1
|
Su L, Wan J, Hu Q, Qin D, Han D, Niu L. Target-Synergized Biologically Mediated RAFT Polymerization for Electrochemical Aptasensing of Femtomolar Thrombin. Anal Chem 2023; 95:4570-4575. [PMID: 36825747 DOI: 10.1021/acs.analchem.3c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The assay of thrombin levels is integral to the assessment of coagulation function and clinical screening of coagulation disorder-related diseases. In this work, we illustrate the ingenious use of the target-synergized biologically mediated reversible addition-fragmentation chain transfer (RAFT) polymerization (tsBMRP) as a novel amplification strategy for the electrochemical aptamer-based biosensing of thrombin at the femtomolar levels. Briefly, the tsBMRP-based strategy relies on the boronate affinity-mediated decoration of the glycan chain(s) of the target itself with RAFT agents and the subsequent recruitment of signal labels via BMRP, mediated by the direct reduction of RAFT agents by NADH into initiating/propagating radicals. Obviously, the tsBMRP-based strategy is biologically friendly, low-cost, and simple in operation. As thrombin is a glycoconjugate, its electrochemical aptasensing involves the use of the thrombin-binding aptamer (TBA) as the recognition receptor, the site-specific decoration of RAFT agents to the glycan chain of thrombin via boronate affinity, and further the recruitment of ferrocene signal labels via the BMRP of ferrocenylmethyl methacrylate (FcMMA). As boronate affinity results in the decoration of each glycan chain with tens of RAFT agents while BMRP recruits hundreds of signal labels to each RAFT agent-decorated site, the tsBMRP-based strategy allows us to detect thrombin at a concentration of 35.3 fM. This electrochemical aptasensor is highly selective, and its applicability to thrombin detection in serum samples has been further demonstrated. The merits of high sensitivity and selectivity, low cost, good anti-interference capability, and simple operation make the tsBMRP-based electrochemical thrombin aptasensor great promise in biomedical and clinical applications.
Collapse
Affiliation(s)
- Luofeng Su
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongdong Qin
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Upasham S, Pali M, Jagannath B, Lin KC, Prasad S. Electrochemical Aptasensing for Lifestyle and Chronic Disease Management. Curr Med Chem 2023; 30:895-909. [PMID: 35619314 DOI: 10.2174/0929867329666220520111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
Over the past decade, researchers have investigated electrochemical sensing for the purpose of fabricating wearable point-of-use platforms. These wearable platforms have the ability to non-invasively track biomarkers that are clinically relevant and provide a comprehensive evaluation of the user's health. Due to many significant operational advantages, aptamer-based sensing is gaining traction.Aptamer-based sensors have properties like long-term stability, resistance to denaturation, and high sensitivity. Using electrochemical sensing with aptamer-based biorecognition is advantageous because it provides significant benefits like lower detection limits, a wider range of operations, and, most importantly, the ability to detect using a label-free approach. This paper provides an outlook into the current state of electrochemical aptasensing. This review looks into the significance of the detection of biomarkers like glucose, cortisol etc., for the purpose of lifestyle and chronic disease monitoring. Moreover, this review will also provide a comprehensive evaluation of the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Sayali Upasham
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Madhavi Pali
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Badrinath Jagannath
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| |
Collapse
|
3
|
Liu M, Geng L, Zhang F, Dou S, Li F, Liu Z, Guo Y, Sun X. Isolation of Bacteria Aptamers with Non-SELEX for the Development of a Highly Sensitive Colorimetric Assay Based on Dual Signal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15990-15998. [PMID: 36508287 DOI: 10.1021/acs.jafc.2c06167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, an aptamer against Escherichia coli is isolated via non-SELEX, which executes efficient selection by employing repetitive cycles of centrifugation-based partitioning, and the binding site of the aptamer on E. coli cell surfaces is inferred to be a membrane protein. Moreover, truncated sequence 2-17-2 with a higher affinity (Kd = 101.76 nM) is employed for highly sensitive colorimetric detection of bacteria based on the dual signal amplification strategy. When targets exist, the release of DNA 1 from the polymer activates a hybridization chain reaction (HCR) between DNA 1 and DNA 2, thereby inducing the aggregation of probe 1. Subsequently, DNA 3 dissociated from probe 1 as a linker DNA further assembles probe 2/3. In this system, two types of DNA@gold nanoparticles (AuNPs) coexist and successively aggregate AuNPs based on divergent triggering mechanisms. Under optimal conditions, the dual signal amplification strategy presents excellent sensitivity (10 CFU mL-1) and specificity, as well as the realization of real sample analysis.
Collapse
Affiliation(s)
- Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Zhanli Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| |
Collapse
|
4
|
Shan Y, Zhang D, Luo Z, Li T, Qu H, Duan X, Jiang Y. Advances in chilling injury of postharvest fruit and vegetable: Extracellular ATP aspects. Compr Rev Food Sci Food Saf 2022; 21:4251-4273. [PMID: 35876655 DOI: 10.1111/1541-4337.13003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.
Collapse
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Tang Q, Xu J, Wei S, Chen H, Chen J, Zhang H, Liu L. Label-free and highly sensitive detection of CRP based on the combination of nicking endonuclease-assisted signal amplification and capillary electrophoresis-UV assay. Anal Chim Acta 2022; 1221:340131. [DOI: 10.1016/j.aca.2022.340131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/08/2023]
|
6
|
Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23031412. [PMID: 35163338 PMCID: PMC8836149 DOI: 10.3390/ijms23031412] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.
Collapse
|
7
|
Joshi A, Vishnu G K A, Sakorikar T, Kamal AM, Vaidya JS, Pandya HJ. Recent advances in biosensing approaches for point-of-care breast cancer diagnostics: challenges and future prospects. NANOSCALE ADVANCES 2021; 3:5542-5564. [PMID: 36133274 PMCID: PMC9417675 DOI: 10.1039/d1na00453k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
Timely and accurate diagnosis of breast cancer is essential for efficient treatment and the best possible survival rates. Biosensors have emerged as a smart diagnostic platform for the detection of biomarkers specific to the onset, recurrence, and therapeutic drug monitoring of breast cancer. There have been exciting recent developments, including significant improvements in the validation, sensitivity, specificity, and integration of sample processing steps to develop point-of-care (POC) integrated micro-total analysis systems for clinical settings. The present review highlights various biosensing modalities (electrical, optical, piezoelectric, mass, and acoustic sensing). It provides deep insights into their design principles, signal amplification strategies, and comparative performance analysis. Finally, this review emphasizes the status of existing integrated micro-total analysis systems (μ-TAS) for personalized breast cancer therapeutics and associated challenges and outlines the approach required to realize their successful translation into clinical settings.
Collapse
Affiliation(s)
- Anju Joshi
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Anil Vishnu G K
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
| | - Tushar Sakorikar
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Arif M Kamal
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Jayant S Vaidya
- Division of Surgery and Interventional Science, University College London 4919 London UK
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| |
Collapse
|
8
|
Yu Y, Guo Q, Jiang W, Zhang H, Cai C. Dual-Aptamer-Assisted AND Logic Gate for Cyclic Enzymatic Signal Amplification Electrochemical Detection of Tumor-Derived Small Extracellular Vesicles. Anal Chem 2021; 93:11298-11304. [PMID: 34369142 DOI: 10.1021/acs.analchem.1c02489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small extracellular vesicles (sEVs), often referred to as exosomes, are potential biomarkers for noninvasive cancer diagnosis. However, because of their phenotype heterogeneity, precise detection of tumor-derived sEVs is a great challenge. Herein, a dual-aptamer-assisted AND logic gate was fabricated for sensitive electrochemical detection of tumor-derived sEVs based on a cyclic enzymatic signal amplification strategy. Four different tumor-derived sEVs were used to verify the feasibility of the AND logic gate, and CCRF-CEM sEVs were successfully detected by this assay. The electrochemical assay shows a good linear response from 4 × 103 to 8 × 107 particles/μL, with a detection limit of 920 particles/μL, for CCRF-CEM sEVs, indicating potential application in accurate cancer diagnostics.
Collapse
Affiliation(s)
- Yongqi Yu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Qunqun Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Wenli Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
9
|
Bezuneh TT, Fereja TH, Addisu Kitte S, Li H, Jin Y. Enzyme-free signal amplified Au nanoparticle fluorescence detection of thrombin via target-triggered catalytic hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Li HY, Jia WN, Li XY, Zhang L, Liu C, Wu J. Advances in detection of infectious agents by aptamer-based technologies. Emerg Microbes Infect 2020; 9:1671-1681. [PMID: 32623963 PMCID: PMC7473197 DOI: 10.1080/22221751.2020.1792352] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases still remain one of the biggest challenges for human health. Accurate and early detection of infectious pathogens are crucial for transmission control, clinical diagnosis, and therapy. For a traditional reason, most immunological and microbiological laboratories are equipped with instruments designated for antibody-based assays in detection of infectious pathogens or clinical diagnosis. Emerging aptamer-based technologies have pushed a shift from antibody-based to aptamer-based assays due to equal specificity, even better sensitivity, lower manufacturing cost and more flexibility in amending for chemiluminescent, electrochemical or fluorescent detection in a multifaceted and high throughput fashion in comparison of aptamer-based to antibody-based assays. The nature of aptamer-based technologies is particularly suitable for point-of-care testing in remote areas at warm or hot atmosphere, and mass screening for potential infection in pandemic of emerging infectious agents, such as SARS-CoV or SARS-CoV-2 in an epicentre or other regions. This review intends to summarize currently available aptamer-based technologies in detection of bacterial, viral, and protozoan pathogens for research and clinical application. It is anticipated that potential technologies will be further optimized and validated for clinical translation in meeting increasing demands for prompt, precise, and reliable detection of specific pathogens in various atmospheric conditions.
Collapse
Affiliation(s)
- Hui-Yan Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Wan-Nan Jia
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Xin-Yi Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Li Zhang
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Chang Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Kang J, Yeom G, Jang H, Park CJ, Kim MG. Highly sensitive and universal detection strategy based on a colorimetric assay using target-specific heterogeneous sandwich DNA aptamer. Anal Chim Acta 2020; 1123:73-80. [PMID: 32507242 DOI: 10.1016/j.aca.2020.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
A simple, universal, and sensitive colorimetric biosensor for detecting of various biomarkers was devised using a target-specific DNA aptamer, as the recognition element, and engineered with streptavidin-fusion replication protein A 70 kDa (RPA70A) linked to biotin-horseradish peroxidase, as the colorimetric element. To improve sensitivity and stability compared to other colorimetric sensing platforms, we developed a novel detection strategy by integrating a newly selected heterogeneous sandwich DNA aptamer and protein engineering in this study. The proposed method is based on a change in color from colorless to blue due to the interaction of the aptamer with RPA70A in the presence of the target; this color change could be observed by the naked eye or measured with a UV-vis spectrometer. We confirmed its high sensitivity and specificity for two model targets using their aptamers under optimal experimental conditions. In addition, the feasibility of the assay was investigated in clinical samples containing NPs of influenza A or B virus. These results suggest that our detection system developed herein can be universally applied to the diagnosis of various diseases owing to its stability, sensitivity, and specificity.
Collapse
Affiliation(s)
- Juyoung Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Gyuho Yeom
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyungjun Jang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
12
|
JIANG H, LV XF, ZHAO KX. Progress of Aptamer Screening Techniques Based on Microfluidic Chips. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Sloan-Dennison S, Zoltowski CM, El-Khoury PZ, Schultz ZD. Surface Enhanced Raman Scattering Selectivity in Proteins Arises from Electron Capture and Resonant Enhancement of Radical Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:9548-9558. [PMID: 32542105 PMCID: PMC7295139 DOI: 10.1021/acs.jpcc.0c01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmon-enhanced Raman scattering is a powerful approach to detecting and characterizing proteins in live and dynamic biological systems. However, the selective detection/enhancement of specific residues as well as spectral diffusion and fluctuations have complicated the interpretation of enhanced Raman spectra and images of biological matter. In this work, we demonstrate that the amino acid tryptophan (Trp) can capture an electron from an excited plasmon, which generates a radical anion that is resonantly enhanced: a visible excited electronic state slides into resonance upon charging. This surface enhanced resonance Raman scattering (SERRS) mechanism explains the persistence of Trp signatures in the SERS and TERS spectra of proteins. Evidence for this picture includes the observation of visible resonances in the UV-Vis extinction spectrum, changes in the ground state vibrational spectrum, and plasmon-resonance dependent behavior. DFT calculations support the experimental observations. The behavior observed from the free Trp molecule is shown to explain the SERS spectrum of the Trp-cage protein. In effect, resonant Raman scattering from radicals formed through plasmonic excitation represents an under-investigated mechanism that may be exploited for chemical sensing applications.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Chelsea M. Zoltowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Patrick Z. El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- corresponding author
| |
Collapse
|
14
|
Sensitive Colorimetric Detection of Prostate Specific Antigen Using a Peroxidase-Mimicking Anti-PSA Antibody Coated Au Nanoparticle. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4204-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Single-excited double-emission CdTe@CdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs. Mikrochim Acta 2020; 187:134. [DOI: 10.1007/s00604-020-4117-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/06/2020] [Indexed: 01/15/2023]
|
16
|
Abstract
Chymotrypsin is one of the most extensively known proteases participating in the pathogenesis of various diseases, which can be used in drug discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Cheng Liu
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jingjie Cui
- School of Automation
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
| | - Jia Cheng
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuanwei Lin
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Li Gao
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|
17
|
Hahn J, Kim E, You Y, Choi YJ. Colorimetric switchable linker-based bioassay for ultrasensitive detection of prostate-specific antigen as a cancer biomarker. Analyst 2019; 144:4439-4446. [PMID: 31218301 DOI: 10.1039/c9an00552h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of colorimetric bioassays for protein detection is one of the most interesting diagnostic approaches, but their relatively poor detection limits have been a critical issue. In this study, we developed an efficient colorimetric bioassay based on switchable linkers (SLs) for the detection of prostate-specific antigen (PSA), which is one of the most widely used protein biomarkers for the diagnosis of prostate and breast cancers. SLs can cross-link gold nanoparticles (AuNPs) to generate large-scale aggregates and thereby induce precipitation to achieve visual signal amplification. In addition, when SLs are occupied by target proteins (referred to as 'switch-off'), highly sensitive detection is enabled. To maximize sensitivity, we adjusted the total surface area of AuNPs by controlling their concentration. As a result, PSA was detected at an ultralow concentration of 100 fg mL-1. This SL-based assay is shown to be simple, easy to handle and visualize, and highly sensitive. Therefore, in addition to PSA, the proposed SL-based assay could be used to detect other protein biomarkers.
Collapse
Affiliation(s)
- Jungwoo Hahn
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 151-921, Korea.
| | | | | | | |
Collapse
|
18
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
19
|
Quan W, Xudong W, Min X, Lou X, Fan X. One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Kurrey R, Deb MK, Shrivas K, Khalkho BR, Nirmalkar J, Sinha D, Jha S. Citrate-capped gold nanoparticles as a sensing probe for determination of cetyltrimethylammonium surfactant using FTIR spectroscopy and colorimetry. Anal Bioanal Chem 2019; 411:6943-6957. [DOI: 10.1007/s00216-019-02067-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022]
|
21
|
Dual Aptamer-Functionalized 3D Plasmonic Metamolecule for Thrombin Sensing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA nanotechnology offers the possibility to rationally design structures with emergent properties by precisely controlling their geometry and functionality. Here, we demonstrate a DNA-based plasmonic metamolecule that is capable of sensing human thrombin proteins. The chiral reconfigurability of a DNA origami structure carrying two gold nanorods was used to provide optical read-out of thrombin binding through changes in the displayed plasmonic circular dichroism. In our experiments, each arm of the structure was modified with one of two different thrombin-binding aptamers—thrombin-binding aptamer (TBA) and HD22—in such a way that a thrombin molecule could be sandwiched by the aptamers to lock the metamolecule in a state of defined chirality. Our structure exhibited a Kd of 1.4 nM, which was an order of magnitude lower than those of the individual aptamers. The increased sensitivity arose from the avidity gained by the cooperative binding of the two aptamers, which was also reflected by a Hill coefficient of 1.3 ± 0.3. As we further exploited the strong plasmonic circular dichroism (CD) signals of the metamolecule, our method allowed one-step, high sensitivity optical detection of human thrombin proteins in solution.
Collapse
|
22
|
Kang J, Yeom G, Jang H, Oh J, Park CJ, Kim MG. Development of Replication Protein A-Conjugated Gold Nanoparticles for Highly Sensitive Detection of Disease Biomarkers. Anal Chem 2019; 91:10001-10007. [PMID: 31269392 DOI: 10.1021/acs.analchem.9b01827] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Paper-based lateral flow immunoassays (LFIAs) using conventional sandwich-type immunoassays are one of the most commonly used point-of-care (PoC) tests. However, the application of gold nanoparticles (AuNPs) in LFIAs does not meet sensitivity requirements for the detection of infectious diseases or biomarkers present at low concentrations in body fluids because of the limited number of AuNPs that can bind to the target. To overcome this problem, we first developed a single-stranded DNA binding protein (RPA70A, DNA binding domain A of human Replication Protein A 70 kDa) conjugated to AuNPs for a sandwich assay using a capture antibody immobilized in the LFIA and an aptamer as a detection probe, thus, enabling signal intensity enhancement by attaching several AuNPs per aptamer. We applied this method to detect the influenza nucleoprotein (NP) and cardiac troponin I (cTnI). We visually detected spiked targets at a low femtomolar range, with limits of detection for NP in human nasal fluid and for cTnI in serum of 0.26 and 0.23 pg·mL-1, respectively. This technique showed significantly higher sensitivity than conventional methods that are widely used in LFIAs involving antibody-conjugated AuNPs. These results suggest that the proposed method can be universally applied to the detection of substances requiring high sensitivity and can be used in the field of PoC testing for early disease diagnosis.
Collapse
Affiliation(s)
- Juyoung Kang
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , 61005 , Republic of Korea
| | - Gyuho Yeom
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , 61005 , Republic of Korea
| | - Hyungjun Jang
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , 61005 , Republic of Korea
| | - Jusung Oh
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , 61005 , Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , 61005 , Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , 61005 , Republic of Korea
| |
Collapse
|
23
|
An K, Lu X, Wang C, Qian J, Chen Q, Hao N, Wang K. Porous Gold Nanocages: High Atom Utilization for Thiolated Aptamer Immobilization to Well Balance the Simplicity, Sensitivity, and Cost of Disposable Aptasensors. Anal Chem 2019; 91:8660-8666. [DOI: 10.1021/acs.analchem.9b02145] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Chengquan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qiaoshan Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
24
|
Wang LJ, Luo ML, Yang XY, Li XF, Wu Y, Zhang CY. Controllable Autocatalytic Cleavage-Mediated Fluorescence Recovery for Homogeneous Sensing of Alkyladenine DNA Glycosylase from Human Cancer Cells. Am J Cancer Res 2019; 9:4450-4460. [PMID: 31285772 PMCID: PMC6599653 DOI: 10.7150/thno.35393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
DNA alkylation and oxidation are two most common forms of cytotoxic damage with the characteristics of mutagenic and carcinogenic. Human alkyladenine DNA glycosylase (hAAG) is the only glycosylase known to repair a wide variety of alkylative and oxidative DNA lesions. However, few approaches are capable of real-time monitoring hAAG activity. Methods: Herein, we develop a facile fluorescent strategy for homogeneous and sensitive sensing of hAAG activity based on the controllable autocatalytic cleavage-mediated fluorescence recovery. The presence of hAAG enables the cleavage of hairpin probe 1 (HP1) at the damaged 2′-deoxyinosine site by AP endonuclease 1 (APE1), forming a DNA duplex. The trigger 1 built in the resultant DNA duplex may hybridize with hairpin probe 2 (HP2) to induce the T7 exonuclease (T7 exo)-catalyzed recycling cleavage of HP2 (Cycle I) to release trigger 2. The trigger 2 can further hybridize with the signal probe (a fluorophore (FAM) and a quencher (BHQ1) modified at its 5′ and 3′ ends) to induce the subsequent recycling cleavage of signal probes (Cycle II) to liberate FAM molecules. Through two-recycling autocatalytic cleavage processes, large amounts of fluorophore molecules (i.e., FAM) are liberated from the FAM-BHQ1 fluorescence resonance energy transfer (FRET) pair, leading to the amplified fluorescence recovery. Results: Taking advantage of the high accuracy of in vivo DNA repair mechanism, the high specificity of T7 exo-catalyzed mononucleotides hydrolysis, and the high efficiency of autocatalytic recycling amplification, this strategy exhibits high sensitivity with a detection limit of 4.9 × 10-6 U/μL and a large dynamic range of 4 orders of magnitude from 1 × 10-5 to 0.1 U/μL, and it can further accurately evaluate the enzyme kinetic parameters, screen the potential inhibitors, and even quantify the hAAG activity from 1 cancer cell. Conclusion: The proposed strategy can provide a facile and universal platform for the monitoring of DNA damage-related repair enzymes, holding great potential for DNA repair-related biochemical research, clinical diagnosis, drug discovery, and cancer therapy.
Collapse
|
25
|
Aktas GB, Skouridou V, Masip L. Sandwich-type aptasensor employing modified aptamers and enzyme-DNA binding protein conjugates. Anal Bioanal Chem 2019; 411:3581-3589. [PMID: 31089784 DOI: 10.1007/s00216-019-01839-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The use of aptamers in various analytical applications as molecular recognition elements and alternative to antibodies has led to the development of various platforms that facilitate the sensitive and specific detection of targets ranging from small molecules and proteins to whole cells. The goal of this work was to design a universal and adaptable sandwich-type aptasensor exploiting the unique properties of DNA binding proteins. Specifically, two different enzyme-DNA binding protein conjugates, GOx-dHP and HRP-scCro, were used for the direct detection of a protein using two aptamers for target capture and detection. The specific dsDNA binding sequence for each DNA binding protein tag was incorporated in the form of a hairpin at one end of each aptamer sequence during the synthesis step. Detection was accomplished by an enzymatic (GOx/HRP) cascade reaction after the binding of each enzyme conjugate to its corresponding binding sequence on each aptamer. The proposed sandwich-type aptasensor was validated for the detection of thrombin, which is one of the most commonly used model targets with known dual aptamers. The limit of detection accomplished was 0.92 nM which is comparable with other colorimetric platforms reported in the literature. The sensitivity of the aptasensor was easily modulated by changing the number of dsDNA binding sites incorporated in the aptamer sequences, thus controlling the enzyme stoichiometry. Finally, the potential use of the proposed sensing approach for real sample testing was demonstrated using spiked human plasma and no significant matrix effects were observed when up to 2% plasma was used.
Collapse
Affiliation(s)
- Gülsen Betül Aktas
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Vasso Skouridou
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Lluis Masip
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain.
| |
Collapse
|
26
|
Li J, Kong C, Liu Q, Chen Z. Colorimetric ultrasensitive detection of DNA based on the intensity of gold nanoparticles with dark-field microscopy. Analyst 2019; 143:4051-4056. [PMID: 30059077 DOI: 10.1039/c8an00825f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present an ultrasensitive colorimetric nucleic acid assay based on the intensity of gold nanoparticles (Au NPs) using dark field microscopy. In the absence of target DNA, two hairpin-like DNA strands with protruding single-stranded DNA (ssDNA) can be absorbed onto the Au NP surface via non-covalent interactions between the exposed nitrogen bases of ssDNA and Au NPs, which inhibits Au NPs from aggregating in a high concentration of salt media, while in the presence of target DNA, two hairpin DNA strands hybridize with target DNA to form double-stranded DNA (dsDNA). After hybridization chain reaction (HCR) amplification, rigid dsDNA polymers are formed, which results in serious Au NP aggregation in the salt environment. By measuring the intensity change of yellow and red dots on a dark-field image, the concentration of target DNA can be accurately quantified with a limit of detection (LOD) of 66 fM.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | | | | | | |
Collapse
|
27
|
Lin KC, Jagannath B, Muthukumar S, Prasad S. Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS 2. Analyst 2018. [PMID: 28650005 DOI: 10.1039/c7an00548b] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ultrasensitive aptasensor for the label free non-faradaic detection of thrombin has been demonstrated on molybdenum disulphide (MoS2) nanosheets. These nanosheets were physiochemically immobilized onto a silicon micro-electrode platform. Thrombin detection was achieved through the charge modulation of the electrical double layer due to the specific and dose dependent binding of thrombin to the surface of thiol terminated ssDNA aptamer functionalized MoS2 nanosheets. Electrical double layer charge modulation associated with thrombin binding was characterized using electrochemical impedance spectroscopy. Dynamic light scattering was also used to confirm the dose dependent behavior. ATR-FTIR spectroscopy and XPS analysis were independently used to validate the functionalization of the ssDNA aptamer onto MoS2 nanosheets. ssDNA aptamer functionalized molybdenum disulfide (MoS2) for selective and specific capture of thrombin was demonstrated both in phosphate buffered saline (PBS) and human serum. The optimized immunoassay enabled the detection of thrombin ranging from 267 fM to 267 pM in phosphate buffer. The limit of detection of 53 pM and the linear dynamic range of detection of thrombin ranged from 53 to 854 pM in human serum. The rapid response time for the electrochemical impedance spectroscopy signal makes it an attractive option for the real-time detection of thrombin based point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Kai-Chun Lin
- Department of Bioengineering, University of Texas, Dallas, Richardson, TX 75080, USA.
| | - Badrinath Jagannath
- Department of Bioengineering, University of Texas, Dallas, Richardson, TX 75080, USA.
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas, Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
28
|
Ling Y, Fu XB, Li NB, Luo HQ. A Label-free Resonance Rayleigh Scattering Sensor for Detection of Thrombin Based on Aptamer Recognizing. ANAL SCI 2018; 34:881-886. [PMID: 30101881 DOI: 10.2116/analsci.17p498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction between thrombin binding aptamer (TBA) and thrombin (TB) was studied by resonance Rayleigh scattering (RRS). In neutral medium, TBA is present in a balanced form between a G-quadruplex structure and a random coil structure, and the TBA can be induced by metal ions to form a G-quadruplex structure. Upon addition of thrombin, the G-quadruplex selectively bound to TB, which resulted in enhanced resonance Rayleigh scattering. The scattering intensities increased proportionally with the concentration of TB from 10 to 50 nM. The method had very high sensitivity and good selectivity, and the detection limit (3δ/s) was 1 nM. In this work, the spectral characteristics of RRS, the optimum conditions of the reaction, and influencing factors for the RRS intensities were investigated. Furthermore, the structure of the TBA-TB complex and the sensing mechanism were explored. The TB sensor was applied to a diluted human serum sample with satisfactory results, indicating the potential of this method to be applied to biological samples. A selective and simple RRS sensor for the detection of trace amounts of TB is proposed based on conformational change of TBA.
Collapse
Affiliation(s)
- Yu Ling
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Xiao Bei Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Nian Bing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Hong Qun Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| |
Collapse
|
29
|
Amplified electrochemiluminescence detection of CEA based on magnetic Fe 3O 4@Au nanoparticles-assembled Ru@SiO 2 nanocomposites combined with multiple cycling amplification strategy. Biosens Bioelectron 2018; 118:115-121. [PMID: 30059865 DOI: 10.1016/j.bios.2018.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022]
Abstract
In this work, we designed a new strategy for ultrasensitive detection of CEA based on efficient electrochemiluminescence (ECL) quenching of Ru(bpy)32+-doped SiO2 nanocomposite by ferrocene using target recycling amplification technique. A large number of Ru@SiO2 ECL signal probe were firstly assembled on the novel magnetic core-shell Fe3O4@Au nanoparticles (NPs), then the ferrocene-labeled ECL quenching probe (Fc-probe) was linked to the magnetic NPs. Finally, numerous DNA1 sequences were produced by target CEA-triggered multiple recycling amplification and displaced the Fc-probe on the magnetic NPs, leading to significantly enhanced ECL signal for CEA detection. Because of the designed cascade signal amplification strategy, the newly developed method achieved a wide linear range of 10 fg/mL to 10 ng/mL with a low detection limit of 3.5 fg/mL. Furthermore, taking advantages of the magnetic Fe3O4@Au NPs for carring abundant signal probes, sensing target and ECL detection, the developed ECL strategy is convenient, rapid and displayed high sensitivity for CEA detection, which has great potential for analyzing the clinical samples in practical disease diagnosis applications.
Collapse
|
30
|
Wen JT, Roper JM, Tsutsui H. Polydiacetylene Supramolecules: Synthesis, Characterization, and Emerging Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00848] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Rossetti M, Ippodrino R, Marini B, Palleschi G, Porchetta A. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches. Anal Chem 2018; 90:8196-8201. [DOI: 10.1021/acs.analchem.8b01584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marianna Rossetti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Rudy Ippodrino
- Ulisse BioMed S.r.l., Area Science Park, 34149 Trieste, Italy
| | - Bruna Marini
- Ulisse BioMed S.r.l., Area Science Park, 34149 Trieste, Italy
| | - Giuseppe Palleschi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
32
|
Cao C, Zhang F, Goldys EM, Gao F, Liu G. Advances in structure-switching aptasensing towards real time detection of cytokines. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Chen J, Huang Y, Yang X, Zhang H, Li Z, Qin B, Chen X, Qiu H. Highly sensitive and visual detection of guanosine 3'-diphosphate-5'-di(tri)phosphate (ppGpp) in bacteria based on copper ions-mediated 4-mercaptobenzoic acid modified gold nanoparticles. Anal Chim Acta 2018; 1023:89-95. [PMID: 29754611 DOI: 10.1016/j.aca.2018.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/21/2023]
Abstract
Guanosine 3'-diphosphate-5'-di(tri)phosphate (ppGpp) plays a crucial role in the gene expression, metabolism, growth, and other significant processes of microorganisms. In this work, a facile sensitive and visual strategy for the detection of ppGpp has been established by developing a colorimetric probe of copper ions (Cu2+)-mediated 4-mercaptobenzoic acid (4-MBA) modified gold nanoparticles (AuNPs). The sensing process was characterized by transmission electron microscopy (TEM), zeta potential, dynamic light scattering (DLS) and UV-vis spectroscopy. The strategy not only achieves desirable performance over a wide concentration range (0.05-10 μM), but also exhibits excellent selectivity over other nucleotides and biomolecules. In addition, the results could be visualized by the naked eye. We have demonstrated the determination of ppGpp in Bacillus subtilis lysate samples.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanni Huang
- Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
34
|
Zhang D, Ma F, Zhang Q, Zhang CY. Highly sensitive detection of epidermal growth factor receptor in lung cancer cells by aptamer-based target-/probe-mediated cyclic signal amplification. Chem Commun (Camb) 2018; 53:11496-11499. [PMID: 28990029 DOI: 10.1039/c7cc06823a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We develop an antibody-free fluorescence method for the epidermal growth factor receptor (EGFR) assay using aptamer-based target-/probe-mediated cyclic signal amplification. The method is highly sensitive with a detection limit of 0.16 fM, and it can be applied to detect EGFR in lung cancer cells, holding great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | |
Collapse
|
35
|
Huang Y, Zheng W, Li X. Detection of protein targets with a single binding epitope using DNA-templated photo-crosslinking and strand displacement. Anal Biochem 2018; 545:84-90. [DOI: 10.1016/j.ab.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
|
36
|
Yang X, Yu YQ, Peng LZ, Lei YM, Chai YQ, Yuan R, Zhuo Y. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI. Anal Chem 2018; 90:3995-4002. [PMID: 29457712 DOI: 10.1021/acs.analchem.7b05137] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of a sensitive and practical electrochemiluminescence (ECL) bioassay relies on the use of ECL signal tags whose signal intensity is high and stable. In this work, strong ECL emission was achieved from metal organic framework (MOF) accelerator enriched quantum dots (CdTe), which were applied as an efficient ECL signal tag for trace biomarker detection. It is particularly noteworthy that a novel mechanism to drastically enhance the ECL intensity of CdTe is established because isoreticular metal organic framework-3 (IRMOF-3) with 2-amino terephthalic acid (2-NH2-BDC) as the organic ligand not only allows for loading a large amount of CdTe via the encapsulating effect and internal/external decoration but also functions as a novel coreactant accelerator for promoting the conversion of coreactant S2O82- into the sulfate radical anion (SO4•-), further boosting the ECL emission of CdTe. On the basis of the simple sandwich immunoreaction approach, cardiac troponin-I antigen (cTnI), a kind of biomarker related with myocardial infarction, was chosen as a detection model using an IRMOF-3-enriched CdTe labeled antibody as the signal probe. This immunosensor demonstrated desirable assay performance for cTnI with a wide response range from 1.1 fg mL-1 to 11 ng mL-1 and a very low detection limit (0.46 fg mL-1). This suggested that the IRMOF-3-enriched CdTe nanocomposite strategy can integrate the coreactant accelerator and luminophore to significantly enhance the ECL intensity and stability, providing a direction for promising ECL tag preparation with broad applications.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Yan-Qing Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ling-Zhi Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| |
Collapse
|
37
|
Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018; 47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu-Sheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
38
|
Shen ZF, Li F, Jiang YF, Chen C, Xu H, Li CC, Yang Z, Wu ZS. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes. Anal Chem 2018; 90:3335-3340. [DOI: 10.1021/acs.analchem.7b04895] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi-Fa Shen
- Henan Key Laboratory of Immunology and Targeted Drugs, Research Center for Molecular Oncology and Functional Nucleic Acids, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Feng Li
- Henan Key Laboratory of Immunology and Targeted Drugs, Research Center for Molecular Oncology and Functional Nucleic Acids, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yi-Fan Jiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chang Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Cong-Cong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhe Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
39
|
Zheng A, Zhang X, Huang Y, Cai Z, Liu X, Liu J. Polydopamine-assisted versatile modification of a nucleic acid probe for intracellular microRNA imaging and enhanced photothermal therapy. RSC Adv 2018; 8:6781-6788. [PMID: 35540353 PMCID: PMC9078363 DOI: 10.1039/c8ra00261d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs play an important role in various biological processes, and their aberrant expression is closely associated with various human diseases, especially cancer. Real-time monitoring of microRNAs in living cells may help us to understand their role in cellular processes, which can further provide a basis for diagnosis and treatment. In this study, polydopamine was used to assist the versatile modification of a nucleic acid probe for intracellular microRNA imaging and enhanced photothermal therapy. Polydopamine can be covalently linked with a thiol-terminated nucleic acid probe through the Michael addition reaction under slightly alkaline conditions. This modification is mild and can be performed directly in an aqueous solution, which can better resist hydrolysis than the traditional modification processes, resulting in a nanoprobe with better stability and higher loading of nucleic acids. This prepared nanoprobe can easily enter cells without transfection agents and then realize the imaging of intracellular miRNA through fluorescence restoration. Moreover, the coating of PDA can enhance the photothermal conversion efficiency of the nanoprobe, making it suitable for photothermal therapy of cancer. It is expected that the PDA-based versatile modification can help to construct a promising platform for tumor imaging and treatment. Polydopamine can assist the versatile modification of a nucleic acid probe for intracellular miRNA responsed fluorescence imaging and enhanced photothermal therapy.![]()
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Yanbing Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- The Liver Center of Fujian Province
| |
Collapse
|
40
|
Fluorescent and colorimetric dual-mode aptasensor for thrombin detection based on target-induced conjunction of split aptamer fragments. Talanta 2017; 180:76-80. [PMID: 29332836 DOI: 10.1016/j.talanta.2017.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/24/2017] [Accepted: 12/12/2017] [Indexed: 11/21/2022]
Abstract
Since the lack of detection diversity of the single-signal readout strategy, it is urgent to develop fast and multisignal assay strategies. A highly selective and sensitive assay method with colorimetric and fluorometric dual signals readouts is presented in this paper. It is based on the principle that the target induced conjunction of split aptamer fragments assembled on the surface of Au nanoparticles (AuNPs). In the presence of targets, the color of solution changed from wine red to blue and can be measured both visual inspection and spectrophotometry because of the aggregation of AuNPs. At the same time, the report probes which are original hybrid with the anchoring aptamer fragments on the AuNPs surface can be released and recovers the fluorescence. By use of this detection strategy, the limit of detection for thrombin (TMB), as a model of analyte, were 0.45 and 0.16nM, respectively. Furthermore, this protocol can discriminate TMB from other analogue with high selectivity and can be used to detect TMB in human serum samples. The results came from the two signals were well consistent with each other, which demonstrated that it has application potential for detection of TMB in complex matrix.
Collapse
|
41
|
Rasheed PA, Lee JS. Ultrasensitive colorimetric detection of NF-κB protein at picomolar levels using target-induced passivation of nanoparticles. Anal Bioanal Chem 2017; 410:1397-1403. [PMID: 29222653 DOI: 10.1007/s00216-017-0783-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 01/04/2023]
Abstract
We developed a highly sensitive and selective sensor based on the nanoprobe conjugates of catalytic nanoparticles and double-stranded DNA (dsDNA) for the colorimetric detection of NF-κB protein. The sensing mechanism takes advantage of the catalytic activity of nanoparticle surfaces and the specific binding of NF-κB to a dsDNA sequence. In the presence of NF-κB, the highly selective interactions between dsDNA and NF-κB lead to the passivation of the catalytic nanoparticle surfaces, impeding the sodium borohydride-mediated reduction rate of 4-nitrophenol. The correlation between the NF-κB concentration and the visualized reduction rate of 4-nitrophenol from yellow to colorless clearly demonstrates the highly quantitative nature of the sensor. Importantly, this sensor can conclusively detect concentrations as low as 6.39 pM of NF-κB, which to best of our knowledge is the lowest limit of detection for a colorimetric NF-κB detection system. The excellent sensitivity of this sensor relies on the high binding constant of NF-κB to dsDNA and the catalytic activity of nanoparticle surfaces for the signal amplification. This sensor allows visual detection without the need for any spectrometric instrumentation. We also determined the various parameters such as the pH, temperature, incubation time, and salt concentration for optimal NF-κB-dsDNA interactions. Finally, we demonstrated the performance of the sensor with simulated sample analysis. Graphical abstract A highly sensitive and selective colorimetric detection of protein NF-κB using the nanoprobeconjugates of catalytic gold nanoparticles and double-stranded DNA (dsDNA) has been developed.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
42
|
Godakhindi VS, Kang P, Serre M, Revuru NA, Zou JM, Roner MR, Levitz R, Kahn JS, Randrianalisoa J, Qin Z. Tuning the Gold Nanoparticle Colorimetric Assay by Nanoparticle Size, Concentration, and Size Combinations for Oligonucleotide Detection. ACS Sens 2017; 2:1627-1636. [PMID: 28994578 DOI: 10.1021/acssensors.7b00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gold nanoparticle (GNP)-based aggregation assay is simple, fast, and employs a colorimetric detection method. Although previous studies have reported using GNP-based colorimetric assay to detect biological and chemical targets, a mechanistic and quantitative understanding of the assay and effects of GNP parameters on the assay performance is lacking. In this work, we investigated this important aspect of the GNP aggregation assay including effects of GNP concentration and size on the assay performance to detect malarial DNA. Our findings lead us to propose three major competing factors that determine the final assay performance including the nanoparticle aggregation rate, plasmonic coupling strength, and background signal. First, increasing nanoparticle size reduces the Brownian motion and thus aggregation rate, but significantly increases plasmonic coupling strength. We found that larger GNP leads to stronger signal and improved limit of detection (LOD), suggesting a dominating effect of plasmonic coupling strength. Second, higher nanoparticle concentration increases the probability of nanoparticle interactions and thus aggregation rate, but also increases the background extinction signal. We observed that higher GNP concentration leads to stronger signal at high target concentrations due to higher aggregation rate. However, the fact the optimal LOD was found at intermediate GNP concentrations suggests a balance of two competing mechanisms between aggregation rate and signal/background ratio. In summary, our work provides new guidelines to design GNP aggregation-based POC devices to meet the signal and sensitivity needs for infectious disease diagnosis and other applications.
Collapse
Affiliation(s)
| | | | - Maud Serre
- Ecole
Nationale Supérieure d’Ingénieurs de Reims (ESIReims), University of Reims Champagne - Ardenne, 3 Espl. Roland Garros, 51100 Reims, France
| | | | | | - Michael R. Roner
- Department
of Biology, University of Texas at Arlington, 701 South Nedderman Drive, Arlington, Texas 76019, United States
| | | | | | - Jaona Randrianalisoa
- Groupe
de Recherche en Sciences pour l’Ingénieur (GRESPI) -
EA 4694, University of Reims Champagne - Ardenne, 51687 Reims Cedex 2, France
| | - Zhenpeng Qin
- Children’s Medical Center, 1935
Medical District Drive, Dallas, Texas 75235, United States
| |
Collapse
|
43
|
Wang J, Cheng W, Meng F, Yang M, Pan Y, Miao P. Hand-in-hand RNA nanowire-based aptasensor for the detection of theophylline. Biosens Bioelectron 2017; 101:153-158. [PMID: 29065340 DOI: 10.1016/j.bios.2017.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022]
Abstract
Theophylline is a popular drug for many respiratory diseases. However, certain toxic side effects may be developed and the narrow safety range raises the demand for sensitive methods to constantly monitor theophylline levels. This study presents an electrochemical approach towards theophylline detection based on the recognition by split RNA aptamers. Target induced construction of hand-in-hand RNA nanowire on the electrode surface could further absorb silver nanoparticles (Ag NPs) as electrochemical species. When theophylline is not present, RNA probes are stable and their conformations remain unchanged. In contrast, theophylline is able to trigger the hairpin opening of RNA probe and subsequent self-assembly of RNA nanowire, which could be captured by DNA tetrahedron on the electrode interface. After further decorating Ag NPs on the nanowire, silver stripping current is measured to reveal initial theophylline concentration. The developed sensing strategy shows excellent specificity and sensitivity with the limit of detection of 50nM. Its practical utility is demonstrated by quantitative determination of theophylline levels in complex biological samples.
Collapse
Affiliation(s)
- Jue Wang
- Department of Neurology, Shanghai Tenth People's Hospital Tongji University School of Medicine, Shanghai 200072, PR China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Fanyu Meng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Mo Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Peng Miao
- Department of Neurology, Shanghai Tenth People's Hospital Tongji University School of Medicine, Shanghai 200072, PR China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| |
Collapse
|
44
|
Cao Y, Wang Z, Cao J, Mao X, Chen G, Zhao J. A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: Application to the detection of thrombin and the vascular endothelial growth factor. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2393-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
McVey C, Huang F, Elliott C, Cao C. Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosens Bioelectron 2017; 92:502-508. [DOI: 10.1016/j.bios.2016.10.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
|
46
|
Zhang H, Peng L, Li M, Ma J, Qi S, Chen H, Zhou L, Chen X. A label-free colorimetric biosensor for sensitive detection of vascular endothelial growth factor-165. Analyst 2017; 142:2419-2425. [PMID: 28561084 DOI: 10.1039/c7an00541e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive detection of a low abundant protein is essential for biomedical research and clinical diagnostics. Herein, we develop a label-free colorimetric biosensor for the sensitive detection of recombinant human vascular endothelial growth factor-165 (VEGF165). This biosensor consists of an aptamer-based hairpin probe, an assistant DNA-trigger duplex and a linear template. In the presence of VEGF165, the specific binding of VEGF165 with the aptamer-based hairpin probe results in the opening of a hairpin probe and the opened hairpin probe subsequently hybridizes with the single-stranded region of the assistant DNA-trigger duplex to initiate the strand displacement amplification (SDA) to yield abundant triggers. The released triggers can further function as the primers to anneal with the hairpin probe and lead to the opening of the hairpin structure, which subsequently hybridizes with the assistant DNA-trigger duplex to initiate the next round of SDA reaction and generates more triggers. Large amounts of triggers could be generated by the synergistic operation of dual SDA reaction, and the obtained triggers can initiate a new round of SDA reaction to yield numerous G-quadruplex DNAzymes, which subsequently catalyze the conversion of ABTS2- to ABTS˙- by H2O2 to yield a color change with the assistance of a cofactor hemin. In contrast, in the absence of target VEGF165, the hairpin probe, the assistant DNA-trigger duplex and the linear template can stably coexist in solution, and thus no color change is observed because no trigger can initiate SDA to generate the G-quadruplex DNAzyme. This biosensor has a low detection limit of 1.70 pM and a dynamic range over 3 orders of magnitude from 24.00 pM to 11.25 nM. Moreover, the biosensor shows excellent specificity toward the target VEGF165 and the entire reaction can be carried out in an isothermal manner without the involvement of a high precision thermal cycler, making the current assay extremely cost effective.
Collapse
Affiliation(s)
- Huige Zhang
- National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China. and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Liang Peng
- Facility Center of Life Science Research, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Maoxing Li
- Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Ji Ma
- Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Shengda Qi
- National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China. and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongli Chen
- National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China. and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Lei Zhou
- National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China. and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xingguo Chen
- National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China. and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
47
|
Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent. J Colloid Interface Sci 2017; 494:1-7. [DOI: 10.1016/j.jcis.2017.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
|
48
|
Hong CY, Wu SX, Li SH, Liang H, Chen S, Li J, Yang HH, Tan W. Semipermeable Functional DNA-Encapsulated Nanocapsules as Protective Bioreactors for Biosensing in Living Cells. Anal Chem 2017; 89:5389-5394. [DOI: 10.1021/acs.analchem.7b00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cheng-Yi Hong
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Department
of Chemistry and Department of Physiology and Functional Genomics,
Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Shu-Xian Wu
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shi-Hua Li
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hong Liang
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shan Chen
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Juan Li
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering and
College of Biology, Collaborative Innovation Center for Molecular
Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Huang-Hao Yang
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
Fujian Provincial Key Laboratory of Analysis and Detection Technology
for Food Safety, State Key Laboratory of Photocatalysis on Energy
and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Weihong Tan
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering and
College of Biology, Collaborative Innovation Center for Molecular
Engineering and Theranostics, Hunan University, Changsha 410082, China
- Department
of Chemistry and Department of Physiology and Functional Genomics,
Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
49
|
Yang J, Dou B, Yuan R, Xiang Y. Aptamer/Protein Proximity Binding-Triggered Molecular Machine for Amplified Electrochemical Sensing of Thrombin. Anal Chem 2017; 89:5138-5143. [PMID: 28393515 DOI: 10.1021/acs.analchem.7b00827] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of convenient and sensitive methods without involving any enzymes or complex nanomaterials for the monitoring of proteins is of great significance in disease diagnostics. In this work, we describe the validation of a new aptamer/protein proximity binding-triggered molecular machinery amplification strategy for sensitive electrochemical assay of thrombin in complex serum samples. The sensing interface is prepared by self-assembly of three-stranded DNA complexes on the gold electrode. The association of two distinct functional aptamers with different sites of thrombin triggers proximity binding-induced displacement of one of the short single-stranded DNAs (ssDNAs) from the surface-immobilized three-stranded DNA complexes, exposing a prelocked toehold domain to hybridize with a methylene blue (MB)-tagged fuel ssDNA strand (MB-DNA). Subsequent toehold-mediated strand displacement by the MB-DNA leads to the release and recycling of the aptamer/protein complexes and the function of the molecular machine. Eventually, a large number of MB-DNA strands are captured by the sensor surface, generating drastically amplified electrochemical responses from the MB tags for sensitive detection of thrombin. Our signal amplified sensor is completely enzyme-free and shows a dynamic range from 5 pM to 1 nM with a detection limit of 1.7 pM. Such sensor also has a high specificity for thrombin assay in serum samples. By changing the affinity probe pairs, the developed sensor can be readily expanded as a more general platform for sensitive detection of different types of proteins.
Collapse
Affiliation(s)
- Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
50
|
Liu X, Bing T, Shangguan D. Microbead-Based Platform for Multiplex Detection of DNA and Protein. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9462-9469. [PMID: 28248077 DOI: 10.1021/acsami.7b00418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a novel microbead-based detection platform as a simple and universal strategy for simultaneous determination of multiple biomolecules. This platform is composed of streptavidin coated uniform-sized polystyrene microbeads, dye and biotin-labeled ssDNA or aptamer probes, and quencher-labeled complementary sequences. By this method, upon target binding to the probes, quencher strand dissociation is triggered, which results in fluorescence reactivation of the microbead linked probes. The fluorescence variation is readily monitored by flow cytometry and with a high sensitivity. Explicitly, this microbead-based detection platform shows a high sensitivity for target DNA with a detection limit as low as 0.20 nM, alongside good selectivity from one-base mismatched DNA. This novel platform also shows good selectivity and high sensitivity for protein detection when aptamer is used as a probe. The detection limit for lysozyme is as low as 8.56 nM. Moreover, simultaneous detection of multiple targets has been achieved via incorporating different dye-labeled probes on the microbeads concurrently. We have also applied this developed strategy to the detection of target DNA in human serum. This strategy can be easily extended to other targets through simple probe and quencher variation.
Collapse
Affiliation(s)
- Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of the Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|