1
|
Makela M, Tu D, Lin Z, Coté G, Lin PT. Chip-Scale Aptamer Sandwich Assay Using Optical Waveguide-Assisted Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1927. [PMID: 39683314 DOI: 10.3390/nano14231927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Chip-scale optical waveguide-assisted surface-enhanced Raman spectroscopy (SERS) that used nanoparticles (NPs) was demonstrated. The Raman signals from Raman reporter (RR) molecules on NPs can be efficiently excited by the waveguide evanescent field when the molecules are in proximity to the waveguide surface. The Raman signal was enhanced by plasmon resonance due to the NPs close to the waveguide surface. The optical waveguide mode and the NP-induced field enhancement were calculated using a finite difference method (FDM). The sensing performance of the waveguide-assisted SERS device was experimentally characterized by measuring the Raman scattering from various RRs, including 4-mercaptobenzoic acid (4-MBA), 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), and malachite green isothiocyanate (MGITC). The observed Raman spectral features were identified and assigned to the complex vibrational modes associated with different reporters. A low detection limit of 1 nM was achieved. In addition, the device sensing method was applied to the detection of the biomarker cardiac troponin I (cTnI) using an aptamer sandwich assay immobilized on the device surface. Overall, the optical waveguides integrated with SERS show a miniaturized sensing platform for the detection of small molecules and large proteins, potentially enabling multiplexed detection for clinically relevant applications.
Collapse
Affiliation(s)
- Megan Makela
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
| | - Dandan Tu
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zhihai Lin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gerard Coté
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Pao Tai Lin
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Zhi L, Li M, Li M, Tu J, Lu X. Realizing Ultrasensitive and Accurate Point-of-Care Profiling for ATP with a Triple-Mode Strategy Based on the ATP-Induced Reassembly of a Copper Coordination Polymer Nanoflower. Anal Chem 2024; 96:6202-6208. [PMID: 38598750 DOI: 10.1021/acs.analchem.3c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
New strategies for accurate and reliable detection of adenosine triphosphate (ATP) with portable devices are significant for biochemical analysis, while most recently reported approaches cannot satisfy the detection accuracy and independent of large instruments simultaneously, which are unsuitable for fast, simple, and on-site ATP monitoring. Herein, a unique, convenient, and label-free point-of-care sensing strategy based on novel copper coordination polymer nanoflowers (CuCPNFs) was fabricated for multimode (UV-vis, photothermal, and RGB values) onsite ATP determination with high selectivity, sensitivity, and accuracy. The resulting CuCPNFs with a 3D hierarchical structure exhibit the ATP-triggered decomposition behavior because the competitive coordination between ATP and the copper ions of CuCPNFs can result in the formation of ATP-Cu, which reveals preeminent peroxidase mimics activity and can accelerate the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form oxTMB. During this process, the detection system displayed not only color changes but also a strong NIR laser-driven photothermal effect. Thus, the photothermal and color signal variations are easily monitored by a portable thermometer and a smartphone. This multimode point-of-care platform can meet the requirements of onsite, without bulky equipment, accuracy, and reliability all at once, greatly enhancing its application in practice and paving a new way in ATP analysis.
Collapse
Affiliation(s)
- Lihua Zhi
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Jibing Tu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| |
Collapse
|
3
|
Xu Y, Liu Y, Luo Y, Xu X, Li Y, Zhao L, Li T, Zhang Y, He P, Mou X. Targeted-activation superparamagnetic spherical nucleic acid nanomachine for ultrasensitive SERS detection of lysozyme based on a bienzymatic-mediated in situ amplification strategy. ANAL SCI 2024; 40:429-438. [PMID: 38112960 DOI: 10.1007/s44211-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Lysozyme (LYS) is a widely used bacteriostatic enzyme. In this paper, we built a sensitive and accurate Raman biosensing platform to detect trace amounts of LYS. The method is based on magnetic spherical nucleic acid formed by a combination of LYS aptamer (Apt) and magnetic beads (MBs). Meanwhile, this method utilizes a dual enzyme-assisted nucleic acid amplification circuit and surface-enhanced Raman scattering (SERS). In this sensing strategy, which is based on the specific recognition of Apt, magnetic spherical nucleic acids were associated with SERS through a nucleic acid amplification circuit, and the low abundance of LYS was converted into a high-specificity Raman signal. Satellite-like MB@AuNPs were formed in the presence of the target, which separated specifically in a magnetic field, effectively avoided the interference of complex sample environment. Under the optimal sensing conditions, the concentration of LYS exhibited a good linear relationship between 1.0 × 10-14 and 5.0 × 10-12 M and the limit of detection was as low as 8.3 × 10-15 M. In addition, the sensor strategy shows excellent accuracy and sensitivity in complex samples, providing a new strategy for the specific detection of LYS.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yue Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yu Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xinlin Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yingying Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lin Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Peng He
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoming Mou
- Analytical and Testing Center, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
4
|
Li T, Sun M, Xia S, Huang T, Li RT, Li C, Dai Z, Chen JX, Chen J, Jia N. A binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. Talanta 2024; 269:125465. [PMID: 38008022 DOI: 10.1016/j.talanta.2023.125465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Developing simple, rapid and specific mRNA imaging strategy plays an important role in the early diagnosis of cancer and the new drugs development. Herein, we have established a novel binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. This developed system consisted of tetrahedron probe A (TPA) and tetrahedron probe B (TPB). TK1 mRNA was chosen as the study model. After TPA and TPB enter into the live cells, the TK1 mRNA induces TPA and TPB to approach and activate the fluorescent aptamer, resulting in enhanced fluorescent signal in the presence of small molecules of DFHBI-1T. By this design, the high specificity label-free detection of nucleic acids was achieved with a detection limit of 1.34 nM. Confocal fluorescence imaging experiments had proved that this strategy could effectively distinguish the TK1 mRNA expression level between normal cell and cancer cell. The developed method is expected to provide a new tool for early diagnosis of diseases and new drug development.
Collapse
Affiliation(s)
- Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Suping Xia
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rong-Tian Li
- Southern University of Science and Technology Hospital, Shenzhen, 518055, PR China
| | - Chunrong Li
- Qiannan Medical College for Nationalities, Duyun, 558000, PR China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Nuan Jia
- Southern University of Science and Technology Hospital, Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Jin H, Liu T, Sun D. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9. Mikrochim Acta 2024; 191:105. [PMID: 38240894 PMCID: PMC10798921 DOI: 10.1007/s00604-024-06183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Studies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS "hot spot" formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9-aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis.
Collapse
Affiliation(s)
- Huihui Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Liu F, Wu T, Tian A, He C, Bi X, Lu Y, Yang K, Xia W, Ye J. Intracellular metabolic profiling of drug resistant cells by surface enhanced Raman scattering. Anal Chim Acta 2023; 1279:341809. [PMID: 37827617 DOI: 10.1016/j.aca.2023.341809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Intracellular metabolic profiling reveals real-time metabolic information useful for the study of underlying mechanisms of cells in particular conditions such as drug resistance. However, mass spectrometry (MS), one of the leading metabolomics technologies, usually requires a large number of cells and complex pretreatments. Surface enhanced Raman scattering (SERS) has an ultrahigh detection sensitivity and specificity, favorable for metabolomics analysis. However, some targeted SERS methods focus on very limited metabolite without global bioprofiling, and some label-free approaches try to fingerprint the metabolic response based on whole SERS spectral classification, but comprehensive interpretation of biological mechanisms was lacking. (95) RESULTS: We proposed a label-free SERS technique for intracellular metabolic profiling in complex cellular lysates within 3 min. We first compared three kinds of cellular lysis methods and sonication lysis shows the highest extraction efficiency of metabolites. To obtain comprehensive metabolic information, we collected a spectral set for each sample and further qualified them by the Pearson correlation coefficient (PCC) to calculate how many spectra should be acquired at least to gain the adequate information from a statistical and global view. In addition, according to our measurements with 10 pure metabolites, we can understand the spectra acquired from complex cellular lysates of different cell lines more precisely. Finally, we further disclosed the variations of 22 SERS bands in enzalutamide-resistant prostate cancer cells and some are associated with the androgen receptor signaling activity and the methionine salvage pathway in the drug resistance process, which shows the same metabolic trends as MS. (149) SIGNIFICANCE: Our technique has the capability to capture the intracellular metabolic fingerprinting with the optimized lysis approach and spectral set collection, showing high potential in rapid, sensitive and global metabolic profiling in complex biosamples and clinical liquid biopsy. This gives a new perspective to the study of SERS in insightful understanding of relevant biological mechanisms. (54).
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Tingyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Ao Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Chang He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Xinyuan Bi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Yao Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Kai Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Weiliang Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
7
|
Zhang P, Zhuo Y, Chai YQ, Yuan R. Structural DNA tetrahedra and its electrochemical-related surface sensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022; 64:783-800. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that food safety has aroused extensive attentions from governments to researchers and to food industries. As a versatile technology based on molecular interactions, aptamer sensors which could specifically identify a wide range of food contaminants have been extensively studied in recent years. Surface-enhanced Raman spectroscopy integrated aptamer combines the advantages of both technologies, not only in the ability to specifically identify a wide range of food contaminants, but also in the ultra-high sensitivity, simplicity, portable and speed. To provide beneficial insights into the evaluation techniques in the field of food safety, we offer a comprehensive review on the design strategies for aptamer-SERS sensors in different scenarios, including non-nucleic acid amplification methods ("on/off" mode, sandwich mode, competition model and catalytic model) and nucleic acid amplification methods (hybridization chain reaction, rolling circle amplification, catalytic hairpin assembly). Meanwhile, a special attention is paid to the application of aptamer-SERS sensors in biological (foodborne pathogenic, bacteria and mycotoxins) and chemical contamination (drug residues, metal ions, and food additives) of food matrix. Finally, the challenges and prospects of developing reliable aptamer-SERS sensors for food safety were discussed, which are expected to offer a strong guidance for further development and extended applications.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ling Liu
- Wuxi Institute of Technology, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Zavyalova E, Tikhonova D, Zhdanov G, Rudakova E, Alferova V, Moiseenko A, Kamzeeva P, Khrulev A, Zalevsky A, Arutyunyan A, Novikov R, Kukushkin V, Aralov A. SERS-based biosensor with Raman-active external responsive element for rapid determination of adenosine monophosphate. Anal Chim Acta 2022; 1221:340140. [DOI: 10.1016/j.aca.2022.340140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/28/2022]
|
10
|
Liao X, Zhang C, Qiu S, Qiu Z, Tang Q, Wu S, Xu J, Wu B, Liu Z, Gao F. Proximity hybridization induced rolling circle amplification for label-free SERS detection of the depression marker human apolipoprotein A4. Talanta 2022; 244:123402. [DOI: 10.1016/j.talanta.2022.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
|
11
|
Cheng J, Cao H, Xu Y, Yang Y, He Y, Wang H. In Situ Monitoring of Dynamic Photocatalysis of Metal-Organic Frameworks by Three-Dimensional Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:5699-5706. [PMID: 35344343 DOI: 10.1021/acs.analchem.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic frameworks (MOFs) are promising as novel disinfectants due to the reactive oxygen species (ROS) produced in their photocatalytic processes. The optimal MOF is screened as the best disinfectant, representing high-efficacy production of ROS under photocatalytic conditions. However, current methods to screen abundant MOFs for disinfectant application are generally semiquantitative or ex situ methods [such as electron paramagnetic resonance (EPR) measurements], so achieving a strategy that can quantitatively screen an optimal MOF in situ and is reliable is demanded. Herein, we developed a three-dimensional (3D) shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) platform to study the dynamic photocatalytic processes of various MOFs (e.g., ZIF-67, ZIF-8, and UIO-66) in situ. This platform comprises silica shell-isolated gold nanoparticles (AuNPs) modified on silicon nanowire arrays (SiNWArs). The MOF is then self-assembled on the 3D-SHINERS substrate. Using this platform, we recorded dynamic spectroscopic evidence of ROS formation by various MOFs under sunlight irradiation. By dynamic comparison, ZIF-67 has the most robust photocatalytic efficiency, ∼1.7-fold stronger than that of ZIF-8 and ∼42.6-fold stronger than that of UIO-66. As expected, ZIF-67 displays the best antibacterial ability, up to 99% in the agar plate assay. This work provides a versatile platform for dynamically monitoring photocatalytic performance and screening antibacterial MOFs.
Collapse
Affiliation(s)
- Jiayi Cheng
- Laboratory of Nanoscale Biochemical Analysis, Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Haiting Cao
- Laboratory of Nanoscale Biochemical Analysis, Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Laboratory of Nanoscale Biochemical Analysis, Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yunmin Yang
- Laboratory of Nanoscale Biochemical Analysis, Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
Huang L, Qiu S, Liu Z, Wu S, Tang Q, Liao X, Gao F. Proximity hybridization induced DNA assembly for label-free surface-enhanced Raman spectroscopic detection of carcinoembryonic antigen. Anal Chim Acta 2022; 1191:339314. [PMID: 35033249 DOI: 10.1016/j.aca.2021.339314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022]
Abstract
In our research, label-free and surface-enhanced Raman dyes-free Raman spectroscopy which was used to detect carcinoembryonic antigen (CEA) according to poly adenine (Poly A)-regulated self-assembly methods was developed and studied. CEA induced partial hybridization of Ab-H2 and Ab-H1, and Ab-H1-CEA-Ab-H2 (a sandwich proximity CEA-DNA complex) was formed, which unfolded molecular beacon 1 (MB1) and modified the substrate. Subsequently, MB2-AuNPs were hybridized with MB1, and Ab-H1-CEA-Ab-H2 was released via toehold regulated displacements of DNA strands. Therefore, hybridization processes of MB2 and MB1 were induced and promoted by CEA-DNA complexes which worked as catalysts. The misplaced target then induced a next round of strand exchange, and the signals for determination of CEA were amplified by AuNPs absorbed on the substrate. It was indicated that the spectral characteristics of adenine at 736 cm-1 were consistent with the SERS spectrum of DNA. Adenine acted as an internal marker for label-free SERS detection of CEA. Moreover, satisfactory stability and reproducibility were found. Meanwhile, the antibody could specifically recognize the corresponding antigen. Since adenine was dominant in SERS spectra, which was also proximal to Au surface, the sensitivity of the novel method was high without modifications. The analytical performance of this method in determining serum CEA was satisfactory.
Collapse
Affiliation(s)
- Longjian Huang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shang Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zhao Liu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Shengyue Wu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
13
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
14
|
Ghopry SA, Sadeghi SM, Berrie CL, Wu JZ. MoS2 Nanodonuts for High-Sensitivity Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2021; 11:bios11120477. [PMID: 34940234 PMCID: PMC8699280 DOI: 10.3390/bios11120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing.
Collapse
Affiliation(s)
- Samar Ali Ghopry
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (S.A.G.); (J.Z.W.)
| | - Seyed M. Sadeghi
- Department of Physics, The University of Alabama, Huntsville, AL 35899, USA;
| | - Cindy L. Berrie
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
| | - Judy Z. Wu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (S.A.G.); (J.Z.W.)
| |
Collapse
|
15
|
Xu L, Ding Q. Magnetic field induced high-density SERS active assembly of Fe 3O 4@Au nanostars in a glass capillary for food colorant detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5487-5492. [PMID: 34738609 DOI: 10.1039/d1ay00989c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Fe3O4@Au nanostars, whose anisotropic shape couples the plasmons focused on the magnetic core with the branches of the gold shell, hold promise for surface enhanced Raman spectroscopy (SERS) applications. Assembly of monodisperse Fe3O4@Au nanostars induced by a magnetic field could lead to highly ordered superstructures, providing distinctive SERS activity. In this study, a simplified fabrication technique was developed to assemble Fe3O4@Au nanostars on the inner walls of a glass capillary into a highly sensitive, reproducible and recyclable SERS active glass capillary under controlled magnetic alignment. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. The magnetic dipolar interaction between the particles can be further tuned by the controlled anisotropic shape of the gold shell. The interparticle plasmon couplings and lightning rod effects of the Fe3O4@Au nanostars contributed to Raman enhancement. Based on the capillary action, capillaries can act as a microreactor for the sampling tools. We further demonstrate SERS-based colorant detection in the capillary which the target molecule can easily detect by simple adsorption of the colorants by capillary action. The Fe3O4@Au nanostars in the capillary with a long shelf life, high sensitivity and low cost promote the application of SERS technology in widespread fields.
Collapse
Affiliation(s)
- Lihua Xu
- Department of Precision Manufacturing Engineering Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, People's Republic of China
| | - Qianqian Ding
- Department of Precision Manufacturing Engineering Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, People's Republic of China
| |
Collapse
|
16
|
Lin JS, Radjenovic PM, Jin H, Li JF. Plasmonic Core-Shell Nanoparticle Enhanced Spectroscopies for Surface Analysis. Anal Chem 2021; 93:6573-6582. [PMID: 33885277 DOI: 10.1021/acs.analchem.1c00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Probing the properties and components of reactive surfaces is crucial for illustrating reaction mechanisms. However, common surface analysis techniques are restricted to in situ acquisition of surface information at the molecular scale in the human environment and industrial catalysis processes. Plasmonic spectroscopies are promising tools to solve this problem. This Feature is intended to introduce the plasmonic core-shell nanoparticle enhanced spectroscopies for qualitatively and quantitatively analyzing surface trace species. Four different working modalities are designed for meeting varied needs, involving in situ surface species detection, catalytic process monitoring, labeled sensing, and dual mode analysis. These newly developed plasmonic spectroscopies show great potential not only in fundamental research but also in practical applications.
Collapse
Affiliation(s)
- Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huaizhou Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
17
|
Zhou Z, Xiao R, Cheng S, Wang S, Shi L, Wang C, Qi K, Wang S. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe 3O 4@Au-aptamer separation and antibody-protein A orientation recognition. Anal Chim Acta 2021; 1160:338421. [PMID: 33894956 DOI: 10.1016/j.aca.2021.338421] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/26/2022]
Abstract
Rapid, reliable and sensitive detection methods for pathogenic bacteria are strongly demanded. Herein, we proposed a magnetically assisted surface enhanced Raman scattering (SERS)-label immunoassay for the sensitive detection of bacteria by using a universal approach based on free antibody labelling and staphylococcus proteins A (PA)-SERS tags orientation recognition. The SERS biosensor consists of two functional nanomaterials: aptamer-conjugated Fe3O4@Au magnetic nanoparticles (MNPs) as magnetic SERS platform for pathogen enrichment and PA modified-SERS tags (Au@DTNB@PA) as a universal probe for target bacteria quantitative detection. After target bacteria enriched, free antibody was used to specific marking target bacteria and provided numerous Fc fragment, which can guide the PA-SERS tags orientation-dependent binding. With this strategy, Fe3O4@Au/bacteria/SERS tags sandwich immunocomplexes for most bacteria (expect several species of Staphylococcus) were easy constructed. The limits of detection (LODs) of the proposed assay were found to be 10, 10, and 25 cells/mL for three common pathogens Escherichia coli (E. coli), Listeria monocytogenes (L. mono), and Salmonella typhimurium (S. typhi), respectively, in real food samples. The universal method also exhibits the advantages of rapid, robust, and easy to operate, suggesting its great potential for food safety monitoring and infectious diseases diagnosis.
Collapse
Affiliation(s)
- Zihui Zhou
- Anhui Agricultural University, Hefei, 230036, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Siyun Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, PR China
| | - Luoluo Shi
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Chongwen Wang
- Anhui Agricultural University, Hefei, 230036, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Kezong Qi
- Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
18
|
A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021; 227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman spectroscopy, due to its high sensitivity, unique vibrational fingerprint identification of molecules and easy operation, has been extensively applied in different fields. Aptamers, being the unique single stranded DNA/RNA sequences that can specifically recognize and seize the target analytes, combined with Surface-enhanced Raman spectroscopy (SERS), can offer potent multiplex detection capacity with high specificity and sensitivity. In this review, we summarize and classify the general working strategies of different types of aptamer-based SERS biosensors with diversified protocols which either take aptamer conformational change as intrinsic reporter, or make use of various extrinsic Raman reporters in different sensor designs via on/off approach, sandwich-type and magnetic nanoparticles (NPs)-assisted approach, and catalytic reaction assisted approach with amplification of alternative Raman signals. The advantages, applications and perspectives of these aptamer-based SERS biosensors are also discussed.
Collapse
|
19
|
Liao X, Zhang C, Machuki JO, Wen X, Tang Q, Shi H, Gao F. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis. Anal Chim Acta 2020; 1139:42-49. [PMID: 33190708 DOI: 10.1016/j.aca.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
We have developed a versatile label-free surface-enhanced Raman spectroscopic platform for detecting various biotargets via proximity hybridization-triggered DNA assembly based on the 736 cm-1 Raman peak of adenine breathing mode. We initially immobilized the first probe to AuNPs and modified the second with poly adenine. Presence of target DNA or protein molecules assembled a sandwich complex that brought the poly adenine close to the AuNPs surface, generating Raman signals, that were proportional to target molecule concentration. These approach exhibits high sensitivity, with a detection limit of 5.4 pM, 47 fM, and 0.51 pg/mL for target DNA, thrombin and CEA, respectively. Owing to a one step proximity dependent complex formation, this technique is simple and can be completed within 40 min, making it a promising candidate for point-of-care testing applications.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Hengliang Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
20
|
Luminescent silver nanoclusters for efficient detection of adenosine triphosphate in a wide range of pH values. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Li M, Cushing SK, Zhou G, Wu N. Molecular hot spots in surface-enhanced Raman scattering. NANOSCALE 2020; 12:22036-22041. [PMID: 33146197 DOI: 10.1039/d0nr06579j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The chemical and electromagnetic (EM) enhancements both contribute to surface-enhanced Raman scattering (SERS). It is well-known that the EM enhancement is induced by the intense local field of surface plasmon resonance (SPR). This report shows that the polarizability of the molecules adsorbed on the metal surface can lead to another channel for the EM field enhancement. When aromatic molecules are covalently bonded to the Au surface, they strongly interact with the plasmon, leading to a modification of the absorption spectrum and a strong SERS signal. The effect is seen in both 3 nm-Au nanoparticles with a weak SPR and 15 nm-Au nanoparticles with a strong SPR, suggesting that the coupling is through both EM field and chemical means. Linear-chain molecules on the 3 nm-Au nanoparticles do not have a SERS signal. However, when the aromatic and linear molecules are co-adsorbed, the strong SPR/molecular polarizability interaction spatially extends the local EM field, leading to a strong SERS signal from the linear-chain molecules. The results show that aromatic molecules immobilized on Au can create "hot spots" just like plasmonic nanostructures.
Collapse
Affiliation(s)
- Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA
| | - Scott K Cushing
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Guangwen Zhou
- Department of Mechanical Engineering and Multidisciplinary Program in Materials Science and Engineering, State University of New York, Binghamton, New York 13902, USA
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA. and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA
| |
Collapse
|
22
|
Kang S, Rahman A, Boeding E, Vikesland PJ. Synthesis and SERS application of gold and iron oxide functionalized bacterial cellulose nanocrystals (Au@Fe 3O 4@BCNCs). Analyst 2020; 145:4358-4368. [PMID: 32500880 DOI: 10.1039/d0an00711k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial cellulose nanocrystals (BCNCs) are biocompatible cellulose nanomaterials that can host guest nanoparticles to form hybrid nanocomposites with a wide range of applications. Herein, we report the synthesis of a hybrid nanocomposite that consists of plasmonic gold nanoparticles (AuNPs) and superparamagnetic iron oxide (Fe3O4) nanoparticles supported on BCNCs. As a proof of concept, the hybrid nanocomposites were employed to isolate and detect malachite green isothiocyanate (MGITC) via magnetic separation and surface-enhanced Raman scattering (SERS). Different initial gold precursor (Au3+) concentrations altered the size and morphology of the AuNPs formed on the nanocomposites. The use of 5 and 10 mM Au3+ led to a heterogenous mix of spherical and nanoplate AuNPs with increased SERS enhancements, as compared to the more uniform AuNPs formed using 1 mM Au3+. Rapid and sensitive detection of MGITC at concentrations as low as 10-10 M was achieved. The SERS intensity of the normalized Raman peak at 1175 cm-1 exhibited a log-linear relationship for MGITC concentrations between 2 × 10-10 and 2 × 10-5 M for Au@Fe3O4@BCNCs. These results suggest the potential of these hybrid nanocomposites for application in a broad range of analyte detection strategies.
Collapse
Affiliation(s)
- Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| | - Ethan Boeding
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| |
Collapse
|
23
|
Designing immunogenic nanotherapeutics for photothermal-triggered immunotherapy involving reprogramming immunosuppression and activating systemic antitumor responses. Biomaterials 2020; 255:120153. [PMID: 32540757 DOI: 10.1016/j.biomaterials.2020.120153] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
Low tumor mutational burden and absence of T cells within the tumor sites are typical characteristics of "cold immune tumors" that paralyzes the immune system. The strategy of reversing "cold tumors" to "hot tumors" infiltrated high degree of T cells in order to activate anti-tumor immunity has attracted lots of attentions. Herein, immunogenic core-shell Au@Se NPs is fabricated by gold-selenium coordination bond to realize nanoparticles-mediated local photothermal-triggered immunotherapy. As expected, incorporation of gold nanostars (AuNSs) with improved photothermal stability and conversion efficiency promotes the disintegration and transformation of selenium nanoparticles (SeNPs), thus leading to enhanced cancer cells apoptosis by producing higher hyperthermia. Moreover, the results of in vivo experiments demonstrate that the synergy between SeNPs-mediated chemotherapy and AuNSs-induced photothermal therapy not only generated a localized antitumor-immune response with excellent cancer killing effect under the presence of tumor-associated antigens, but also effectively reprogrammed the tumor associated macrophages (TAMs) from M2 to M1 phenotype with tumoricidal activity to devour distant tumors. Without a doubt, this study not only provides a potent strategy to reverse the immunosuppressive tumor microenvironment, but also offers a new insight for potential clinical application in tumor immunotherapy.
Collapse
|
24
|
JIANG S, ESPULGAR WV, LUO X, SAITO M, YOSHIKAWA H, TAMIYA E. SERS Active Hierarchical Nanopillar-huddle Array Fabricated via the Combination of Nanoimprint Lithography and Anodization. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.19-00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shu JIANG
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center Osaka University
- Department of Applied Physics, Graduate School of Engineering, Osaka University
| | - Wilfred V. ESPULGAR
- Department of Applied Physics, Graduate School of Engineering, Osaka University
| | - Xi LUO
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center Osaka University
- Department of Applied Physics, Graduate School of Engineering, Osaka University
| | - Masato SAITO
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center Osaka University
- Department of Applied Physics, Graduate School of Engineering, Osaka University
| | - Hiroyuki YOSHIKAWA
- Department of Applied Physics, Graduate School of Engineering, Osaka University
| | - Eiichi TAMIYA
- Department of Applied Physics, Graduate School of Engineering, Osaka University
| |
Collapse
|
25
|
Wang G, Li J, He Y, Liu J, Yu M, Wang G. Establishment of a universal and sensitive plasmonic biosensor platform based on the hybridization chain reaction (HCR) amplification induced by a triple-helix molecular switch. Analyst 2020; 145:3864-3870. [PMID: 32270806 DOI: 10.1039/d0an00249f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we established a universal and sensitive plasmonic sensing strategy for biomolecule assays by coupling the hybridization chain reaction (HCR) strategy and a triple-helix molecular switch. Upon the recognition of the target, a single-stranded DNA as a universal trigger (UT) was released from the triple-helix molecular switch (THMS). Thus, the HCR process can be triggered between two hairpins M1 and M2, resulting in the aggregation of gold nanoparticles (AuNPs) via the hybridization between the tail sequence on M1 (or M2) and a DNA-AuNP probe with a dramatic change in the absorbance at 521 nm. More specifically, the strategy, which was conducted by the introduction of target-specific recognition of THMS and universalized by virtue of altering the aptamer or DNA sequence without changing the triple-helix structure, enables simple design for multiple target detection. By taking advantage of THMS, this strategy could enable stable and sensitive detection of a variety of targets including nucleic acids, small molecules and proteins, which may possess great potential for practical applications.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Liu X, Liu X, Rong P, Liu D. Recent advances in background-free Raman scattering for bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Proximity-enabled bidirectional enzymatic repairing amplification for ultrasensitive fluorescence sensing of adenosine triphosphate. Anal Chim Acta 2020; 1104:156-163. [PMID: 32106947 DOI: 10.1016/j.aca.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
A novel fluorescence sensing strategy for ultrasensitive and highly specific detection of adenosine triphosphate (ATP) has been developed by the combination of the proximity ligation assay with bidirectional enzymatic repairing amplification (BERA). The strategy relies on proximity binding-triggered the release of palindromic tail that initiates bidirectional cyclic enzymatic repairing amplification reaction with the aid of polymerase and two DNA repairing enzymes, uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). A fluorescence-quenched hairpin probe with a palindromic tail at the 3' end is skillfully designed that functions as not only the recognition element, primer, and polymerization template for BERA but also the indicator for fluorescence signal output. On the basis of the amplification strategy, this biosensor displays excellent sensitivity and selectivity for ATP detection with an outstanding detection limit of 0.81 pM. Through simultaneously enhancing the target response signal value and reducing nonspecific background, this work deducted the background effect, and showed high sensitivity and reproducibility. Moreover, our biosensor also shows promising potential in real sample analysis. Therefore, the proximity-enabled BERA strategy indeed creates a simple and valuable fluorescence sensing platform for ATP identification and related disease diagnosis and biomedical research.
Collapse
|
28
|
A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens Bioelectron 2019; 145:111713. [DOI: 10.1016/j.bios.2019.111713] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023]
|
29
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
30
|
Wang H, Pu Y, Shan B, Li M. Combining Experiments and Theoretical Modeling To Interrogate the Anisotropic Growth and Structure-Plasmonic Property Relationships of Gold Nanostars. Inorg Chem 2019; 58:12457-12466. [PMID: 31441302 DOI: 10.1021/acs.inorgchem.9b02187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a combined strategy of experiments and theoretical modeling for understanding the evolution of the morphology and plasmonic properties of gold nanostars (GNSs) in the seed-mediated synthesis by changing the poly(vinylpyrrolidone) (PVP) molecular weight, PVP concentration, and synthesis temperature. A dramatic change of the morphology of GNSs as a function of these synthesis parameters is observed that is related to variations of the plasmonic properties and thus surface-enhanced Raman spectroscopy (SERS) enhancement. We observe the favorable growth of anisotropic GNS structures with sharp protruding tips using PVP of low molecular weight and of rounded GNSs with short protruding tips using PVP of high molecular weight. The PVP concentration has less influence on the core size than on the tip length of GNSs. The high synthesis temperature causes the rounding of the GNS structure. Finite-difference time-domain (FDTD) simulations reveal a remarkable correlation of the GNS morphology with the plasmonic properties as well as the SERS enhancement. The maximum local electric field enhancement occurs at the apex of the sharp protruding tips of the GNSs. The weak plasmonic coupling is observed between the protruding tips of GNSs because of their large separation distance, and increasing the number of protruding tips beyond two only increases the extinction cross section without further red-shifting the plasmon peak. A resonance overlap of the plasmon band with the incident laser wavelength is responsible for the morphology-dependent plasmonic properties and SERS enhancement. The present work demonstrates that a mechanistic understanding of the structural evolution of GNSs along with their morphology-plasmonic property correlation can be achieved through the combination of experimental investigations and FDTD-based theoretical modeling.
Collapse
Affiliation(s)
- Haitao Wang
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy , Central South University , Changsha , Hunan 410083 , China
| | - Yuhan Pu
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy , Central South University , Changsha , Hunan 410083 , China
| | - Beibei Shan
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy , Central South University , Changsha , Hunan 410083 , China
| | - Ming Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy , Central South University , Changsha , Hunan 410083 , China
| |
Collapse
|
31
|
Functionalized acupuncture needle as a SERS-active platform for rapid and sensitive determination of adenosine triphosphate. Anal Bioanal Chem 2019; 411:5669-5679. [PMID: 31250068 DOI: 10.1007/s00216-019-01945-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/04/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
The development of sensitive and rapid methods for analysis and detection of small molecules is highly desirable for medical diagnostics and therapeutics. We report an acupuncture needle functionalized with gold nanoparticles (Au NPs) and a macrocyclic amine (MA) Raman tag as the platform to realize the sensitive detection of adenosine triphosphate (ATP) by surface-enhanced Raman spectroscopy (SERS). The assembled Au NPs with abundant hot spots on the surface of the needle avoids the aggregation of Au NPs and results in a good signal response. Moreover, there is strong combination between ATP and MA through electrostatic adsorption, hydrogen-bonding interactions, and π-π stacking, and as a consequence, this functionalized needle can be used as a SERS platform for detection of ATP (25 nM) through a decrease of the Raman signal of MA resulting from the high chemical affinity of ATP for MA. Specially, the Au NP/MA-functionalized needle is conveniently used to monitor ATP (100 nM) added to serum, and demonstrates great promise in the study and detection of ATP in a complex sample, laying the foundation for SERS applications in complex acupuncture specimens with fast response and simple operation. Graphical abstract.
Collapse
|
32
|
Li M, Paidi SK, Sakowski E, Preheim S, Barman I. Ultrasensitive Detection of Hepatotoxic Microcystin Production from Cyanobacteria Using Surface-Enhanced Raman Scattering Immunosensor. ACS Sens 2019; 4:1203-1210. [PMID: 30990314 PMCID: PMC6776237 DOI: 10.1021/acssensors.8b01453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microcystin-LR (MC-LR) is considered the most common hazardous toxin produced during harmful algal blooms. In addition to potential risk of long-term exposure to low concentrations in drinking water, acute toxicity due to MC-LR resulting from algal blooms could result in fatalities in rare cases. Although several methods are currently available to detect MC-LR, development of a low-cost, ultrasensitive measurement method would help limit exposure by enabling early detection and continuous monitoring of MC-LR. Here, we develop a surface-enhanced Raman scattering (SERS) spectroscopic immunosensor for detection and quantification of the hepatotoxic MC-LR toxin in aquatic settings with excellent robustness, selectivity, and sensitivity. We demonstrate that the developed SERS sensor can reach a limit of detection (0.014 μg/L) at least 1 order of magnitude lower and display a linear dynamic detection range (0.01 μg/L to 100 μg/L) 2 orders of magnitude wider in comparison to the commercial enzyme-linked immunosorbent assay test. The superior analytical performance of this SERS immunosensor enables monitoring of the dynamic production of MC-LR from a Microcystis aeruginosa culture. We believe that the present method could serve as a useful tool for detection of hepatotoxic microcystin toxins in various aquatic settings such as drinking water, lakes, and reservoirs. Further development of this technique could result in single-cell microcystin resolution or real-time monitoring to mitigate the associated toxicity and economic loss.
Collapse
Affiliation(s)
- Ming Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University, Changsha, Hunan 410083, China
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Eric Sakowski
- Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sarah Preheim
- Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
33
|
Qin X, Wang Q, Geng L, Shu X, Wang Y. A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta 2019; 197:28-35. [DOI: 10.1016/j.talanta.2018.12.103] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/07/2023]
|
34
|
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. BIOSENSORS 2019; 9:E57. [PMID: 30999661 PMCID: PMC6627380 DOI: 10.3390/bios9020057] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Collapse
Affiliation(s)
- Roberto Pilot
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Raffaella Signorini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Manjari Bhamidipati
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Zhao WC, Ren HR, Zhang X, Wang Z, Zhao YM, Liu L, Wu ZL, Xu HJ. Rapid determination of 1,3-propanediol in fermentation process based on a novel surface-enhanced Raman scattering biosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:227-233. [PMID: 30550984 DOI: 10.1016/j.saa.2018.11.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The production of 1,3-propanediol (1,3-PDO) is an important fermentation process. However, 1,3-PDO could not be distinguished separately and efficiently in fermentations previously because it has a highly similar molecular structure to the feedstock glycerol (GLY) and by-product lactic acid (Lac), which leads to the difficulty of quantification. In this paper, a low-cost and environmentally friendly biosensor based on surface-enhanced Raman scattering (SERS) technique was developed. Using it, the concentration of 1,3-PDO and Lac in a fermentation solution can be determined directly from their respective characteristic peaks in Raman spectroscopy. Moreover, by analyzing the respective contributions of 1,3-PDO, Lac, and GLY to the integrated intensities of the 2920 cm-1 Raman peak common to these three substances, the concentration of GLY could also be quantified. SERS study on various 1,3-PDO:GLY and Lac:GLY molar ratios were conducted to establish the proportional relationships of these compounds by analyzing the relationship between the concentration and the Raman peak intensities. The 1,3-PDO:Lac:GLY with serial concentration gradient was carried out to verify the relationship between the concentration and the Raman peak intensities by the high-performance liquid chromatography (HPLC) with relative deviations <25%. Concentrations of 1,3-PDO and Lac as low as 1 g/L and concentration of GLY as low as 4 g/L were analyzed to determine the limit of detection. Therefore, this new method allows the rapid quantification of 1,3-PDO, Lac and GLY concentrations on a SERS-based biosensor.
Collapse
Affiliation(s)
- Wei Chen Zhao
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hai Rui Ren
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Zhang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zheng Wang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Mei Zhao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, PR China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zheng Long Wu
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, PR China
| | - Hai Jun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
36
|
Wen S, Miao X, Fan GC, Xu T, Jiang LP, Wu P, Cai C, Zhu JJ. Aptamer-Conjugated Au Nanocage/SiO 2 Core-Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and Near-Infrared Photothermal Therapy. ACS Sens 2019; 4:301-308. [PMID: 30624040 DOI: 10.1021/acssensors.8b00682] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of surface-enhanced Raman scattering (SERS) imaging technology with near-infrared (NIR) light-triggered photothermal therapy is of utmost importance to develop novel theranostic platforms. Herein, an aptamer-conjugated Au nanocage/SiO2 (AuNC/SiO2/Apt) core-shell Raman nanoprobe has been rationally designed as the bifunctional theranostic platform to fulfill this task. In this theranostic system, the Raman-labeled Au nanocage (AuNC) was encapsulated into a bioinert shell of SiO2, followed by conjugating aptamer AS1411 as the target-recognition moiety. AuNC served as the SERS-active and photothermal substrate due to its large free volume, built-in plasmon effect, and NIR photothermal capacity, while the SiO2 coating endowed the nanoprobes with good stability and biocompatibility, as well as abundant anchoring sites for surface functionalization. Considering their prominent SERS and photothermal properties, the application potential of the AuNC/SiO2/Apt nanoprobes was investigated. The proposed nanoprobes could be applied to targeted detection and SERS imaging of nucleolin-overexpressing cancer cells (MCF-7 cells as the model) from normal cells and also exhibited acceptable photothermal efficacy without systematic toxicity. This theranostic nanoplatform provided a possible opportunity for in situ diagnosis and noninvasive treatment of cancer cells by SERS imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuran Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tingting Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
37
|
Cheng S, Zheng B, Yao D, Wang Y, Tian J, Liu L, Liang H, Ding Y. Determination of Saxitoxin by Aptamer-Based Surface-Enhanced Raman Scattering. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1505900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheng Cheng
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, China
- Instrumental Analysis Center, Hefei University of Technology, Hefei, China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, China
| | - Dongbao Yao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Wang
- Instrumental Analysis Center, Hefei University of Technology, Hefei, China
| | - Jingjing Tian
- Instrumental Analysis Center, Hefei University of Technology, Hefei, China
| | - Lanhua Liu
- Instrumental Analysis Center, Hefei University of Technology, Hefei, China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, China
| |
Collapse
|
38
|
Li L, Liao M, Chen Y, Shan B, Li M. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells. J Mater Chem B 2019; 7:815-822. [DOI: 10.1039/c8tb02828a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A surface-enhanced Raman spectroscopic strategy is developed for ratiometric detection of cancer cells by quantifying the expression ratio of extracellular biomarkers.
Collapse
Affiliation(s)
- Linhu Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Mengling Liao
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Yingfan Chen
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Beibei Shan
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Ming Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| |
Collapse
|
39
|
Qi G, Li H, Zhang Y, Li C, Xu S, Wang M, Jin Y. Smart Plasmonic Nanorobot for Real-Time Monitoring Cytochrome c Release and Cell Acidification in Apoptosis during Electrostimulation. Anal Chem 2018; 91:1408-1415. [PMID: 30457829 DOI: 10.1021/acs.analchem.8b04027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome c (Cyt c) release and cellular pH change are two important mediators of apoptosis. Effective methods to regulate or monitor such two events are therefore highly desired for apoptosis research and cancer cell therapy. Herein, we exploited electrostimulation to regulate cellular Cyt c release and apoptosis process, and by designing and preparing a smart and efficient plasmonic nanorobot (with surface-modified Cyt c-specific aptamer and 4-mercaptobenzoic acid) that is capable of Cyt c capture and self-sensing, we achieved real-time SERS monitoring of dynamic Cyt c release and simultaneous cell acidification in apoptosis during electrostimulation. Distinctly different molecular stress responses in the two events for cancerous MCF-7 and HeLa cells and normal L929 cells were identified and revealed. The method and results are valuable and promising for apoptosis and Cyt c-mediated biology studies.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , 2699 Qianjin Avenue , Changchun 130012 , P. R. China
| | - Minmin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China
| |
Collapse
|
40
|
Zhang Y, Li C, Fakhraai Z, Moosa B, Yang P, Khashab NM. Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis. ACS OMEGA 2018; 3:14399-14405. [PMID: 31458127 PMCID: PMC6645439 DOI: 10.1021/acsomega.8b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/02/2018] [Indexed: 06/10/2023]
Abstract
Realizing quantitative surface-enhanced Raman scattering (SERS) analysis is extremely helpful and challenging. Here, we utilize a facile method to synthesize spiked plasmonic nanorods with an interior gap. The Raman signal from the molecules embedded in the gap can be dramatically enhanced, leading to strong, stable, and reproducible SERS signals that can be used as an internal reference for quantitative SERS analysis. We demonstrate that the rough exterior surface has a good performance in enhancing the Raman signal of polycyclic aromatic hydrocarbon molecules adsorbed on the surface. The result shows that this method is applicable for a large range of analyte concentrations and there is an excellent linear relationship between the SERS intensity ratio and the analyte concentration (0.5-100 μM).
Collapse
Affiliation(s)
- Yang Zhang
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chen Li
- Department
of Chemistry, University of Pennsylvania, Philadelphia 19104, United States
| | - Zahra Fakhraai
- Department
of Chemistry, University of Pennsylvania, Philadelphia 19104, United States
| | - Basem Moosa
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Yang
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
|
42
|
Zhang Y, Wang G, Yang L, Wang F, Liu A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Li Q, Wei G. Label-free determination of adenosine and mercury ions according to force mapping-based force-to-color variety. Analyst 2018; 143:4400-4407. [PMID: 30137104 DOI: 10.1039/c8an01043a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Single molecule force spectroscopy based on atomic force microscopy (AFM) is a simple and sensitive technique to probe molecular recognition forces. Here we demonstrate that visual color-intensity analysis of single molecule force mapping (SMFM) can be employed as a quick and convenient force-to-color detection towards the presence of various dissolved analytes in very low concentrations. To achieve this aim, analyte-specific single-strand DNA aptamers are first bound to an AFM tip. The measured forces between the functionalized tip and a suitable substrate, namely either a clean surface or a surface functionalized with the complementary DNA oligomer, change when a critical concentration of the analyte is reached. The current SMFM-based visual biosensing shows improved developments like higher sensitivity, lower detection limits, quicker detection, and much simple readout. The color of the obtained force maps reveals the force intensity, which gives a highly selective and immediate visual force-to-color response towards the presence of adenosine (above ∼0.1 nM) and Hg2+ (∼10 pM). The strategies shown in this work will be helpful to design and fabricate aptasensors for biomedical analysis as well as to understand the molecular interactions between DNA hybridization.
Collapse
Affiliation(s)
- Qing Li
- Faculty of Production Engineering and Center for Environmental Research and Sustainable Technology (UFT) University of Bremen, D-28359 Bremen, Germany.
| | - Gang Wei
- Faculty of Production Engineering and Center for Environmental Research and Sustainable Technology (UFT) University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
44
|
Sensitive determination of Hg(II) based on a hybridization chain recycling amplification reaction and surface-enhanced Raman scattering on gold nanoparticles. Mikrochim Acta 2018; 185:363. [DOI: 10.1007/s00604-018-2907-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
|
45
|
Pu Y, Zhao Y, Zheng P, Li M. Elucidating the Growth Mechanism of Plasmonic Gold Nanostars with Tunable Optical and Photothermal Properties. Inorg Chem 2018; 57:8599-8607. [PMID: 29953211 DOI: 10.1021/acs.inorgchem.8b01354] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuhan Pu
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Yawen Zhao
- China Academy of Engineering Physics, Mianyang 621900, China
| | - Peng Zheng
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, United States
| | - Ming Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
46
|
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018; 118:4946-4980. [PMID: 29638112 DOI: 10.1021/acs.chemrev.7b00668] [Citation(s) in RCA: 927] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. These merits make SERS a very promising technique for studying complex biological systems, and SERS has attracted increasing interest in biorelated analysis. However, there are still great challenges that need to be addressed until it can be widely accepted by the biorelated communities, answer interesting biological questions, and solve fatal clinical problems. SERS applications in bioanalysis involve the complex interactions of plasmonic nanomaterials with biological systems and their environments. The reliability becomes the key issue of bioanalytical SERS in order to extract meaningful information from SERS data. This review provides a comprehensive overview of bioanalytical SERS with the main focus on the reliability issue. We first introduce the mechanism of SERS to guide the design of reliable SERS experiments with high detection sensitivity. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. We further introduce the current status of label-free (direct) and labeled (indirect) SERS detections, for systems from biomolecules, to pathogens, to living cells, and we discuss the potential interferences from experimental design, measurement conditions, and data analysis. In the end, we give an outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution.
Collapse
Affiliation(s)
- Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Li-Jia Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ting Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
47
|
Zhao Q, Zhang Z, Tang Y. A new conjugated polymer-based combination probe for ATP detection using a multisite-binding and FRET strategy. Chem Commun (Camb) 2018; 53:9414-9417. [PMID: 28787042 DOI: 10.1039/c7cc04293k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new conjugated polymer-based ratiometric combination probe was constructed for adenosine triphosphate detection by taking advantage of a multisite-binding and fluorescence resonance energy transfer strategy. The method is rapid and highly selective, which can clearly discriminate ATP from persistent interferents such as ADP, AMP, other nucleoside polyphosphates and nucleobases.
Collapse
Affiliation(s)
- Qi Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | | | | |
Collapse
|
48
|
Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu(III)-doped CdS quantum dots. Mikrochim Acta 2018; 185:161. [DOI: 10.1007/s00604-018-2711-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
49
|
ISERS Microscopy for Tissue-Based Cancer Diagnostics with SERS Nanotags. CONFOCAL RAMAN MICROSCOPY 2018. [DOI: 10.1007/978-3-319-75380-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Leng X, Li R, Wang Y, Wu Y, Tu Y, Pei Q, Cui X, Huang J, Liu S. Target-activated cascaded digestion amplification of exonuclease III aided signal-on and ultrasensitive fluorescence detection of ATP. NEW J CHEM 2018. [DOI: 10.1039/c7nj04657j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a rapid, one-step and ultrasensitive signal-on fluorescence sensing for the detection of adenosine triphosphate (ATP) based on target-activated cascaded digestion amplification with Exo III aid was developed.
Collapse
Affiliation(s)
- Xueqi Leng
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rongguo Li
- Jinan Maternity and Child Care Hospital
- Jinan 250022
- P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yunping Wu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuqin Tu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Jiadong Huang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|