1
|
Soriano-Meseguer S, Fuguet E, Port A, Rosés M. Evaluation of the Ability of PAMPA Membranes to Emulate Biological Processes through the Abraham Solvation Parameter Model. MEMBRANES 2023; 13:640. [PMID: 37505006 PMCID: PMC10385989 DOI: 10.3390/membranes13070640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Two parallel artificial membrane permeability assay (PAMPA) systems intended for emulating skin permeability have been characterized through the solvation parameter model of Abraham using multilinear regression analysis. The coefficients of the obtained equations have been compared to the ones already established for other PAMPA membranes using statistical tools. The results indicate that both skin membranes are similar to each other in their physicochemical properties. However, they are different from other PAMPA membranes (e.g., intestinal absorption and blood-brain PAMPAs), mainly in terms of hydrophobicity and hydrogen bonding properties. Next, all PAMPA membranes have been compared to relevant biological processes also characterized through the solvation parameter model. The results highlight that skin-PAMPA membranes are a very good choice to emulate skin permeability.
Collapse
Affiliation(s)
- Sara Soriano-Meseguer
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Elisabet Fuguet
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Serra Húnter Programme, Generalitat de Catalunya, 08002 Barcelona, Spain
| | - Adriana Port
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Martí Rosés
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
2
|
Droge STJ, Hodges G, Bonnell M, Gutsell S, Roberts J, Teixeira A, Barrett EL. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:621-647. [PMID: 36779707 DOI: 10.1039/d2em00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The risk assessment of thousands of chemicals used in our society benefits from adequate grouping of chemicals based on the mode and mechanism of toxic action (MoA). We measure the phospholipid membrane-water distribution ratio (DMLW) using a chromatographic assay (IAM-HPLC) for 121 neutral and ionized organic chemicals and screen other methods to derive DMLW. We use IAM-HPLC based DMLW as a chemical property to distinguish between baseline narcosis and specific MoA, for reported acute toxicity endpoints on two separate sets of chemicals. The first set comprised 94 chemicals of US EPA's acute fish toxicity database: 47 categorized as narcosis MoA, 27 with specific MoA, and 20 predominantly ionic chemicals with mostly unknown MoA. The narcosis MoA chemicals clustered around the median narcosis critical membrane burden (CMBnarc) of 140 mmol kg-1 lipid, with a lower limit of 14 mmol kg-1 lipid, including all chemicals labelled Narcosis_I and Narcosis_II. This maximum 'toxic ratio' (TR) between CMBnarc and the lower limit narcosis endpoint is thus 10. For 23/28 specific MoA chemicals a TR >10 was derived, indicative of a specific adverse effect pathway related to acute toxicity. For 10/12 cations categorized as "unsure amines", the TR <10 suggests that these affect fish via narcosis MoA. The second set comprised 29 herbicides, including 17 dissociated acids, and evaluated the TR for acute toxic effect concentrations to likely sensitive aquatic plant species (green algae and macrophytes Lemna and Myriophyllum), and non-target animal species (invertebrates and fish). For 21/29 herbicides, a TR >10 indicated a specific toxic mode of action other than narcosis for at least one of these aquatic primary producers. Fish and invertebrate TRs were mostly <10, particularly for neutral herbicides, but for acidic herbicides a TR >10 indicated specific adverse effects in non-target animals. The established critical membrane approach to derive the TR provides for useful contribution to the weight of evidence to bin a chemical as having a narcosis MoA or less likely to have acute toxicity caused by a more specific adverse effect pathway. After proper calibration, the chromatographic assay provides consistent and efficient experimental input for both neutral and ionizable chemicals to this approach.
Collapse
Affiliation(s)
- Steven T J Droge
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam (UvA), Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Mark Bonnell
- Environment and Climate Change Canada, Ecological Assessment Division, Science and Risk Assessment Directorate, Gatineau, Quebec, Canada
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
3
|
Stergiopoulos C, Tsakanika LA, Ochsenkühn-Petropoulou M, Kakoulidou AT, Tsopelas F. APPLICATION OF MICELLAR LIQUID CHROMATOGRAPHY TO MODEL ECOTOXICITY OF PESTICIDES. COMPARISON WITH IMMOBILIZED ARTIFICIAL MEMBRANE CHROMATOGRAPHY AND N-OCTANOL-WATER PARTITIONING. J Chromatogr A 2023; 1696:463951. [PMID: 37054635 DOI: 10.1016/j.chroma.2023.463951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The potential of Micellar Liquid Chromatography (MLC) to model ecotoxicological endpoints for a series of pesticides was investigated. To exploit the flexibility in MLC conditions, different surfactants were employed and retention mechanism was tracked and compared to Immobilized Artificial Membrane (IAM) chromatographic retention and n-octanol- water partitioning, logP. Neutral polyoxyethylene (23) lauryl ether (Brij-35), anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) were used in presence of PBS at pH=7.40 and acetonitrile as organic modifier when necessary. Similarities/ dissimilarities between MLC retention and IAM or logP were investigated by Principal Component Analysis (PCA) and Liner Solvation Energy Relationships (LSER). LSER revealed that hydrogen bonding acidity is the most important factor for differentiation between MLC and IAM or logP. The impact of hydrogen bonding is exemplified in the relationships of MLC retention factors with IAM or logP, which necessitate the inclusion of a relevant descriptor. PCA further revealed that MLC retention factors are clustered together with IAM indices and logP within a broader ellipse formed by ecotoxicological endpoints, involving LC50/ EC50 values of six aquatic organisms namely Rainbow Trout, Fathead Minnow, Bluegill Sunfish, Sheepshead Minnow, Eastern Oyster and Water Flea as well as LD50 values of Honey Bee, thus justifying their use to construct relevant models. Satisfactory specific models for individual organisms, as well as general fish models, were obtained, in most cases, upon combination of MLC retention factors with Molecular Weight (MW) or/ and hydrogen bond parameters. All models were evaluated and compared to previously reported IAM and logP based models using an external validation data set. Predictions with Brij-35 and SDS based models were comparable, although slightly inferior than those obtained with IAM, while they were in all cases better than those obtained with logP. CTAB led to a satisfactory prediction model for Honey Bee, but it was found less suitable for aquatic organisms.
Collapse
Affiliation(s)
- Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece
| | - Lamprini-Areti Tsakanika
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece
| | - Maria Ochsenkühn-Petropoulou
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece
| | - Anna Tsantili- Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 157 71, Greece
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece.
| |
Collapse
|
4
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
5
|
Poole CF, Atapattu SN. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J Chromatogr A 2020; 1626:461427. [DOI: 10.1016/j.chroma.2020.461427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
|
6
|
Wang Y, Chen X. A joint optimization QSAR model of fathead minnow acute toxicity based on a radial basis function neural network and its consensus modeling. RSC Adv 2020; 10:21292-21308. [PMID: 35518745 PMCID: PMC9054390 DOI: 10.1039/d0ra02701d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/24/2020] [Indexed: 01/07/2023] Open
Abstract
Acute toxicity of the fathead minnow (Pimephales promelas) is an important indicator to evaluate the hazards and risks of compounds in aquatic environments. The aim of our study is to explore the predictive power of the quantitative structure-activity relationship (QSAR) model based on a radial basis function (RBF) neural network with the joint optimization method to study the acute toxicity mechanism, and to develop a potential acute toxicity prediction model, for fathead minnow. To ensure the symmetry and fairness of the data splitting and to generate multiple chemically diverse training and validation sets, we used a self-organizing mapping (SOM) neural network to split the modeling dataset (containing 955 compounds) characterized by PaDEL-descriptors. After preliminary selection of descriptors via the mean decrease impurity method, a hybrid quantum particle swarm optimization (HQPSO) algorithm was used to jointly optimize the parameters of RBF and select the key descriptors. We established 20 RBF-based QSAR models, and the statistical results showed that the 10-fold cross-validation results (R cv10 2) and the adjusted coefficients of determination (R adj 2) were all great than 0.7 and 0.8, respectively. The Q ext 2 of these models was between 0.6480 and 0.7317, and the R ext 2 was between 0.6563 and 0.7318. Combined with the frequency and importance of the descriptors used in RBF-based models, and the correlation between the descriptors and acute toxicity, we concluded that the water distribution coefficient, molar refractivity, and first ionization potential are important factors affecting the acute toxicity of fathead minnow. A consensus QSAR model with RBF-based models was established; this model showed good performance with R 2 = 0.9118, R cv10 2 = 0.7632, and Q ext 2 = 0.7430. A frequency weighted and distance (FWD)-based application domain (AD) definition method was proposed, and the outliers were analyzed carefully. Compared with previous studies the method proposed in this paper has obvious advantages and its robustness and external predictive power are also better than Xgboost-based model. It is an effective QSAR modeling method.
Collapse
Affiliation(s)
- Yukun Wang
- School of Chemical Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China
- School of Electronic and Information Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China +864125928367
| | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China +864125928367
| |
Collapse
|
7
|
Amézqueta S, Fernández-Pumarega A, Farré S, Luna D, Fuguet E, Rosés M. Lecithin liposomes and microemulsions as new chromatographic phases. J Chromatogr A 2020; 1611:460596. [DOI: 10.1016/j.chroma.2019.460596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
|
8
|
Fernández-Pumarega A, Amézqueta S, Fuguet E, Rosés M. Determination of the retention factor of ionizable compounds in microemulsion electrokinetic chromatography. Anal Chim Acta 2019; 1078:221-230. [DOI: 10.1016/j.aca.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
9
|
Stergiopoulos C, Makarouni D, Tsantili-Kakoulidou A, Ochsenkühn-Petropoulou M, Tsopelas F. Immobilized artificial membrane chromatography as a tool for the prediction of ecotoxicity of pesticides. CHEMOSPHERE 2019; 224:128-139. [PMID: 30818191 DOI: 10.1016/j.chemosphere.2019.02.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 05/27/2023]
Abstract
The potential of Immobilized Artificial Membrane (IAM) chromatography to predict ecotoxicological endpoints of pesticides was investigated. For this purpose, retention factors of 39 structurally-diverse pesticides were measured on an IAM stationary phase. A representative test set of 6 pesticides was carefully selected. The training set, involving the remaining pesticides for which experimental data were available, served to establish linear IAM models with LC50/EC50 values in a series of aquatic organisms involving Rainbow Trout, Fathead Minnow, Bluegill Sunfish, Sheepshead Minnow, Eastern Oyster and Water Flea as well as LD50 values in honey bee, compiled from literature sources. For reasons of comparison, corresponding models were derived by replacing IAM retention factors with octanol-water partition coefficients (logP). Considering the similar regression equations obtained for the 4 fish species, general models to predict toxicity in fish were established. Most models were improved upon inclusion of additional physicochemical parameters. The positive contribution of Molecular Weight to ecotoxicity along with the positive sign of hydrogen bond indices in most cases implies that toxic action is manifested mainly by accumulation on the membrane rather than through diffusion across them. IAM models are generally followed by better statistics and superior predictive performance than those based on experimental or computed logP. Predictions based on IAM chromatography were comparable or even superior with those performed by EPI Suite Software. Hence, IAM retention factors are suggested as promising indices in order to screen or rank chemicals with respect to their ecotoxicological risk, especially in the case of new entities.
Collapse
Affiliation(s)
- Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Dimitra Makarouni
- Vioryl, Chemical and Agricultural Industry, Research S.A., 28th klm Athens- Lamia national road, 19014, Afidnes, Greece
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 71 Athens, Greece
| | - Maria Ochsenkühn-Petropoulou
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece.
| |
Collapse
|
10
|
Fernández-Pumarega A, Amézqueta S, Farré S, Muñoz-Pascual L, Abraham MH, Fuguet E, Rosés M. Modeling Aquatic Toxicity through Chromatographic Systems. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alejandro Fernández-Pumarega
- Departament
de Química Analítica and Institut de Biomedicina (IBUB),
Facultat de Química, Universitat de Barcelona, Martí
i Franquès 1-11, 08028, Barcelona, Spain
| | - Susana Amézqueta
- Departament
de Química Analítica and Institut de Biomedicina (IBUB),
Facultat de Química, Universitat de Barcelona, Martí
i Franquès 1-11, 08028, Barcelona, Spain
| | - Sandra Farré
- Departament
de Química Analítica and Institut de Biomedicina (IBUB),
Facultat de Química, Universitat de Barcelona, Martí
i Franquès 1-11, 08028, Barcelona, Spain
| | - Laura Muñoz-Pascual
- Departament
de Química Analítica and Institut de Biomedicina (IBUB),
Facultat de Química, Universitat de Barcelona, Martí
i Franquès 1-11, 08028, Barcelona, Spain
| | - Michael H. Abraham
- Department
of Chemistry, University College London, 20 Gordon Steet, London WC1H 0AJ, U.K
| | - Elisabet Fuguet
- Departament
de Química Analítica and Institut de Biomedicina (IBUB),
Facultat de Química, Universitat de Barcelona, Martí
i Franquès 1-11, 08028, Barcelona, Spain
- Serra
Húnter Programme, Generalitat de Catalunya, 08002 Barcelona, Spain
| | - Martí Rosés
- Departament
de Química Analítica and Institut de Biomedicina (IBUB),
Facultat de Química, Universitat de Barcelona, Martí
i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Tsopelas F, Stergiopoulos C, Tsakanika LA, Ochsenkühn-Petropoulou M, Tsantili-Kakoulidou A. The use of immobilized artificial membrane chromatography to predict bioconcentration of pharmaceutical compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:150-157. [PMID: 28130991 DOI: 10.1016/j.ecoenv.2017.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 05/27/2023]
Abstract
The potential of immobilized artificial membrane chromatography (IAM) to predict bioconcentration factors (BCF) of pharmaceutical compounds in aquatic organisms was studied. For this purpose, retention factors extrapolated to pure aqueous phase, logkw(IAM), of 27 drugs were measured on an IAM stationary phase, IAM.PC.MG type. The data were combined with retention factors on two IAM columns, IAM.PC.MG and IAM.PC.DD2 types, reported previously by our research group and correlated with logBCF values predicted by Estimation Program Interface (EPI Suite) Software. Linear models were established upon exclusion of ionic or highly hydrophilic nonionic drugs, for which a constant value of logBCF equal to 0.50 was arbitrarily assigned by EPI Suite Software. As additional physicochemical parameter BioWin5 proved to be statistically significant, expressing the decrease of bioaccumulation potential as a result of biodegradation in the aquatic environment. The constructed IAM model was successfully validated by application to a set of pharmaceuticals, whose experimental BCF values are available. Better predictions compared to EPI Suite Software were achieved for the dataset under study. Since bioconcentration process involves electrostatic interactions, IAM retention may be a better measure for BCF values, especially for ionic species, compared to octanol-water partition coefficients widely implemented in environmental sciences. The developed approach can be considered as a novel tool for the prediction of bioconcentration of pharmaceutical compounds in aquatic organisms in order to minimize further experimental assays in the future.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece.
| | - Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Lamprini-Areti Tsakanika
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Maria Ochsenkühn-Petropoulou
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, 157 71 Athens, Greece
| |
Collapse
|
12
|
Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 2017; 1486:2-19. [DOI: 10.1016/j.chroma.2016.05.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022]
|
13
|
Fernández-Pumarega A, Amézqueta S, Fuguet E, Rosés M. Tadpole toxicity prediction using chromatographic systems. J Chromatogr A 2015; 1418:167-176. [DOI: 10.1016/j.chroma.2015.09.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022]
|
14
|
Jensen DA, Gary RK. Estimation of alkane–water logP for neutral, acidic, and basic compounds using an alkylated polystyrene-divinylbenzene high-performance liquid chromatography column. J Chromatogr A 2015; 1417:21-9. [DOI: 10.1016/j.chroma.2015.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022]
|
15
|
Evaluation of the suitability of chromatographic systems to predict human skin permeation of neutral compounds. Eur J Pharm Sci 2013; 50:557-68. [DOI: 10.1016/j.ejps.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022]
|
16
|
Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A 2013; 1317:85-104. [DOI: 10.1016/j.chroma.2013.05.045] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/15/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
|
17
|
Performance of chromatographic systems to model soil–water sorption. J Chromatogr A 2012; 1252:136-45. [DOI: 10.1016/j.chroma.2012.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
|