1
|
Conforti JM, Ziegler AM, Worth CS, Nambiar AM, Bailey JT, Taube JH, Gallagher ES. Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Clean-up Techniques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584881. [PMID: 38559195 PMCID: PMC10980087 DOI: 10.1101/2024.03.13.584881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identification. Single-pot, solid-phase-enhanced sample preparation (SP3) is a clean-up technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. However, recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Thus, solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer clean-up technique that employs protein-aggregation to capture proteins without modified particles. SP4 has previously enriched low-solubility proteins, though differences in protein capture could affect which proteins are detected and identified. We hypothesize that the mechanisms of capture for SP3 and SP4 are distinct. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. From these results, we recommend clean-up techniques based on protein-sample hydrophobicity to yield high proteome coverage in biological samples.
Collapse
Affiliation(s)
- Jessica M. Conforti
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Amanda M. Ziegler
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Charli S. Worth
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Adhwaitha M. Nambiar
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Jacob T. Bailey
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Joseph H. Taube
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
- Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
| | - Elyssia S. Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
2
|
Hua Y, Strauss M, Fisher S, Mauser MFX, Manchet P, Smacchia M, Geyer P, Shayeghi A, Pfeffer M, Eggenweiler TH, Daly S, Commandeur J, Mayor M, Arndt M, Šolomek T, Köhler V. Giving the Green Light to Photochemical Uncaging of Large Biomolecules in High Vacuum. JACS AU 2023; 3:2790-2799. [PMID: 37885583 PMCID: PMC10598566 DOI: 10.1021/jacsau.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
The isolation of biomolecules in a high vacuum enables experiments on fragile species in the absence of a perturbing environment. Since many molecular properties are influenced by local electric fields, here we seek to gain control over the number of charges on a biopolymer by photochemical uncaging. We present the design, modeling, and synthesis of photoactive molecular tags, their labeling to peptides and proteins as well as their photochemical validation in solution and in the gas phase. The tailored tags can be selectively cleaved off at a well-defined time and without the need for any external charge-transferring agents. The energy of a single or two green photons can already trigger the process, and it is soft enough to ensure the integrity of the released biomolecular cargo. We exploit differences in the cleavage pathways in solution and in vacuum and observe a surprising robustness in upscaling the approach from a model system to genuine proteins. The interaction wavelength of 532 nm is compatible with various biomolecular entities, such as oligonucleotides or oligosaccharides.
Collapse
Affiliation(s)
- Yong Hua
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Marcel Strauss
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Sergey Fisher
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Martin F. X. Mauser
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Pierre Manchet
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Martina Smacchia
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Philipp Geyer
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Armin Shayeghi
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Michael Pfeffer
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Tim Henri Eggenweiler
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Steven Daly
- MS
Vision, Televisieweg
40, 1322 AM Almere, The Netherlands
| | - Jan Commandeur
- MS
Vision, Televisieweg
40, 1322 AM Almere, The Netherlands
| | - Marcel Mayor
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
- Institute
for Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), P.O. Box 3640, DE-76021 Karlsruhe Eggenstein-Leopoldshafen, Germany
- Lehn Institute
of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. China
| | - Markus Arndt
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Tomáš Šolomek
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
3
|
Chen Q, Dai R, Yao X, Chaihu L, Tong W, Huang Y, Wang G. Improving Accuracy in Mass Spectrometry-Based Mass Determination of Intact Heterogeneous Protein Utilizing the Universal Benefits of Charge Reduction and Alternative Gas-Phase Reactions. Anal Chem 2022; 94:13869-13878. [PMID: 36170625 DOI: 10.1021/acs.analchem.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mass analysis of proteins, mass spectrometry directly measures the mass to charge ratios of ionized proteins and promises higher accuracy than that of indirect approaches measuring other physicochemical properties, provided that the charge states of detected ions are determined. Accurate mass determination of heterogeneously glycosylated proteins is often hindered by unreliable charge determination due to the insufficient resolution of signals from different charge states and inconsistency among mass profiles of ions in individual charge states. Limited charge reduction of a subpopulation of proteoforms using electron transfer/capture reactions (ETnoD/ETnoD) solves this problem by narrowing the mass distribution of examined proteoforms and preserving the mass profile of the precursor charge state in the reduced charge states. However, the limited availability of ETnoD/ETnoD function in commercial instruments limits the application of this approach. Here, utilizing a range of charge-dependent and accuracy-affecting spectral features revealed by a systematic evaluation at levels of both the ensemble and subpopulation of proteoforms based on theoretical models and experiments, we developed a limited charge reduction workflow that enables using collision-induced dissociation and higher energy collisional dissociation, two widely available reactions, as alternatives to ETnoD/ETnoD while providing adequate accuracy. Alternatively, substituting proton transfer charge reduction for ETnoD/ETnoD provides higher accuracy of mass determination. Performing mass selection in a window-sliding manner improves the accuracy and allows profiling of the whole proteoform distribution. The proposed workflow may facilitate the development of universal characterization strategies for more complex and heterogeneous protein systems.
Collapse
Affiliation(s)
- Qingrong Chen
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaopeng Yao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenjun Tong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yanyi Huang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Muneeruddin K, Kaltashov IA, Wang G. Characterizing Soluble Protein Aggregates Using Native Mass Spectrometry Coupled with Temperature-Controlled Electrospray Ionization and Size-Excl usion Chromatography. Methods Mol Biol 2022; 2406:455-468. [PMID: 35089574 DOI: 10.1007/978-1-0716-1859-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characterization of soluble protein aggregates provides valuable information for revealing mechanisms of protein aggregation process and assessing the activity and safety of protein therapeutics. However, the noncovalent interaction, the transient nature and higher degree of structural heterogeneity of the soluble aggregation system hinders precise characterization at the molecular level. Here, we describe methods using native mass spectrometry coupled with temperature-control electrospray ionization and size-exclusion chromatography to monitor the aggregation process and profile the aggregates in detail.
Collapse
Affiliation(s)
- Khaja Muneeruddin
- The Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Yang W, Ivanov DG, Kaltashov IA. Extending the capabilities of intact-mass analyses to monoclonal immunoglobulins of the E-isotype (IgE). MAbs 2022; 14:2103906. [PMID: 35895856 PMCID: PMC9336480 DOI: 10.1080/19420862.2022.2103906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mass spectrometry (MS) has become an indispensable tool in structural characterization and quality control of monoclonal antibodies (mAbs). Intact-mass analysis is a particularly attractive option that provides a powerful and cost-effective means to not only confirm the structural integrity of the protein, but also probe its interactions with therapeutic targets. To a certain extent, this success can be attributed to relatively modest glycosylation levels exhibited by IgG molecules, which limits their structural heterogeneity and enables straightforward mass measurements at the intact molecule level. The recent surge of interest in expanding the repertoire of mAbs to include other classes of immunoglobulins places a premium on efforts to adapt the IgG-tailored experimental strategies to other classes of antibodies, but their dramatically higher levels of glycosylation may create insurmountable obstacles. The monoclonal murine IgE antibody explored in this work provides a challenging model system, as its glycosylation level exceeds that of conventional IgG mAbs by a factor of nine. The commercial sample, which included various IgE fragments, yields a poorly resolved ionic signal in intact-mass measurements, from which little useful information can be extracted. However, coupling MS measurements with the limited charge reduction of select polycationic species in the gas phase gives rise to well-defined charge ladders, from which both ionic masses and charges can be readily determined. The measurements reveal significant variation of the extent of glycosylation within intact IgE molecules, as well as the presence of low-molecular weight impurities in the commercial IgE sample. Furthermore, incubation of the monoclonal IgE with its antigen (ovalbumin) gives rise to the formation of complexes with varying stoichiometries, which can also be uniquely identified using a combination of native MS, limited charge reduction in the gas phase and data fitting procedures. This work demonstrates that following appropriate modifications, intact-mass analysis measurements can be successfully applied to mAbs beyond the IgG isotype, providing a wealth of information not only on the mass distribution of the intact IgE molecules, but also their large-scale conformational integrity, the integrity of their covalent structure, and their interactions with antigens.
Collapse
Affiliation(s)
- Wenhua Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. Anal Bioanal Chem 2021; 413:7205-7214. [PMID: 34389878 PMCID: PMC8362873 DOI: 10.1007/s00216-021-03601-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community—the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native MS as a means of characterizing its interactions with both the host cell–surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work, we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
7
|
Yang Y, Ivanov DG, Kaltashov IA. The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34189525 DOI: 10.1101/2021.06.20.449191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community â€" the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
8
|
Krichel B, Bylapudi G, Schmidt C, Blanchet C, Schubert R, Brings L, Koehler M, Zenobi R, Svergun D, Lorenzen K, Madhugiri R, Ziebuhr J, Uetrecht C. Hallmarks of Alpha- and Betacoronavirus non-structural protein 7+8 complexes. SCIENCE ADVANCES 2021; 7:7/10/eabf1004. [PMID: 33658206 PMCID: PMC7929516 DOI: 10.1126/sciadv.abf1004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/19/2021] [Indexed: 05/02/2023]
Abstract
Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses, with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing a pandemic in 2020. Coronaviral non-structural proteins (nsps) form the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complexes has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations, SARS-CoV-2 nsp7+8 consists primarily of heterotetramers. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model proposed.
Collapse
Affiliation(s)
- Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ganesh Bylapudi
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | - Martin Koehler
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Dmitri Svergun
- EMBL Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
- European XFEL GmbH, Schenefeld, Germany
| |
Collapse
|
9
|
Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, de Haas CJC, Aerts PC, Wang G, de Jong RN, Bagnoli F, van Strijp JAG, van Kessel KPM, Schuurman J, Preiner J, Heck AJR, Rooijakkers SHM. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A 2021; 118:e2016772118. [PMID: 33563762 PMCID: PMC7896290 DOI: 10.1073/pnas.2016772118] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Collapse
Affiliation(s)
- Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maurits A den Boer
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Guanbo Wang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | | | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
10
|
Krichel B, Bylapudi G, Schmidt C, Blanchet C, Schubert R, Brings L, Koehler M, Zenobi R, Svergun D, Lorenzen K, Madhugiri R, Ziebuhr J, Uetrecht C. Hallmarks of Alpha- and Betacoronavirus non-structural protein 7+8 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.30.320762. [PMID: 33024972 PMCID: PMC7536876 DOI: 10.1101/2020.09.30.320762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses with SARS-CoV-2 causing a pandemic in 2020. Coronaviral non-structural proteins (nsp) built up the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complex has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on a native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations mainly heterotetramers are observed for SARS-CoV-2 nsp7+8. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model is proposed.
Collapse
Affiliation(s)
- Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ganesh Bylapudi
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | - Martin Koehler
- ETH Zurich D-CHAB Lab of Organic Chemistry, Zürich, Switzerland
| | - Renato Zenobi
- ETH Zurich D-CHAB Lab of Organic Chemistry, Zürich, Switzerland
| | - Dmitri Svergun
- EMBL Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- European XFEL GmbH, Schenefeld, Germany
| |
Collapse
|
11
|
Kabata Glowacki S, Koszinowski K, Hübner D, Frauendorf H, Vana P, Diederichsen U. Supramolecular Self-Assembly of β 3 -Peptides Mediated by Janus-Type Recognition Units. Chemistry 2020; 26:12145-12149. [PMID: 32621556 PMCID: PMC7539953 DOI: 10.1002/chem.202003107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 01/18/2023]
Abstract
To gain mechanistic insights, natural systems with biochemical relevance are inspiring for the creation of new biomimetics with unique properties and functions. Despite progress in rational design and protein engineering, folding and intramolecular organization of individual components into supramolecular structures remains challenging and requires controlled methods. Foldamers, such as β-peptides, are structurally well defined with rigid conformations and suitable for the specific arrangement of recognition units. Herein, we show the molecular arrangement and aggregation of β3 -peptides into a hexameric helix bundle. For this purpose, β-amino acid side chains were modified with cyanuric acid and triamino-s-triazine as complementary recognition units. The pre-organization of the β3 -peptides leads these Janus molecule pairs into a hexameric arrangement and a defined rosette nanotube by stacking. The helical conformation of the subunits was indicated by circular dichroism spectroscopy, while the supramolecular arrangement was detected by dynamic light scattering and confirmed by high-resolution electrospray ionization mass spectrometry (ESI-HRMS).
Collapse
Affiliation(s)
- Selda Kabata Glowacki
- Institute of Organic and Biomolecular ChemistryGeorg-August-University GöttingenTammannstrasse 237077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration (cfBIN)University Medical Center Göttingenvon-Sieboldstrasse 3a37075GöttingenGermany
| | - Konrad Koszinowski
- Institute of Organic and Biomolecular ChemistryGeorg-August-University GöttingenTammannstrasse 237077GöttingenGermany
| | - Dennis Hübner
- Institute of Physical ChemistryGeorg-August-University GöttingenTammannstrasse 637077GöttingenGermany
| | - Holm Frauendorf
- Institute of Organic and Biomolecular ChemistryGeorg-August-University GöttingenTammannstrasse 237077GöttingenGermany
| | - Philipp Vana
- Institute of Physical ChemistryGeorg-August-University GöttingenTammannstrasse 637077GöttingenGermany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular ChemistryGeorg-August-University GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
12
|
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal 2020; 184:113169. [PMID: 32092629 DOI: 10.1016/j.jpba.2020.113169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jake Pawlowski
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
13
|
Foreman DJ, McLuckey SA. Recent Developments in Gas-Phase Ion/Ion Reactions for Analytical Mass Spectrometry. Anal Chem 2020; 92:252-266. [PMID: 31693342 PMCID: PMC6949396 DOI: 10.1021/acs.analchem.9b05014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David J Foreman
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Scott A McLuckey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
14
|
Taraban MB, Deredge DJ, Smith ME, Briggs KT, Feng Y, Li Y, Jiang ZX, Wintrode PL, Yu YB. Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II. Conformational transition vs. supramolecular assembly. RSC Adv 2019; 9:1956-1966. [PMID: 35516151 PMCID: PMC9059749 DOI: 10.1039/c8ra08795d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Unlike many known amphiphiles, the fluorinated amphiphilic dendrimer studied in this work demonstrated a concentration-dependent conformational transition rather than micellization or assembly. Hydrophobic and hydrophilic interactions with water were suggested as the most probable driving force of this transition. This assumption was consistent with the observed 19F chemical shift changes of the dendrimer compared to a known micelle-forming fluorinated amphiphile. Since water is an important factor in the process, trends of the concentration-dependent changes in water proton transverse relaxation rate served as an indicator of structural changes and/or supramolecular assembly. The conformational transition process was also confirmed by ion-mobility mass-spectrometry. We suggested that structural features, namely, steric hindrances, prevented the micellization/assembly of the dendrimer of this study. This conclusion might inform the approach to develop novel unconventional amphiphiles.
Collapse
Affiliation(s)
- Marc B Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Margaret E Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Katharine T Briggs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yue Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yu Li
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| |
Collapse
|
15
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
16
|
Carrasco K, Boufenzer A, Jolly L, Le Cordier H, Wang G, Heck AJ, Cerwenka A, Vinolo E, Nazabal A, Kriznik A, Launay P, Gibot S, Derive M. TREM-1 multimerization is essential for its activation on monocytes and neutrophils. Cell Mol Immunol 2018; 16:460-472. [PMID: 29568119 DOI: 10.1038/s41423-018-0003-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/01/2018] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a receptor expressed on innate immune cells. By promoting the amplification of inflammatory signals that are initially triggered by Toll-like receptors (TLRs), TREM-1 has been characterized as a major player in the pathophysiology of acute and chronic inflammatory diseases, such as septic shock, myocardial infarction, atherosclerosis, and inflammatory bowel diseases. However, the molecular events leading to the activation of TREM-1 in innate immune cells remain unknown. Here, we show that TREM-1 is activated by multimerization and that the levels of intracellular Ca2+ release, reactive oxygen species, and cytokine production correlate with the degree of TREM-1 aggregation. TREM-1 activation on primary human monocytes by LPS required a two-step process consisting of upregulation followed by clustering of TREM-1 at the cell surface, in contrast to primary human neutrophils, where LPS induced a rapid cell membrane reorganization of TREM-1, which confirmed that TREM-1 is regulated differently in primary human neutrophils and monocytes. In addition, we show that the ectodomain of TREM-1 is able to homooligomerize in a concentration-dependent manner, which suggests that the clustering of TREM-1 on the membrane promotes its oligomerization. We further show that the adapter protein DAP12 stabilizes TREM-1 surface expression and multimerization. TREM-1 multimerization at the cell surface is also mediated by its endogenous ligand, a conclusion supported by the ability of the TREM-1 inhibitor LR12 to limit TREM-1 multimerization. These results provide evidence for ligand-induced, receptor-mediated dimerization of TREM-1. Collectively, our findings uncover the mechanisms necessary for TREM-1 activation in monocytes and neutrophils.
Collapse
Affiliation(s)
- Kevin Carrasco
- INOTREM, Vandœuvre-les-Nancy, France.,UMR-S 1116, Defaillance cardiovasculaire aigue et chronique, Vandœuvre-les-Nancy, France
| | | | - Lucie Jolly
- INOTREM, Vandœuvre-les-Nancy, France.,UMR-S 1116, Defaillance cardiovasculaire aigue et chronique, Vandœuvre-les-Nancy, France
| | - Helene Le Cordier
- UMR7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Vandœuvre-les-Nancy, France
| | - Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Alexandre Kriznik
- Service Commun de Biophysique Interactions Moléculaires (SCBIM), FR3209, Biopôle de l'Université de Lorraine, Vandœuvre-les-Nancy, France
| | | | - Sebastien Gibot
- UMR-S 1116, Defaillance cardiovasculaire aigue et chronique, Vandœuvre-les-Nancy, France
| | | |
Collapse
|
17
|
Wang G, Bondarenko PV, Kaltashov IA. Multi-step conformational transitions in heat-treated protein therapeutics can be monitored in real time with temperature-controlled electrospray ionization mass spectrometry. Analyst 2018; 143:670-677. [PMID: 29303166 DOI: 10.1039/c7an01655g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat-induced conformational transitions are frequently used to probe the free energy landscapes of proteins. However, the extraction of information from thermal denaturation profiles pertaining to non-native protein conformations remains challenging due to their transient nature and significant conformational heterogeneity. Previously we developed a temperature-controlled electrospray ionization (ESI) source that allowed unfolding and association of biopolymers to be monitored by mass spectrometry (MS) in real time as a function of temperature. The scope of this technique is now extended to systems that undergo multi-step denaturation upon heat stress, as well as relatively small-scale conformational changes that are precursors to protein aggregation. The behavior of two therapeutic proteins (human antithrombin and an IgG1 monoclonal antibody) under heat-stress conditions is monitored in real time, providing evidence that relatively small-scale conformational changes in each system lead to protein oligomerization, followed by aggregation. Temperature-controlled ESI MS is particularly useful for the studies of heat-stressed multi-domain proteins such as IgG, where it allows distinct transitions to be observed. The ability of native temperature-controlled ESI MS to monitor both the conformational changes and oligomerization/degradation with high selectivity complements the classic calorimetric methods, lending itself as a powerful experimental tool for the thermostability studies of protein therapeutics.
Collapse
Affiliation(s)
- Guanbo Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen, Inc., Thousand Oaks, CA, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| |
Collapse
|
18
|
Brusotti G, Calleri E, Colombo R, Massolini G, Rinaldi F, Temporini C. Advances on Size Exclusion Chromatography and Applications on the Analysis of Protein Biopharmaceuticals and Protein Aggregates: A Mini Review. Chromatographia 2017. [DOI: 10.1007/s10337-017-3380-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Wang G, de Jong RN, van den Bremer ETJ, Parren PWHI, Heck AJR. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry. Anal Chem 2017; 89:4793-4797. [PMID: 28383250 PMCID: PMC5415875 DOI: 10.1021/acs.analchem.6b05129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The determination
of molecular weights (MWs) of heavily glycosylated
proteins is seriously hampered by the physicochemical characteristics
and heterogeneity of the attached carbohydrates. Glycosylation impacts
protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis (PAGE) and size-exclusion chromatography (SEC) analysis. Standard electrospray
ionization (ESI)-mass spectrometry does not provide a direct solution
as this approach is hindered by extensive interference of ion signals
caused by closely spaced charge states of broadly distributed glycoforms.
Here, we introduce a native tandem MS-based approach, enabling charge-state
resolution and charge assignment of protein ions including those that
escape mass analysis under standard MS conditions. Using this method,
we determined the MW of two model glycoproteins, the extra-cellular
domains of the highly and heterogeneously glycosylated proteins CD38
and epidermal growth factor receptor (EGFR), as well as the overall
MW and binding stoichiometries of these proteins in complex with a
specific antibody.
Collapse
Affiliation(s)
- Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands.,School of Chemistry and Materials Science, Nanjing Normal University , 1 Weyuan Road, Nanjing, Jiangsu 210023, China
| | - Rob N de Jong
- Genmab , Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | | | - Paul W H I Parren
- Genmab , Yalelaan 60, 3584 CM Utrecht, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Bastos P, Trindade F, Leite-Moreira A, Falcão-Pires I, Ferreira R, Vitorino R. Methodological approaches and insights on protein aggregation in biological systems. Expert Rev Proteomics 2016; 14:55-68. [DOI: 10.1080/14789450.2017.1264877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Expression and characterization of recombinant chicken mannose binding lectin. Immunobiology 2016; 222:518-528. [PMID: 27817988 DOI: 10.1016/j.imbio.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
Mannose binding lectin (MBL) is a serum collagenous C-type lectin that plays an important role in the innate immune protection against pathogens. Previously, human and mouse studies have demonstrated that MBL binds a broad range of pathogens that results in their neutralization through agglutination, enhanced phagocytosis, and/or complement activation via the lectin pathway. The role of MBL in chicken is not well understood although the MBL concentration in serum seems to correlate with protection against infections. To investigate the role of MBL in chicken further, recombinant chicken MBL (RcMBL) was produced in HeLa R19 cells and purified using mannan affinity chromatography followed by gel filtration. RcMBL was shown to be structurally and functionally similar to native chicken MBL (NcMBL) isolated from serum. RcMBL is expressed as an oligomeric protein (mixture of trimers and oligomerized trimers) with a monomeric mass of 26kDa as determined by mass spectrometry, corresponding to the predicted mass. Glycan array analysis indicated that RcMBL bound most strongly to high-mannose glycans but also glycans with terminal fucose and GlcNac residues. The biological activity of RcMBL was demonstrated via its capacity to agglutinate Salmonella Typhimurium and to inhibit the hemagglutination activity of influenza A virus. The production of a structurally well-characterized and functionally active RcMBL will facilitate detailed studies into the protective role of MBL in innate defense against pathogens in chicken and other avian species.
Collapse
|
22
|
Wang G, de Jong RN, van den Bremer ETJ, Beurskens FJ, Labrijn AF, Ugurlar D, Gros P, Schuurman J, Parren PWHI, Heck AJR. Molecular Basis of Assembly and Activation of Complement Component C1 in Complex with Immunoglobulin G1 and Antigen. Mol Cell 2016; 63:135-45. [PMID: 27320199 DOI: 10.1016/j.molcel.2016.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/24/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
The classical complement pathway contributes to the natural immune defense against pathogens and tumors. IgG antibodies can assemble at the cell surface into hexamers via Fc:Fc interactions, which recruit complement component C1q and induce complement activation. Biophysical characterization of the C1:IgG complex has remained elusive primarily due to the low affinity of IgG-C1q binding. Using IgG variants that dynamically form hexamers efficient in C1q binding and complement activation, we could assess C1q binding in solution by native mass spectrometry and size-exclusion chromatography. Fc-domain deglycosylation, described to abrogate complement activation, affected IgG hexamerization and C1q binding. Strikingly, antigen binding by IgG hexamers or deletion of the Fab arms substantially potentiated complement initiation, suggesting that Fab-mediated effects impact downstream Fc-mediated events. Finally, we characterized a reconstituted 2,045.3 ± 0.4-kDa complex of intact C1 bound to antigen-saturated IgG hexamer by native mass spectrometry, providing a clear visualization of a complete complement initiation complex.
Collapse
Affiliation(s)
- Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rob N de Jong
- Genmab, Yalelaan 60, 3584 CM Utrecht, the Netherlands
| | | | | | | | - Deniz Ugurlar
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Paul W H I Parren
- Genmab, Yalelaan 60, 3584 CM Utrecht, the Netherlands; Department of Immunohematology and Blood Transfusion, University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
23
|
Zhao Y, Abzalimov RR, Kaltashov IA. Interactions of Intact Unfractionated Heparin with Its Client Proteins Can Be Probed Directly Using Native Electrospray Ionization Mass Spectrometry. Anal Chem 2016; 88:1711-8. [DOI: 10.1021/acs.analchem.5b03792] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunlong Zhao
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Rinat R. Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface. PLoS Biol 2016; 14:e1002344. [PMID: 26736041 PMCID: PMC4703389 DOI: 10.1371/journal.pbio.1002344] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen.
Collapse
|
25
|
Muneeruddin K, Nazzaro M, Kaltashov IA. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry. Anal Chem 2015; 87:10138-45. [PMID: 26360183 DOI: 10.1021/acs.analchem.5b02982] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Characterization of biopharmaceutical products is a challenging task, which needs to be carried out at several different levels (including both primary structure and conformation). An additional difficulty frequently arises due to the structural heterogeneity inherent to many protein-based therapeutics (e.g., extensive glycosylation or "designer" modifications such as chemical conjugation) or introduced postproduction as a result of stress (e.g., oxidation and deamidation). A combination of ion-exchange chromatography (IXC) with online detection by native electrospray ionization mass spectrometry (ESI MS) allows characterization of complex and heterogeneous therapeutic proteins and protein conjugates to be accomplished at a variety of levels without compromising their conformational integrity. The IXC/ESI MS measurements allow protein conjugates to be profiled by analyzing conjugation stoichiometry and the presence of multiple positional isomers, as well as to establish the effect of chemical modifications on the conformational integrity of each species. While mass profiling alone is not sufficient for identification of nonenzymatic post-translational modifications (PTMs) that result in a very small mass change of the eluting species (e.g., deamidation), this task can be completed using online top-down structural analysis, as demonstrated using stressed interferon-β as an example. The wealth of information that can be provided by IXC/native ESI MS and tandem mass spectrometry (MS/MS) on protein-based therapeutics will undoubtedly make it a very valuable addition to the experimental toolbox of biopharmaceutical analysis.
Collapse
Affiliation(s)
- Khaja Muneeruddin
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | - Mark Nazzaro
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
26
|
Muneeruddin K, Thomas JJ, Salinas PA, Kaltashov IA. Characterization of small protein aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization mass spectrometry. Anal Chem 2014; 86:10692-9. [PMID: 25310183 DOI: 10.1021/ac502590h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-association of proteins is important in a variety of processes ranging from acquisition of native quaternary structure (where the association is tightly controlled and proceeds in a highly ordered fashion) to aggregation and amyloidosis. The latter is frequently accompanied (or indeed triggered) by the loss of the native structure, but a clear understanding of the complex relationship between conformational changes and protein self-association/aggregation remains elusive due to the great difficulty in characterizing these complex and frequently heterogeneous species. In this study, size exclusion chromatography (SEC) was used in combination with online detection by native electrospray ionization mass spectrometry (ESI MS) to characterize a commercial protein sample (serum albumin) that forms small aggregates. Although noncovalent dimers and trimers of this protein are readily detected by native ESI MS alone, combination of SEC and ESI MS allows a distinction to be made between the oligomers present in solution and those formed during the ESI process (artifacts of ESI MS). Additionally, native ESI MS detection allows a partial loss of conformation integrity to be detected across all albumin species present in solution. Finally, ESI MS detection allows these analyses to be carried out readily even in the presence of other abundant proteins coeluting with albumin. Native ESI MS as an online detection method for SEC also enables meaningful characterization of species representing different quaternary organization of a recombinant glycoprotein human arylsulfatase A even when their rapid interconversion prevents their separation on the SEC time scale.
Collapse
Affiliation(s)
- Khaja Muneeruddin
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | | | | | | |
Collapse
|
27
|
Minsky BB, Zheng B, Dubin PL. Inhibition of antithrombin and bovine serum albumin native state aggregation by heparin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:278-287. [PMID: 24313340 DOI: 10.1021/la4039232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein native state aggregation, a major problem in pharmaceutical and biological processes, has been addressed pharmacologically by the addition of protein-binding excipients. Heparin (Hp), a highly sulfated polysaccharide, interacts with numerous proteins with moderate to high affinity, but reports about its effect on protein aggregation are contradictory. We studied the pH dependence of the aggregation of antithrombin (AT) and bovine serum albumin (BSA) in the presence and absence of heparin. High-precision turbidimetry showed strong aggregation for both AT and BSA in I = 10 mM NaCl, conditions at which electrostatically driven Hp binding and aggregation both occur, with more obvious aggregation of heparin-free AT appearing as larger aggregate size. Aggregation of AT was dramatically inhibited at Hp: protein 6:1 (mole ratio); however, the effect at 0.5:1 Hp:protein was greater for BSA. Frontal analysis capillary electrophoresis showed a much larger equilibrium association constant Kobs between Hp and AT, in accord with the onset of Hp binding at a higher pH; both effects are explained by the higher charge density of the positive domain for AT as revealed by modeling with DelPhi. The corresponding modeling images showed that these domains persist at high salt only for AT, consistent with the 160-fold drop in Kobs at 100 mM salt for BSA-Hp binding. The smaller inhibition effect for AT arises from the tendency of its uncomplexed monomer to form larger aggregates more rapidly, but the stronger binding of Hp to AT does not facilitate Hp-induced aggregate dissolution which occurs more readily for BSA. This can be attributed to the higher density of AT aggregates evidenced by higher fractal dimensions. Differences between inhibition and reversal by Hp arise because the former may depend on the stage at which Hp enters the aggregation process and the latter on aggregate size and morphology.
Collapse
Affiliation(s)
- Burcu Baykal Minsky
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts, 01003, United States
| | | | | |
Collapse
|
28
|
Federici M, Lubiniecki A, Manikwar P, Volkin DB. Analytical lessons learned from selected therapeutic protein drug comparability studies. Biologicals 2013; 41:131-47. [DOI: 10.1016/j.biologicals.2012.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 02/08/2023] Open
|
29
|
Abzalimov RR, Bobst CE, Salinas PA, Savickas P, Thomas JJ, Kaltashov IA. Studies of pH-Dependent Self-Association of a Recombinant Form of Arylsulfatase A with Electrospray Ionization Mass Spectrometry and Size-Exclusion Chromatography. Anal Chem 2013; 85:1591-6. [DOI: 10.1021/ac302829k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rinat R. Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts,
United States
| | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts,
United States
| | - Paul A. Salinas
- Pharmaceutical
and Analytical
Development, Shire Human Genetic Therapies, Lexington, Massachusetts, United States
| | - Philip Savickas
- Pharmaceutical
and Analytical
Development, Shire Human Genetic Therapies, Lexington, Massachusetts, United States
| | - John J. Thomas
- Pharmaceutical
and Analytical
Development, Shire Human Genetic Therapies, Lexington, Massachusetts, United States
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts,
United States
| |
Collapse
|
30
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|