1
|
Zhu F, Zhao B, Hu B, Zhang Y, Xue B, Wang H, Chen Q. Review of available "extraction + purification" methods of natural ceramides and their feasibility for sewage sludge analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68022-68053. [PMID: 37147548 DOI: 10.1007/s11356-023-26900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Natural ceramide, a biologically active compound present in plants, has been used widely in food, cosmetics, and pharmaceutical industries. Abundant ceramide has been detected in sewage sludge, which has inspired the idea to recycle ceramide from it. Therefore, the methods of extracting, purifying, and detecting ceramides from plants were reviewed, with the aim to establish methods to get condensed ceramide from sludge. Ceramide extraction methods include traditional methods (maceration, reflux, and Soxhlet extraction) and green technologies (ultrasound-assisted, microwave-assisted, and supercritical fluid extraction). In the past two decades, more than 70% of the articles have used traditional methods. However, green extraction methods are gradually improved and showed high extraction efficiency with lower solvent consumed. The preferred technique for ceramide purification is chromatography. Common solvent systems include chloroform-methanol, n-hexane-ethyl acetate, petroleum ether-ethyl acetate, and petroleum ether-acetone. For structural determination of ceramide, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry are used in combination. Among quantitative analysis methods for ceramide, liquid chromatography-mass spectrometry was the most accurate. This review concludes that with our prilemenary experiment results it is feasible to apply the plant "extraction + purification" process of ceramide to sludge, but more optimization need to be performed to get better results.
Collapse
Affiliation(s)
- Fenfen Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bing Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bo Hu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Yuhui Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qian Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
2
|
Wang Z, Zhang L, Chen Y. HPTLC+SRES screening of pesticide for point-of-care application as shown with thiram in juice. Food Chem X 2023; 18:100670. [PMID: 37101421 PMCID: PMC10123129 DOI: 10.1016/j.fochx.2023.100670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
In this study, a HPTLC-platformed SERS detection was established for screening thiram in juice. After a simple extraction, the sample liquid was separated on HPTLC plates, which resulted in a specific zone for the analyte. Following infiltration with atomize water, the band of interest was easily scraped off and eluted. In parallel, a flexible and SERS-active substrate was fabricated by the in-situ synthesis of gold nanoparticles within cotton fabrics. Under optimized conditions, fingerprint-like signal at 1376 cm-1 of the analyte were easily recorded by a hand-held Raman spectrometer with enough LOD (0.5 mg/L), LOQ (0.9 mg/L) and reproducibility (<11.7%). The optimized screening system was further validated with pear, apple and mango juice by determining the spike-and-recovery rates (75.6 to 112.8%). It was demonstrated that this method could be a facile point-of-care testing system tailored for pesticide screening.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
- Corresponding author at: College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
3
|
Shiea J, Lin HJ, Bhat SM, Lee CY, Huang MZ, Ponnusamy VK, Cheng SC. Thin layer chromatography/desorption flame-induced atmospheric pressure chemical ionization/mass spectrometry for the analysis of volatile and semi-volatile mixtures. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9409. [PMID: 36194496 DOI: 10.1002/rcm.9409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Flame-induced atmospheric pressure chemical ionization (FAPCI) has been used to directly characterize chemical compounds on a glass rod and drug tablet surfaces. In this study, FAPCI was further applied to interface thin layer chromatography (TLC) and mass spectrometry (MS) for mixture analysis. METHODS A micro-sized oxyacetylene flame was generated using a small concentric tube system. Hot gas flow and primary reactive species from the micro-flame were directed toward a developed TLC gel plate to thermally desorb and ionize analytes on the gel surface. The resulting analyte ions subsequently entered the MS inlet for detection. RESULTS A 1-1.5-mm-wide light-brown line was observed on the TLC plate after the desorption FAPCI/MS (DFAPCI/MS) analysis, revealing that the gel surface withstood a high temperature from the impact of the micro-flame. Volatile and semi-volatile chemical compounds, including amine and amide standards, drugs, and aromatherapy oils, were successfully desorbed, ionized, and detected using this TLC/DFAPCI/MS. The limit of detection of TLC-DFAPCI/MS was determined to be 5 ng/spot for dibenzylamine and ethenzamide. CONCLUSIONS TLC/DFAPCI/MS is one of the simplest TLC-MS interfaces showing the advantages such as low costs and an easy set up. The technique is useful for characterizing thermally stable volatile and semi-volatile compounds in a mixture.
Collapse
Affiliation(s)
- Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsing-Jung Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | - Chi-Yang Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Min-Zong Huang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sy-Chyi Cheng
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Wang X, Gao M, Zhang X. Microliter-level multi-channel fraction collector for high-throughput separation system. J Chromatogr A 2021; 1656:462535. [PMID: 34537660 DOI: 10.1016/j.chroma.2021.462535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
High-performance liquid chromatography (HPLC) plays an important role in analytical applications. To perform high-throughput analysis, especially multi-channel separation, numerous fractions need to be collected. However, multi-channel fraction collector has not been commercialized. Therefore, here we present a multi-channel fraction collector fabricated by 3D-printing technology that can adapt to various kinds of HPLC applications. The collector can perform high accuracy microliter-level fraction cutting for narrow-bore or capillary columns as well as conventional columns. Hundreds of fractions can be collected in a single LC run within 1 hour to meet the demands of high-throughput separation. The collector mainly consists of several environmental-friendly 3D-printed parts and other parts are also easy to purchase, making it possible for researchers to construct it in any kind of lab at a very low price. The automated integrated controller and programs are also introduced to fit different collecting and further analysis requirements. In this work, the structure, functions and automation process of the collector are described in detail, which offers a powerful tool for further development on high-throughput separation.
Collapse
Affiliation(s)
- Xuantang Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Zhang P, Zhang L, Shi J, Zhang N, Li Y, Wu T, Cheng Z. TLC-electrostatic field induced spray ionization-MS analysis of diverse structural skeletons and its coupling with TLC bioautography for characterization of lipase inhibitory components in American ginseng. J Pharm Biomed Anal 2019; 174:486-494. [DOI: 10.1016/j.jpba.2019.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
|
6
|
Simple interface for scanning chemical compounds on developed thin layer chromatography plates using electrospray ionization mass spectrometry. Anal Chim Acta 2019; 1049:1-9. [DOI: 10.1016/j.aca.2018.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
|
7
|
HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese. J Food Drug Anal 2018; 26:688-695. [PMID: 29567239 PMCID: PMC9322226 DOI: 10.1016/j.jfda.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022] Open
Abstract
The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC) method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ ammonia (6/4/1 v/v/v) as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations) of surface enhanced Raman spectroscopy (SERS) measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD) scanning at 380</400 nm offered satisfactory quantitative performances (LOD 9 ng/zone, LOQ 17 ng/zone, linearity 0.9996 and %RSD 6.7). Including a quick extraction/cleanup step, the established method was successfully validated with different cheese samples, both qualitatively (straightforward confirmation) and quantitatively (recovery rates from 83.7 to 108.5%). Beyond this application, HPTLC-FLD-SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity.
Collapse
|
8
|
Determination of elemental composition of metals using ambient organic mass spectrometry. Anal Chim Acta 2017; 968:50-57. [PMID: 28395774 DOI: 10.1016/j.aca.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS.
Collapse
|
9
|
Jia B, Zhang S, Yan L, He S, Liu B, Shen H, Yang P. Self-aspiration sampling extractive electrospray ionization mass spectrometry (EESI-MS) for high-throughput analysis of liquid samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:56-61. [PMID: 27539416 DOI: 10.1002/rcm.7616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Extractive electrospray ionization mass spectrometry (EESI-MS) was invented as a typical ambient mass spectrometry method (AMS) and has been used for analyzing complex liquid samples. Here, we designed a Venturi effect-based self-aspiration sampling device and applied it to the EESI-MS for high-throughput analysis of liquid sample. METHODS A special concentric nebulizer was designed and employed to produce a suction force for the direct aspiration of liquid samples, followed by ionization and detection. This sample aspiration process was explained and optimized using computational fluid dynamics (CFD) analysis. Experiment data were recorded to exhibit the sensitivity, memory effect, inter-day reproducibility, throughput, and applicability of the self-aspiration sampling EESI-MS. RESULTS The limit of detection (LOD) of this method was determined as 4.5 × 10(-10) g/mL (S/N = 3) for caffeine, and the sample throughput and relative standard deviation (RSD) for full scan mode can reach 0.67 samples/s and 4.76%, respectively. Even for MS/MS mode, the frequency can still be kept at 0.4 samples/s (RSD = 4.71%). Inter-day RSD examined in 1 week was below 10% for the signal of characteristic fragment ions of reserpine. Moreover, based on this method, the amount of caffeine in instant coffee was determined as 4.7%. This device was also proven to be suitable for the protein/peptide analysis. CONCLUSIONS These experiment results, especially the amazing results on sample throughput and inter-day RSD, suggest that we provide a valuable device which can be used for the direct high-throughput qualitative/quantitative mass spectrometry analysis of real liquid samples in ambient. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bin Jia
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Shuai Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Shoubo He
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Baohong Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
10
|
Laser desorption-ion mobility spectrometry as a useful tool for imaging of thin layer chromatography surface. J Chromatogr A 2016; 1459:145-151. [DOI: 10.1016/j.chroma.2016.06.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
11
|
Flowing atmospheric pressure afterglow combined with laser ablation for direct analysis of compounds separated by thin-layer chromatography. Anal Bioanal Chem 2015; 408:815-23. [PMID: 26563110 PMCID: PMC4709388 DOI: 10.1007/s00216-015-9165-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Abstract
A thin-layer chromatography-mass spectrometry (TLC-MS) setup for characterization of low molecular weight compounds separated on standard TLC plates has been constructed. This new approach successfully combines TLC separation, laser ablation, and ionization using flowing atmospheric pressure afterglow (FAPA) source. For the laser ablation, a low-priced 445-nm continuous-wave diode laser pointer, with a power of 1 W, was used. The combination of the simple, low-budget laser pointer and the FAPA ion source has made this experimental arrangement broadly available, also for small laboratories. The approach was successfully applied for the characterization of low molecular weight compounds separated on TLC plates, such as a mixture of pyrazole derivatives, alkaloids (nicotine and sparteine), and an extract from a drug tablet consisting of paracetamol, propyphenazone, and caffeine. The laser pointer used was capable of ablating organic compounds without the need of application of any additional substances (matrices, staining, etc.) on the TLC spots. The detection limit of the proposed method was estimated to be 35 ng/cm2 of a pyrazole derivative. Schematic illustration of new TLC-FAPA setup with diode laser ablation ![]()
Collapse
|
12
|
Ghorai S, Seneviratne CA, Murray KK. Tip-enhanced laser ablation sample transfer for biomolecule mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:63-70. [PMID: 25287125 PMCID: PMC4276512 DOI: 10.1007/s13361-014-1005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Atomic force microscope (AFM) tip-enhanced laser ablation was used to transfer molecules from thin films to a suspended silver wire for off-line mass spectrometry using laser desorption ionization (LDI) and matrix-assisted laser desorption ionization (MALDI). An AFM with a 30 nm radius gold-coated silicon tip was used to image the sample and to hold the tip 15 nm from the surface for material removal using a 355 nm Nd:YAG laser. The ablated material was captured on a silver wire that was held 300 μm vertically and 100 μm horizontally from the tip. For the small molecules anthracene and rhodamine 6G, the wire was cut and affixed to a metal target using double-sided conductive tape and analyzed by LDI using a commercial laser desorption time-of-flight mass spectrometer. Approximately 100 fg of material was ablated from each of the 1 μm ablation spots and transferred with approximately 3% efficiency. For larger polypeptide molecules angiotensin II and bovine insulin, the captured material was dissolved in saturated matrix solution and deposited on a target for MALDI analysis.
Collapse
Affiliation(s)
- Suman Ghorai
- Louisiana State University, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | | | - Kermit K. Murray
- Louisiana State University, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
13
|
Siegel C, Hochgatterer A, Dorner TE. Contributions of ambient assisted living for health and quality of life in the elderly and care services--a qualitative analysis from the experts' perspective of care service professionals. BMC Geriatr 2014; 14:112. [PMID: 25326149 PMCID: PMC4210571 DOI: 10.1186/1471-2318-14-112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Background Because of the demographic change in industrial countries new technical solutions for the independent living of elderly will become important in the next years. Ambient Assisted Living seeks to address the upcoming challenges by providing technical aids for elderly and care givers. Therefore it is crucial to understand how those socio-technical solutions can address their needs and quality of life (QOL). The aim of this study was to analyse the main needs of dependent elderly and to investigate how different solutions can contribute to health and quality of life. Methods A qualitative study design consisting of interviews with 11 professionals of geriatric care organisations was chosen. The data analysis was done by applying the qualitative content analysis by Philipp Mayring. The analysis was based on the basic principle of the bio-psycho-social model of health Results Ambient Assisted Living solutions and assistive technologies can have positive impacts on different dimensions of health and quality of life. The needs and problems of elderly can be addressed by applying appropriate solutions which influence the physical, mental and social dimensions of quality of life. There are also benefits for social care providers, their staff and caring relatives of impaired elderly. Ambient Assisted Living solutions can also be used as a facilitator for operational optimization of care services. Conclusions Solutions for telemedicine and telecare which are connected to Ambient Assisted Living solutions will have the biggest positive impact on care giving services. Also simple technical aids can be beneficial for elderly to enhance QOL by enabling autonomy in their familiar surroundings.
Collapse
Affiliation(s)
- Christian Siegel
- Medical University of Vienna, Centre for Public Health, Institute of Social Medicine, Kinderspitalgasse 15/1, Vienna 1090, Austria.
| | | | | |
Collapse
|
14
|
Abstract
AbstractThe most important advances in planar chromatography published between November 1, 2011 and November 1, 2013 are reviewed in this paper. Included are an introduction to the current status of the field; student experiments, books, and reviews; theory and fundamental studies; apparatus and techniques for sample preparation and TLC separations (sample application and plate development with the mobile phase); detection and identification of separated zones (chemical and biological detection, TLC/mass spectrometry, and TLC coupled with other spectrometric methods); techniques and instruments for quantitative analysis; preparative layer chromatography; and thin layer radiochromatography. Numerous applications to a great number of compound types and sample matrices are presented in all sections of the review.
Collapse
|
15
|
Flanigan P, Levis R. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:229-256. [PMID: 25014343 DOI: 10.1146/annurev-anchem-071213-020343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.
Collapse
Affiliation(s)
- Paul Flanigan
- Center for Advanced Photonics Research, Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122; ,
| | | |
Collapse
|
16
|
Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 2013; 86:233-49. [PMID: 24308499 DOI: 10.1021/ac4038569] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University , Kalamazoo, Michigan 49008-5413, United States
| | | | | | | | | |
Collapse
|