 DOI: 10.1016/j.bioelechem.2019.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
In this paper, we constructed MIL-53 (AlOHbdc, bdc = benzene-1,4-dicarboxylate) /CNTs and Prussian blue (PB) as the double sensitization material of the sensing platform, in which the MIL-53/CNTs hybrid can not only increase the specific surface area but also increase the conductivity of the sensor and PB can play a role in amplifying electrical signals and accelerating electron transmission. Pyrrole was used as monomer and E2 was used as template for electropolymerization to form conductive film. Moreover, the overoxidation/dedoping elution method were used to simplify the experimental process. Under optimal conditions, the MIECS exhibited an excellent sensitivity and high selectivity with a wide linear response range between 10-14 to 10-9 mol L-1 and an estimated detection limit of 6.19 × 10-15 mol L-1.
Collapse
Affiliation(s)
- Dingding Duan
- College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaojing Si
- School of Public Health, Shanghai Aurora Vocation College, PR China
| | - Yaping Ding
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Li Li
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Guohong Ma
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Lu Zhang
- College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Bingyu Jian
- College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
28
|
Harry M, Chowdhury M, Cummings F, Arendse CJ. Elemental Cu doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Cui J, Li Z, Liu K, Li J, Shao M. A bifunctional nonenzymatic flexible glucose microsensor based on CoFe-Layered double hydroxide. NANOSCALE ADVANCES 2019; 1:948-952. [PMID: 36133216 PMCID: PMC9419660 DOI: 10.1039/c8na00231b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/06/2019] [Indexed: 06/16/2023]
Abstract
A bifunctional flexible glucose microsensor has been successfully fabricated by directly growing a layered double hydroxide nanosheet array (LDH-NSA) on Ni wire. The as-obtained CoFe-LDH-NSA exhibits promising performances in electrochemical and colorimetric detection of glucose with high sensitivity and selectivity. This work demonstrates an effective strategy to fabricate multi-functional glucose nonenzyme sensors.
Collapse
Affiliation(s)
- Junya Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64425385 +86-10-64412131
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64425385 +86-10-64412131
| | - Ke Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64425385 +86-10-64412131
| | - Jianming Li
- Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration & Development (RIPED), PetroChina Beijing 100083 China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64425385 +86-10-64412131
| |
Collapse
|
30
|
Liu F, Kan X. Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Li R, Feng Y, Pan G, Liu L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E177. [PMID: 30621335 PMCID: PMC6338937 DOI: 10.3390/s19010177] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
In recent years, along with the rapid development of relevant biological fields, there has been a tremendous motivation to combine molecular imprinting technology (MIT) with biosensing. In this situation, bioprobes and biosensors based on molecularly imprinted polymers (MIPs) have emerged as a reliable candidate for a comprehensive range of applications, from biomolecule detection to drug tracking. Unlike their precursors such as classic immunosensors based on antibody binding and natural receptor elements, MIPs create complementary cavities with stronger binding affinity, while their intrinsic artificial polymers facilitate their use in harsh environments. The major objective of this work is to review recent MIP bioprobes and biosensors, especially those used for biomolecules and drugs. In this review, MIP bioprobes and biosensors are categorized by sensing method, including optical sensing, electrochemical sensing, gravimetric sensing and magnetic sensing, respectively. The working mechanism(s) of each sensing method are thoroughly discussed. Moreover, this work aims to present the cutting-edge structures and modifiers offering higher properties and performances, and clearly point out recent efforts dedicated to introduce multi-sensing and multi-functional MIP bioprobes and biosensors applicable to interdisciplinary fields.
Collapse
Affiliation(s)
- Runfa Li
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Yonghai Feng
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Lei Liu
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| |
Collapse
|
32
|
Zhou JX, Tang LN, Yang F, Liang FX, Wang H, Li YT, Zhang GJ. MoS 2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 2018; 142:4322-4329. [PMID: 29068445 DOI: 10.1039/c7an01446e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This work describes the adaptive use of a conventional stainless steel acupuncture needle as the electrode substrate for construction of a molybdenum disulfide (MoS2) and platinum nanoparticles (PtNPs) layer-modified microneedle sensor for real-time monitoring of hydrogen peroxide (H2O2) release from living cells. To construct the nanocomposite-functionalized microneedle, the needle surface was first coated with a gold film by ion sputtering to enhance the conductivity. Subsequently, an electrochemical deposition method was successfully employed to deposit MoS2 nanosheet and Pt nanoparticles on the needle tip as the sensing interface. Electrochemical study demonstrated that the MoS2/PtNPs nanocomposite-modified needle exhibited excellent catalytic performance and low over-potential toward the reduction of H2O2. Not only did the microneedle achieve a wide linear range from 1 to 100 μmol L-1 with a limit of detection down to 0.686 μmol L-1, but it also realized the highly specific detection of H2O2. Owing to these remarkable analytical advantages, the prepared microneedle was applied to determine H2O2 release from living cells with satisfactory results. The MoS2/PtNPs nanocomposite-functionalized microneedle sensor is simple and affordable, and can serve as a promising electrochemical nonenzymatic sensing platform. Moreover, this superfine needle sensor shows great potential for real-time monitoring of reactive oxygen species in vivo with minimal damage.
Collapse
Affiliation(s)
- Jin-Xiu Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, PR China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Cui L, Hu J, Li CC, Wang CM, Zhang CY. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 2018; 122:168-174. [DOI: 10.1016/j.bios.2018.09.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
|
34
|
ZHANG LM, ZHANG DY, ZENG Y, LI JP. A Cimaterol Molecularly Imprinted Sensor Based on DNA-assisted Recognition. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61124-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Li Y, Xu W, Zhao X, Huang Y, Kang J, Qi Q, Zhong C. Electrochemical sensors based on molecularly imprinted polymers on Fe 3O 4/graphene modified by gold nanoparticles for highly selective and sensitive detection of trace ractopamine in water. Analyst 2018; 143:5094-5102. [PMID: 30209459 DOI: 10.1039/c8an00993g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel molecular imprinting polymer (MIP)-based electrochemical senor, consisting of Fe3O4 nanobeads and gold nanoparticles on a reduced graphene oxide (RGO) substrate, was fabricated to detect ractopamine (RAC) in water using the reversible addition fragmentation chain transfer (RAFT) polymerization technique. The Au nanoparticles widely dispersed on RGO can significantly increase the response current for RAC detection in water, which is confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and theoretical calculations. By means of the differential pulse voltammetry technique, the as-prepared MIP-based electrode shows a dynamic linear range of 0.002 to 0.1 μM with a correlation coefficient of 0.992 and a remarkably low detection limit of 0.02 nM (S/N = 3). Additionally, the sensor exhibits high binding affinity and selectivity towards RAC with excellent reproducibility. Our study demonstrates the potential for the proposed electrochemical sensors in monitoring organic pollutants in water.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, State Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin 300387, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang P, Sun X, Su X, Wang T. Advancements of molecularly imprinted polymers in the food safety field. Analyst 2018; 141:3540-53. [PMID: 26937495 DOI: 10.1039/c5an01993a] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement.
Collapse
Affiliation(s)
- Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing 100081, P.R. China.
| | - Xiaohua Sun
- Institute of Chemistry, China Academy of Science, Beijing 100190, P.R. China and Institute of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiaoou Su
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing 100081, P.R. China.
| | - Tie Wang
- Institute of Chemistry, China Academy of Science, Beijing 100190, P.R. China
| |
Collapse
|
37
|
Salvo-Comino C, García-Hernández C, García-Cabezón C, Rodríguez-Méndez ML. Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2716. [PMID: 30126183 PMCID: PMC6111749 DOI: 10.3390/s18082716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023]
Abstract
A nanostructured electrochemical bi-sensor system for the analysis of milks has been developed using the layer-by-layer technique. The non-enzymatic sensor [CHI+IL/CuPcS]₂, is a layered material containing a negative film of the anionic sulfonated copper phthalocyanine (CuPcS) acting as electrocatalytic material, and a cationic layer containing a mixture of an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate) that enhances the conductivity, and chitosan (CHI), that facilitates the enzyme immobilization. The biosensor ([CHI+IL/CuPcS]₂-GAO) results from the immobilization of galactose oxidase on the top of the LbL layers. FTIR, UV⁻vis, and AFM have confirmed the proposed structure and cyclic voltammetry has demonstrated the amplification caused by the combination of materials in the film. Sensors have been combined to form an electronic tongue for milk analysis. Principal component analysis has revealed the ability of the sensor system to discriminate between milk samples with different lactose content. Using a PLS-1 calibration models, correlations have been found between the voltammetric signals and chemical parameters measured by classical methods. PLS-1 models provide excellent correlations with lactose content. Additional information about other components, such as fats, proteins, and acidity, can also be obtained. The method developed is simple, and the short response time permits its use in assaying milk samples online.
Collapse
Affiliation(s)
- Coral Salvo-Comino
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
- BioecoUVA Institute, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Celia García-Hernández
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
- BioecoUVA Institute, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Cristina García-Cabezón
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
- BioecoUVA Institute, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Maria Luz Rodríguez-Méndez
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
- BioecoUVA Institute, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
38
|
Yang B, Fu C, Li J, Xu G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Wang Q, Li S, Li J. A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Anal Bioanal Chem 2018; 410:5165-5172. [PMID: 29922862 DOI: 10.1007/s00216-018-1170-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
A new molecularly imprinted polymer electrochemiluminescence (ECL) sensor was developed for the detection of clopyralid (CPD) based on enzyme-biocatalyzed amplification. CdTe quantum dots were immobilized on the surface of an electrode by reaction with p-aminothiophenol preadsorbed on the electrode. Then a molecularly imprinted film was formed by electrochemical polymerization of o-phenylenediamine in the presence of CPD on the CdTe-modified gold electrode. During the analytical cycle, horseradish peroxidase (HRP)-labeled CPD was replaced by CPD in the sample. The amount of HRP on the molecularly imprinted polymer electrode decreased, and then less H2O2 was catalytically decomposed. Subsequently, the ECL intensity of the CdTe-H2O2 system was enhanced. There was a good linear relationship between ECL intensity and the concentration of CPD in the range from 2.0 × 10-11 to 2.5 × 10-10 mol/L and in the range from 2.5 × 10-10 to 3.5 × 10-8 mol/L. The detection limit was 4.1 × 10-12 mol/L. The sensor was applied to determine CPD in vegetable samples. Graphical abstract A molecularly imprinted electrochemiluminescence sensor was fabricated for ultratrace clopyralid determination. The sensitivity was significantly improved with the enhancement of the ECL intensity of quantum dot via the enzymatic reaction of HRP.
Collapse
Affiliation(s)
- Qingyu Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Shuhuai Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
40
|
Construction of a probe-immobilized molecularly imprinted electrochemical sensor with dual signal amplification of thiol graphene and gold nanoparticles for selective detection of tebuconazole in vegetable and fruit samples. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Li Q, Fei Y, Gao L, Yu Y, Zhou Y, Ye T, Zhou XS, Shao Y, Yin ZZ. G-Quadruplex DNA with an Apurinic Site as a Soft Molecularly Imprinted Sensing Platform. Anal Chem 2018; 90:5552-5556. [PMID: 29642702 DOI: 10.1021/acs.analchem.8b01097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymers (MIPs) provide versatile sensor platforms to recognize targets by shape complementarity. However, the rigid structure of the classic MIPs compromises the signal transduction with necessary polymer and target modifications. Herein, we tried to use a flexible DNA that has a perfectly structured folding as the soft molecularly imprinted polymer (SMIP) for a straightforward sensor. As a proof of concept, the guanosine SMIP recognition was achieved by removal of a guanosine from a G-quadruplex-forming sequence (G4). The G4 folding structure with such an apurinic site (AP site) provides a well-defined MIP binding accommodation for guanosine according to the shape complementarity. The guanosine binding at the AP site subsequently leads to a conformation change suitable for remote readout using a G4-specific fluorescent ligand. The G4 sequence and AP site position were optimized for this SMIP behavior. Due to the G4 compact structure and the remaining hydrogen bonding pattern, nucleosides other than guanosine and negatively charged nucleotides exhibit no binding with the AP site, suggesting a high selectivity in the SMIP recognition. The proposed rationale was then convinced by the alkaline phosphatase-catalyzed GMP hydrolysis. Our work will inspire more interest in exploring nucleic acids as the SMIP frameworks due to their variant conformations and well-established molecular engineering.
Collapse
Affiliation(s)
- Qiusha Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yufeng Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua 321004 , Zhejiang , China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , Zhejiang , China
| |
Collapse
|
42
|
Machicote RG, Castillo MA, Pacheco ME, Bruzzone L. A Molecular Imprinted Polymer as a Flow-Through Optical Sensor for Oxazepam. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:6302609. [PMID: 29850374 PMCID: PMC5904820 DOI: 10.1155/2018/6302609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
A flow-through optosensing system for oxazepam recognition with fluorescence detection was performed by means of a molecular imprinted polymer based on its acid hydrolysis product, 2-amino-5-chlorobenzophenone. The synthesis was conducted via a noncovalent imprinting methodology, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent. Hydrolysis (types and concentration of acids), polymer retention capacity, binding properties, and elution (selectivity and reversibility) conditions were optimized. The selected molecular imprinted polymer had a molar ratio composition of 1 : 6 : 45 (template : functional monomer : cross-linker). The proposed method was applied to the determination of oxazepam in a pharmaceutical formulation. External standard calibration, standard additions calibration, and Youden's calibration were carried out in order to evaluate constant and proportional errors due to the matrix. The developed metabolite-based recognition system for benzodiazepines is an innovative procedure that could be followed in routine and quality control assays.
Collapse
Affiliation(s)
- Roberta G. Machicote
- División Química Analítica, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47, Esq. 115, 1900 La Plata, Argentina
| | - Marcela A. Castillo
- División Química Analítica, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47, Esq. 115, 1900 La Plata, Argentina
| | - Maria E. Pacheco
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47, Esq. 115, 1900 La Plata, Argentina
| | - Liliana Bruzzone
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47, Esq. 115, 1900 La Plata, Argentina
| |
Collapse
|
43
|
Selective recognization of dicyandiamide in bovine milk by mesoporous silica SBA-15 supported dicyandiamide imprinted polymer based on surface molecularly imprinting technique. Food Chem 2018; 240:1262-1267. [DOI: 10.1016/j.foodchem.2017.08.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/10/2017] [Accepted: 08/20/2017] [Indexed: 01/31/2023]
|
44
|
A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 2017; 98:299-304. [DOI: 10.1016/j.bios.2017.06.036] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/01/2017] [Accepted: 06/18/2017] [Indexed: 11/19/2022]
|
45
|
Zhong C, Yang B, Jiang X, Li J. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit Rev Anal Chem 2017; 48:15-32. [PMID: 28777018 DOI: 10.1080/10408347.2017.1360762] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.
Collapse
Affiliation(s)
- Chunju Zhong
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Bin Yang
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Xinxin Jiang
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Jianping Li
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| |
Collapse
|
46
|
Shao Y, Zhou L, Wu Q, Bao C, Liu M. Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition - fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:418-426. [PMID: 28686932 DOI: 10.1016/j.jhazmat.2017.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
A well-defined molecularly imprinted polymer nanospheres with excellent specific recognition ability was prepared on Fe3O4 nanoparticles via the combination of click chemistry and surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and using Tetrabromobisphenol A as template. Concretely, Fe3O4 nanoparticles were prepared by solvothermal method and then modified by 4-vinylbenylchloride through distillation-precipitation, which makes azide groups easily introduced on the surface of magnetic nanoparticles to form the relatively large amount of benzyl chloride groups. With high efficiency, alkyne terminated RAFT chain transfer agent were then immobilized onto the surface of Fe3O4 by means of click chemistry, which is Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The highly uniform imprinted thin film was finally fabricated on the surface of RAFT agent modified Fe3O4 nanoparticles. The binding results demonstrated that as-prepared imprinted beads exhibited remarkable molecular imprinting effects to the template molecule, fast rebinding kinetics and an excellent selectivity to compounds with similar configuration.
Collapse
Affiliation(s)
- Yanming Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China; Zhongwei High-tech Institute of Lanzhou University, 755000, PR China.
| | - Qiong Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Chao Bao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
47
|
Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:124-129. [DOI: 10.1016/j.msec.2017.04.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
|
48
|
Zhu Q, Li X, Xiao Y, Xiong Y, Wang S, Xu C, Zhang J, Wu X. Synthesis of Molecularly Imprinted Polymer via Visible Light Activated RAFT Polymerization in Aqueous Media at Room Temperature for Highly Selective Electrochemical Assay of Glucose. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiankun Zhu
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Xiaoming Li
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Yonghua Xiao
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Yan Xiong
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Suiping Wang
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Changli Xu
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Jun Zhang
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| | - Xuewen Wu
- School of Chemical Engineering; Xiangtan University; Xiangtan 411105 China
| |
Collapse
|
49
|
Zhao X, Li Z, Chen C, Wu Y, Zhu Z, Zhao H, Lan M. A Novel Biomimetic Hydrogen Peroxide Biosensor Based on Pt Flowers-decorated Fe3
O4
/Graphene Nanocomposite. ELECTROANAL 2017. [DOI: 10.1002/elan.201600793] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xueling Zhao
- School of Environmental and Materials Engineering; College of Engineering; Shanghai Polytechnic University; Shanghai 201209 P. R. China
| | - Zhanhong Li
- School of Environmental and Materials Engineering; College of Engineering; Shanghai Polytechnic University; Shanghai 201209 P. R. China
| | - Cheng Chen
- School of Environmental and Materials Engineering; College of Engineering; Shanghai Polytechnic University; Shanghai 201209 P. R. China
| | - Yihua Wu
- School of Environmental and Materials Engineering; College of Engineering; Shanghai Polytechnic University; Shanghai 201209 P. R. China
| | - Zhigang Zhu
- School of Environmental and Materials Engineering; College of Engineering; Shanghai Polytechnic University; Shanghai 201209 P. R. China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry; East China University of Science and Technology; Shanghai 200237 P. R. China
| |
Collapse
|
50
|
Li T, Fan L, Wang Y, Huang X, Xu J, Lu J, Zhang M, Xu W. Molecularly Imprinted Membrane Electrospray Ionization for Direct Sample Analyses. Anal Chem 2017; 89:1453-1458. [PMID: 28035803 DOI: 10.1021/acs.analchem.6b02571] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Typically dealing with practical samples with very complex matrices, ambient ionization mass spectrometry suffers from low detection sensitivity. In this study, molecular imprinting technology was explored and integrated with the membrane electrospray ionization (MESI) method for direct sample analyses. By enriching targeted analytes on molecularly imprinted membranes (MIMs), improvement (by 10- to 50-fold) in the limit of quantitation could be achieved, compared to conventional nanoelectrospray ionization methods or other ambient ionization methods. MIMs were prepared by cross-linking a synthesized molecularly imprinted polymer layer onto a polyvinylidene difluoride (PVDF) membrane. The characteristics of MIM in recognizing target analytes were investigated and verified. Experiments showed that MIM-ESI could provide satisfactory performances for direct quantification of targeted analytes in complex samples using mass spectroscopy (MS), and the quantitative performance of this methodology was validated. With the capability of target enrichment, the uses of MIM-ESI MS in different application fields were also demonstrated, including food safety, quantification of drug concentrations in blood, pesticide residues in soil, and antibiotic residues in milk.
Collapse
Affiliation(s)
- Tianyi Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, China , 102206.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China , 310003
| | - Liusheng Fan
- School of Life Science, Beijing Institute of Technology , Beijing, China , 100081
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal University , Beijing, China , 100048
| | - Xuebin Huang
- School of Chemistry, Beijing Institute of Technology , Beijing, China , 100081
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, China , 102206.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China , 310003
| | - Jinxing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, China , 102206.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China , 310003
| | - Mei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, China , 102206.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China , 310003
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology , Beijing, China , 100081
| |
Collapse
|