1
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
2
|
Zhu X, Liang T, Tang D. A cerium-doped tungsten trioxide-functionalized sensing platform for photoelectrochemical detection of ascorbic acid with high sensitivity. Analyst 2024; 149:5206-5212. [PMID: 39292147 DOI: 10.1039/d4an01165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A highly efficient photoelectrochemical (PEC) strategy was proposed for the determination of ascorbic acid (AA). Cerium-doped tungsten trioxide (Ce-WO3) microrods were synthesized by a hydrothermal method and further characterized through transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. Thereafter, they were deposited onto a cleaned fluorine-doped tin oxide (FTO) glass forming the working electrode as the photoactive material. Under strong visible light irradiation, the resulting PEC sensing platform generated the corresponding electron-hole pairs, converting light signals into electrical signals. Ascorbic acid served as a good electron donor to trap holes for improvement of photocurrent responses on Ce-WO3/FTO. Besides, the strength of photocurrent signals versus the logarithm of ascorbic acid concentration showed a good linearity over the ascorbic acid concentration range of 100-4000 nM and the limit of detection (LOD) was estimated to be 28.6 nM. Importantly, this PEC sensor had a fast response, high sensitivity, and distinguished selectivity for detecting ascorbic acid. In addition, it also had the features of being simple to fabricate, low production cost, and portable, which made it a promising means of ascorbic acid determination.
Collapse
Affiliation(s)
- Xueying Zhu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Tikai Liang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Çakıroğlu B. Graphene quantum dots on TiO 2 nanotubes as a light-assisted peroxidase nanozyme. Mikrochim Acta 2024; 191:268. [PMID: 38627271 PMCID: PMC11599415 DOI: 10.1007/s00604-024-06341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Hybrid nanozyme graphene quantum dots (GQDs) deposited TiO2 nanotubes (NTs) on titanium foil (Ti/TiO2 NTs-GQDs) were manufactured by bestowing the hybrid with the advantageous porous morphology, surface valence states, high surface area, and copious active sites. The peroxidase-like activity was investigated through the catalytic oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which can be visualized by the eyes. TiO2 NTs and GQDs comprising oxygen-containing functional groups can oxidize TMB in the presence of H2O2 by mimicking peroxidase enzymes. The peroxidase-mimicking activity of hybrid nanozyme was significantly escalated by introducing light illumination due to the photosensitive features of the hybrid material. The peroxidase-like activity of Ti/TiO2 NTs-GQDs enabled H2O2 determination over the linear range of 7 to 250 μM, with a LOD of 2.1 µM. The satisfying peroxidase activity is possibly due to the unimpeded access of H2O2 to the catalyst's active sites. The porous morphology provides the easy channeling of reactants and products. The periodic structure of the material also gave rise to acceptable reproducibility. Without material functionalization, the Ti/TiO2 NTs-GQDs can be a promising substitute for peroxidases for H2O2 detection.
Collapse
Affiliation(s)
- Bekir Çakıroğlu
- Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187, Sakarya, Türkiye.
| |
Collapse
|
4
|
Deng S, Men X, Hu M, Liang X, Dai Y, Zhan Z, Huang Z, Chen H, Dong Z. Ratiometric fluorescence sensing NADH using AIE-dots transducers at the point of care. Biosens Bioelectron 2024; 250:116082. [PMID: 38308942 DOI: 10.1016/j.bios.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) has a strong impact on physiological metabolism, and its concentration is related to metabolic and neurodegenerative diseases. A more reliable and accurate detection method for NADH quantitation is needed for early disease diagnosis and point-of-care testing. Aggregation-induced emission (AIE) materials are widely used to improve the sensitivity in analytes assays due to their anti-aggregation-caused quenching property. Here we developed TPA-BQD-Py AIE-dots transducers and evaluated its performance in NADH detection. The NADH concentration-dependent ratiometric sensing was based on electron transfer from TPA-BQD-Py AIE-dots to NADH with variable fluorescence intensity at 584 nm and 470 nm, resulting in high sensitivity (limit of detection at 110 nM), photostability, selectivity, and a rapid and reversible response. We further developed the application of TPA-BQD-Py AIE-dots transducers in in vivo NADH imaging using a smartphone and digital camera, respectively, demonstrating the potential for NADH point-of-care testing.
Collapse
Affiliation(s)
- Sile Deng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Xiaoju Men
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha, 410219, China
| | - Muhua Hu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Xiao Liang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yujuan Dai
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhengkun Zhan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, Hunan, China.
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
5
|
Wu SH, Zhang SC, Kang YH, Wang YF, Duan ZM, Jing MJ, Zhao WW, Chen HY, Xu JJ. Aggregation-Enabled Electrochemistry in Confined Nanopore Capable of Complementary Faradaic and Non-Faradaic Detection. NANO LETTERS 2024; 24:4241-4247. [PMID: 38546270 DOI: 10.1021/acs.nanolett.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemistry that empowers innovative nanoscopic analysis has long been pursued. Here, the concept of aggregation-enabled electrochemistry (AEE) in a confined nanopore is proposed and devised by reactive oxygen species (ROS)-responsive aggregation of CdS quantum dots (QDs) within a functional nanopipette. Complementary Faradaic and non-Faradaic operations of the CdS QDs aggregate could be conducted to simultaneously induce the signal-on of the photocurrents and the signal-off of the ionic signals. Such a rationale permits the cross-checking of the mutually corroborated signals and thus delivers more reliable results for single-cell ROS analysis. Combined with the rich biomatter-light interplay, the concept of AEE can be extended to other stimuli-responsive aggregations for electrochemical innovations.
Collapse
Affiliation(s)
- Si-Hao Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuang-Chen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Han Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Feng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zu-Ming Duan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Sehrish A, Manzoor R, Lu Y. Ultrathin porous PdCu metallenezymes as oxidase mimics for colorimetric analysis. Mikrochim Acta 2023; 191:13. [PMID: 38081983 DOI: 10.1007/s00604-023-06102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Ultrathin porous and highly curved two-dimensional PdCu alloy metallene are shown to be highly efficient oxidase mimics. Serving as intrinsic oxidase mimic, the ultrathin porous structure of the PdCu metallenezymes could effectively utilize all the Pd atoms of the metallenezymes during catalytic reactions. By using the oxidation capability of 3,3'5,5'-tetramethylbenzidine as distinctive chromogenic substrate, the PdCu metallenezymes was used as oxidase-like mimics for determination of total antioxidant capacity (TAC) of vitamin C containing real products including fresh orange juice, commercial beverages, Vitamin C tablets and dermo-cosmetic products. AAP was hydrolyzed using ALP to generate AA and the corresponding ALP activity was successfully detected in the 0-100 U/L range with a lowest detection limit of 0.9 U/L. This study demonstrates the significant catalytic performance and oxidase-like activity of PdCu metallene nanozyme providing a strategy to develop a TAC assay for the assessment of antioxidant food quality as well as oxidative stress in skin and health care products.
Collapse
Affiliation(s)
- Aniqa Sehrish
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Romana Manzoor
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
7
|
Fan C, Lai J, Shao Z, Zhou X, Liu Y, Lin Y, Ding L, Wang K. Target-Induced Photocurrent-Polarity-Switching PEC Sensing Platform Based on In Situ Generation of Oxygen Vacancy-Modulated Energy Band Structures. Anal Chem 2023; 95:15049-15056. [PMID: 37755312 DOI: 10.1021/acs.analchem.3c03111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The polarity of the photocurrent can be modulated by tunable bipolar photoelectrochemical (PEC) behavior, which is anticipated to address the issues of high background signal caused by traditional unidirectional increasing/decreasing response and false-positive/false-negative problems. Here, a new approach is suggested for the first time, which employs a target-induced enzyme-catalyzed reaction and in situ oxygen vacancy (OV) generation to achieve heterojunction photocurrent switching for highly sensitive detection of alkaline phosphatase (ALP). Among them, the ALP can catalyze the decomposition of ascorbic acid phosphate to produce ascorbic acid, which not only acts as an electron donor to change the redox environment but also acts as a reducing agent to introduce OVs into BiOBr semiconductors in cooperation with illumination. The introduction of vacancies can effectively modulate the energy band structure of BiOBr, while with the change of redox conditions, the transfer path of photogenerated carriers is changed, thus realizing the switching of photocurrents, which leads to its use in the construction of a negative-background anti-interference PEC sensing platform, achieving a wide linear range from 0.005 to 500 U·L-1 with a low detection limit of 0.0017 U·L-1. In conclusion, the photocurrent switching operation of this system is jointly regulated by chemistry, optics, and carrier motion, which provides a new idea for the construction of a PEC sensing platform based on photocurrent polarity switching.
Collapse
Affiliation(s)
- Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiying Shao
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuhang Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
8
|
Xu Y, Zhang T, Li Z, Liu X, Zhu Y, Zhao W, Chen H, Xu J. Photoelectrochemical Cytosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Tian‐Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiang‐Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuan‐Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Zhao X, Li Z, Ding Z, Wang S, Lu Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J Colloid Interface Sci 2022; 626:296-304. [DOI: 10.1016/j.jcis.2022.06.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 10/31/2022]
|
10
|
Jia Y, Zhang N, Du Y, Ren X, Ma H, Wu D, Fan D, Wei Q, Ju H. Nanoarrays-propped in situ photoelectrochemical system for microRNA detection. Biosens Bioelectron 2022; 210:114291. [PMID: 35460967 DOI: 10.1016/j.bios.2022.114291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
The exploitation of accurate and robust photoelectrochemical (PEC) approaches in whole biosensing community counts on the smooth electrons transport and delicate biological design. An aptasensor using depositional rutile titanium dioxide/bismuth vanadate nanoarrays (TiO2/BiVO4 NAs) as photoanode generator and strand-displacement model as nucleic acid frame was developed for microRNA-155 (miRNA-155) detection root in original idea. Photoanode was fabricated via a three-step overlayer deposition procedure including hydrothermal method, electrodeposition and ion beam sputtering. With a sufficient dense of oriented arrays, it provided a solid substrate and fast electronic kinetics reaction during host-guest recognition. In situ yielding electron donors were integrated into the PEC system to provide the most accurate quantitative analysis. The nanoarrays-triggered PEC platform opens another potential perspective in biosensing.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yu Du
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
11
|
Li Z, Lu J, Wei W, Tao M, Wang Z, Dai Z. Recent advances in electron manipulation of nanomaterials for photoelectrochemical biosensors. Chem Commun (Camb) 2022; 58:12418-12430. [DOI: 10.1039/d2cc04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article discusses the recent advances and strategies of building photoelectrochemical (PEC) biosensors from the perspective of regulating the electron transfer of nanomaterials.
Collapse
Affiliation(s)
- Zijun Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiarui Lu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wanting Wei
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Tao
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
12
|
A visible and near-infrared light dual responsive "signal-off" and "signal-on" photoelectrochemical aptasensor for prostate-specific antigen. Biosens Bioelectron 2021; 202:113905. [PMID: 35033829 DOI: 10.1016/j.bios.2021.113905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
A visible and near-infrared light dual responsive "signal-off" and "signal-on" photoelectrochemical aptasensor was constructed for determining prostate-specific antigen (PSA) based on MoS2 nanoflowers and gold nanobipyramids. The dual responsive photoelectrochemical aptasensor can provide accurate results for PSA determination. For the photoelectrochemical aptasensor fabrication, amino-group functionalized aptamers were immobilized on a MoS2 nanoflowers modified glassy carbon electrode surface for the specific recognition, and thus to achieve a "signal-off" aptasensor for PSA under visible light illumination. Subsequently, gold nanobipyramids integrated with thiol-functional aptamer were introduced to the "signal-off" aptasensing interface after PSA recognition. Under excitation with near-infrared light at 808 nm, the photocurrent response can be amplified significantly due to the excellent conductivity and local surface plasmon resonance effect of gold nanobipyramids, thus to producing a "signal-on" model for determining PSA. Under the optimized conditions, the dual-responsive photoelectrochemical aptasensor shows a linear response to the logarithm of PSA concentration in the range of 0.005-100 ng/mL. The detection limits for PSA determination with a "signal-off" or a "signal-on" mode are 1.75 pg mL-1 and 0.39 pg mL-1, respectively. The dual-responsive photoelectrochemical aptasensor was also employed for determining PSA in clinical serum samples with satisfactory selectivity and excellent accuracy.
Collapse
|
13
|
Kassahun GS, Griveau S, Bedioui F, Slim C. Input of Electroanalytical Methods for the Determination of Diclofenac: A Review of Recent Trends and Developments. ChemElectroChem 2021. [DOI: 10.1002/celc.202100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Getnet Sewnet Kassahun
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Sophie Griveau
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Fethi Bedioui
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Cyrine Slim
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
14
|
Chen Y, Zhou M, Yang J, Tan Y, Deng W, Xie Q. Tailoring the Photoelectrochemical Activity of Hexametaphosphate-Capped CdS Quantum Dots by Ca 2+-Triggered Surface Charge Regulation: A New Signaling Strategy for Sensitive Immunoassay. Anal Chem 2021; 93:13783-13790. [PMID: 34606246 DOI: 10.1021/acs.analchem.1c02284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of efficient signaling strategies is highly important for photoelectrochemical (PEC) immunoassay. We report here a new and efficient strategy for sensitive PEC immunoassay by tailoring the electrostatic interaction between the photoactive material and the electron donor. The photoelectric conversion of hexametaphosphate (HMP)-capped CdS quantum dots (QDs) in Na2SO3 solution is significantly boosted after Ca2+ incubation. The negative surface charges on CdS@HMP QDs decrease because of the complexation reaction between HMP and Ca2+, and the electrostatic repulsion between CdS@HMP QDs and electron donor (SO32-) becomes weak accordingly, leading to an improved electron-hole separation efficiency. Inspired by the PEC response of CdS@HMP QDs to Ca2+, a novel "signal-on" PEC immunoassay platform is established by employing CaCO3 nanoparticles as labels. By regulating the surface charge of CdS@HMP QDs with in situ-generated Ca2+ from CaCO3 labels, sensitive detection of the carcinoembryonic antigen (CEA) is achieved. The linear detection range is 0.005-50 ng mL-1 and the detection limit is 1 pg mL-1 for CEA detection. Our work not only provides a facile route to tailor the photoelectric conversion but also lays the foundation for sensitive PEC immunoassay by simply regulating the surface charge of photoactive materials.
Collapse
Affiliation(s)
- Yanqun Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Min Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinhua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
15
|
Methylene blue embedded duplex DNA as an efficient signal stimulator of petal-like BiVO 4 for ultrasensitive photoelectrochemical bioassay. Anal Chim Acta 2021; 1182:338945. [PMID: 34602198 DOI: 10.1016/j.aca.2021.338945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Conventionally, the photoelectrochemistry relies on freely diffusive signal molecules in solution to stimulate the photocurrent output, leading to limited sensing strategies. Herein, we showcase the methylene blue (MB) embedded duplex DNA for efficient signal stimuli and its application for ultrasensitive photoelectrochemical (PEC) bioassay. Specifically, the MB embedded duplex DNA scavenged the photogenerated holes of petal-like BiVO4 efficiently, and thus greatly augmented the anodic photocurrent output. Taking the miRNA-21 as a model target, whose biorecognition reaction was aided by the rolling circle amplification (RCA) reaction to finally produce an amplified amount of double-stranded DNA (dsDNA) with embedded MB on the photoelectrode's surface, a "label-free" and "signal-on" PEC biosensing platform was implemented with ultra-sensitivity and high selectivity. The proposed strategy could detect miRNA-21 in the concentration range of 5.0 fM to 10 nM, with the detection limit as low as 0.3 fM. This work opens up the utilization of redox substance intercalated duplex DNA for an efficient signal stimulator, which hints the prospect of other more intercalators embedded DNA for versatile biosensing purposes. Importantly, considering the large quantities of bioreactions that involve duplex DNA as reactants/products, the developed signal transduction strategy may further find wide applications in bioanalysis for targeting more analytes.
Collapse
|
16
|
Dong W, Li Z, Wen W, Feng S, Zhang Y, Wen G. PCN-222@g-C 3N 4 cathodic materials for "signal-off" photoelectrochemical sensing of kanamycin sulfate. RSC Adv 2021; 11:28320-28325. [PMID: 35480742 PMCID: PMC9038066 DOI: 10.1039/d1ra04275k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
A novel cathodic photoelectrochemical (PEC) sensor was developed for the ultrasensitive detection of kanamycin sulfate (KAM) based on the g-C3N4 coupled zirconium-based porphyrinic metal-organic framework (PCN-222). Photocathodes made by double n-type semiconductors, which was attributed to the transfer of electrons and holes from g-C3N4 broad band to PCN-222 with narrow band gap. The photocurrent decreased when KAM was added, which was conducive to the construction of the PEC sensor. Then, the PCN-222@g-C3N4 was used as a photosensitive platform to construct a label-free strategy and ultrasensitive detection of KAM with wide linear range from 1 to 1000 nM and a low detection limit of 0.127 nM. Moreover, this sensing platform shows good selectivity, favourable reproducibility and brilliant stability. The reported sensors provided great potential for the detection of KAM in actual samples.
Collapse
Affiliation(s)
- Wenxia Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University Taiyuan 030006 China
| | - Zhongping Li
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University Taiyuan 030006 China
| | - Wen Wen
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University Taiyuan 030006 China
| | - Sisi Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University Taiyuan Shanxi 030006 China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Guangming Wen
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University Taiyuan 030006 China
- School of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 China
| |
Collapse
|
17
|
Huang C, Liu Y, Sun Y, Wang F, Ge S, Yu J. Cathode-Anode Spatial Division Photoelectrochemical Platform Based on a One-Step DNA Walker for Monitoring of miRNA-21. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35389-35396. [PMID: 34291635 DOI: 10.1021/acsami.1c08416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoelectrochemical (PEC) biosensors carried out the whole reaction process in the same solution, which would limit the sensitivity and selectivity of detection in the sensing system. Herein, we reported a promising new cathode-anode spatial division PEC platform based on the two-electrode synergistic enhancement strategy. With the photoanode and photocathode integrated in the same current circuit, the platform exhibited an increased photocurrent response, as well as an improved anti-interference ability led by separating the two electrodes spatially. In this proposal, red light-driven AgInS2 nanoparticles (NPs) served as the photoanode to build biometric steps and amplify the signal, whereas p-type PbS quantum dots were selected as the photocathode to increase the signal. With the participation of alkaline phosphatase (ALP) labeled on Au NPs-DNA, ascorbic acid 2-phosphate was catalyzed to produce ascorbic acid as an electron donor, resulting in the enhancement of the PEC signal. Interestingly, in the presence of miRNA-21 and T7 Exo, the one-step DNA walker amplification can be triggered to reduce the PEC signal by releasing ALP-Au NP-DNA. The constructed PEC biosensor exhibited a detection limit of as low as 3.4 fM for miRNA-21, which was expected to be applied to early clinical diagnosis. Also, we believe that the proposed cathode-anode spatial division PEC platform can open up a new view for the establishment of other types of PEC biosensors.
Collapse
Affiliation(s)
- Chuan Huang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Yina Sun
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
18
|
Chen G, Qin Y, Jiao L, Huang J, Wu Y, Hu L, Gu W, Xu D, Zhu C. Nanozyme-Activated Synergistic Amplification for Ultrasensitive Photoelectrochemical Immunoassay. Anal Chem 2021; 93:6881-6888. [PMID: 33886279 DOI: 10.1021/acs.analchem.1c01217] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
At present, enzyme-mediated signal amplification strategies have been widely applied in photoelectrochemical (PEC) biosensing systems, while the introduction of natural enzymes onto the surface of photoelectrodes inevitably obstructs the electron transfer due to their insulating properties as proteins, leading to severe damage to photocurrent. In this work, the PdPt bimetallic nanozymes with the efficient peroxidase-like activity were used as alternatives to natural enzymes and amplified PEC biosensing signals via their efficient enzymatic reaction and remarkable enhancement in photocurrent. As a result, photoactive CdS nanorods modified with PdPt bimetallic nanozymes showed a boosted PEC performance compared with the pristine CdS nanorods due to the localized surface plasmon resonance effect and Schottky junction. On the basis of the as-prepared CdS/PdPt photoelectrode, a sensitive split-type glucose oxidase-mediated PEC immunoassay for carcinoembryonic antigen (CEA) detection was successfully constructed. Along with the sandwich immunocomplexing, the subsequently produced hydrogen peroxide (H2O2) can oxidize 4-chloro-1-naphthol into insoluble precipitates to inhibit photocurrent and simultaneously trigger the bio-etching of CdS to further restrain photocurrent signals due to the excellent peroxidase-mimicking activity of PdPt nanozymes. Owing to the synergistic signal amplification fulfilled by PdPt nanozymes, an ultrasensitive immunoassay of CEA was realized with a wider linear range from 1 to 5000 pg/mL and a low detection limit of 0.21 pg/mL, opening a new avenue for building ultrasensitive PEC biosensors with nanozymes.
Collapse
Affiliation(s)
- Guojuan Chen
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.,School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jiajia Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Dacheng Xu
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
19
|
DNA-targeted formation and catalytic reactions of DNAzymes for label-free ratiometric electrochemiluminescence biosensing. Talanta 2021; 225:121964. [PMID: 33592718 DOI: 10.1016/j.talanta.2020.121964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/18/2023]
Abstract
A label-free ratiometric electrochemiluminescence (ECL) sensing strategy for the sensitive detection of target DNA (T-DNA) was proposed on the basis of G-quadruplex/hemin-regulated ECL emissions of CdS quantum dots (QDs) and luminol with their common coreactant of H2O2. The ECL biosensor was constructed through stepwise assemblies of CdS QDs and hairpin DNA (H-DNA) on a glassy carbon electrode, and subsequent introduction of T-DNA resulted in the development of G-quadruplex/hemin DNAzymes via the specific recognition of T-DNA and H-DNA in the presence of hemin and K+ ions. The formed DNAzymes not only prompted the catalytic oxidation of hydroquinone followed by deposition of insoluble oxidation oligomers on the electrode surface to attenuate the cathodic ECL emission of CdS QDs but also triggered the catalytic oxidation of luminol to enhance the anodic ECL emission. The label-free ratiometric ECL biosensor for the detection of T-DNA showed a wide response range from 1 to 10,000 fM (10-15 M) with a low detection limit of 0.2 fM and exhibited excellent selectivity against mismatched base sequences. This work provides a reliable and sensitive sensing platform for the detection of targets in analytical community by means of rational design of DNA sequences.
Collapse
|
20
|
Koyappayil A, Lee MH. Ultrasensitive Materials for Electrochemical Biosensor Labels. SENSORS 2020; 21:s21010089. [PMID: 33375629 PMCID: PMC7796367 DOI: 10.3390/s21010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Since the fabrication of the first electrochemical biosensor by Leland C. Clark in 1956, various labeled and label-free sensors have been reported for the detection of biomolecules. Labels such as nanoparticles, enzymes, Quantum dots, redox-active molecules, low dimensional carbon materials, etc. have been employed for the detection of biomolecules. Because of the absence of cross-reaction and highly selective detection, labeled biosensors are advantageous and preferred over label-free biosensors. The biosensors with labels depend mainly on optical, magnetic, electrical, and mechanical principles. Labels combined with electrochemical techniques resulted in the selective and sensitive determination of biomolecules. The present review focuses on categorizing the advancement and advantages of different labeling methods applied simultaneously with the electrochemical techniques in the past few decades.
Collapse
Affiliation(s)
| | - Min-Ho Lee
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
21
|
Liu S, Jia Y, Dong H, Yu X, Zhang DP, Ren X, Li Y, Wei Q. Intramolecular Photoelectrochemical System Using Tyrosine-Modified Antibody-Targeted Peptide as Electron Donor for Detection of Biomarkers. Anal Chem 2020; 92:10935-10939. [PMID: 32806903 DOI: 10.1021/acs.analchem.0c02804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An intramolecular photoelectrochemical (PEC) system is designed from the novel electron donor YYYHWRGWV (Y3-H) peptide ligand for the first time. The bifunctional nonapeptide cannot only rely on the HWRGWV sequence as a site-oriented immobilizer to recognize the crystallizable fragment (Fc) domains of the antibody but also acts as electron donors for PEC generation via three tyrosine (Y) of the N-terminal. The Bi2WO6/AgInS2 heterojunction with a significant visible-light absorption is utilized as a photoelectric generator, and the motivation is ascribed to a proven proposition, namely, that short-wavelength illuminant radiates proteins, causing a decline in bioactivity of immune protein. An innovative biosensor is fabricated using the above strategies for the detection of CYFRA21-1, a biomarker of squamous cell lung carcinoma. This sort of PEC-based sensing platform shows convincing experimental data and could be an effective candidate for clinical application in the future due to their extremely skillful conception.
Collapse
Affiliation(s)
- Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.,Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiaodong Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Dao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
22
|
Dai P, Ke J, Xie C, Wei L, Zhang Y, He Y, Chen L, Jin J. An off-on electrochemiluminescence detection for microRNAs based on TiO 2 nanotubes sensitized with gold nanoparticles as enhanced emitters. Anal Bioanal Chem 2020; 412:5779-5787. [PMID: 32648106 DOI: 10.1007/s00216-020-02800-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 11/28/2022]
Abstract
A sensitive electrochemiluminescence (ECL) assay for microRNAs (miRNAs) based on a semiconductor nanomaterial sensitized with noble-metal Au nanoparticles (NPs) is successfully developed. TiO2 nanotubes (NTs) were equipped with Au NPs to obtain an enhanced ECL emitter. Then, an ECL assay for miRNA-21 was fabricated, which was based on the use of probe 2 DNA-functionalized Pt/PAMAM nanocomposites (NCs) assembled on the surface of Au/TiO2 NT conjugate via DNA hybridization between probe 1 DNA and capture DNA. The Pt/PAMAM NCs act as an ECL quencher of Au/TiO2 NTs via resonance energy transfer. After the binding of target miRNA-21 and the capture DNA, the Pt/PAMAM NCs were released and the ECL signal was recovered. An "off-on" ECL assay was achieved with a linear response from 0.01 to 10,000 pM. Finally, this method has been validated to be sensitive and specific for miRNAs in human serum samples. The ECL enhancement strategy opens a new way for fabricating various sensitive biosensors. Graphical abstract A sensitive "off-on" electrochemiluminescence analysis method was developed, which combined Au NP-enhanced ECL emission of TiO2 nanotubes and an efficient energy-transfer system between Au/TiO2 nanotubes and Pt/PAMAM nanocomposites.
Collapse
Affiliation(s)
- Panpan Dai
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China.
| | - Jiajun Ke
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Chenggen Xie
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Liyun Wei
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Ying Zhang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Yong He
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Lijuan Chen
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Juncheng Jin
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| |
Collapse
|
23
|
Bao C, Liu X, Shao X, Ren X, Zhang Y, Sun X, Fan D, Wei Q, Ju H. Cardiac troponin I photoelectrochemical sensor: {Mo 368} as electrode donor for Bi 2S 3 and Au co-sensitized FeOOH composite. Biosens Bioelectron 2020; 157:112157. [PMID: 32250931 DOI: 10.1016/j.bios.2020.112157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 01/14/2023]
Abstract
A suitable electron donor, which guarantees the stability of the whole system, is considered as the driving force of the PEC sensor. Nowadays, searching appropriate electron donor is still one of the orientations to explorate in the field of sensor. Na48[H496Mo368O1464S48]·ca.1000H2O (abbr. {Mo368}), as a type of polyoxometalate, has perfect morphology, definite size and unique electronic property. Due to the prominent water solubility, {Mo368} usually releases small cations and exists as large anions in the ultrapure water. The interesting property endows {Mo368} with excellent reducibility, which provides great feasibility to become an outstanding electron donor. In addition, FeOOH prepared through a simple operation owns high adsorption capacity, which ensures the fastness of other materials. Subsequently, the narrow band-gap of Bi2S3 and the unique noble metal properties of Au nanoparticles are utilized to co-sensitize FeOOH to improve the light-harvesting capability and photoelectric conversion efficiency. Combined with the specificity recognition of antigen and antibody, a novel photoelectrochemical sensor is constructed with a wide detection range of 1.00 pg mL-1 - 100 ng mL-1 and low detection limit (0.76 pg mL-1), which achieves the sensitive detection of cardiac troponin I in early diagnosis of cardiovascular disease.
Collapse
Affiliation(s)
- Chunzhu Bao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xin Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xinrong Shao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
24
|
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO 2 Nanostructures: Recent Advances. Int J Nanomedicine 2020; 15:3447-3470. [PMID: 32523343 PMCID: PMC7234979 DOI: 10.2147/ijn.s249441] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide (TiO2) nanostructures are one of the most plentiful compounds that have emerged in various fields of technology such as medicine, energy and biosensing. Various TiO2 nanostructures (nanotubes [NTs] and nanowires) have been employed in photoelectrochemical (PEC) biosensing applications, greatly enhancing the detection of targets. TiO2 nanostructures, used as reinforced material or coatings for the bare surface of titanium implants, are excellent additive materials to compensate titanium implants deficiencies-like poor surface interaction with surrounding tissues-by providing nanoporous surfaces and hierarchical structures. These nanostructures can also be loaded by diversified drugs-like osteoporosis drugs, anticancer and antibiotics-and used as local drug delivery systems. Furthermore, TiO2 nanostructures and their derivatives are new emerging antimicrobial agents to overcome human pathogenic microorganisms. However, like all other nanomaterials, toxicity and biocompatibility of TiO2 nanostructures must be considered. This review highlights recent advances, along with the properties and numerous applications of TiO2-based nanostructure compounds in nano biosensing, medical implants, drug delivery and antibacterial fields. Moreover, in the present study, some recent advances accomplished on the pharmaceutical applications of TiO2 nanostructures, as well as its toxicity and biocompatibility, are presented.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Baharak Mahyad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
25
|
CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinase. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9717-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Dai P, Liu C, Xie C, Ke J, He Y, Wei L, Chen L, Jin J. TiO2 nanotubes loaded with CdS nanocrystals as enhanced emitters of electrochemiluminescence: application to an assay for prostate-specific antigen. Anal Bioanal Chem 2020; 412:1375-1384. [DOI: 10.1007/s00216-019-02365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
|
27
|
Fan B, Fan Q, Hu L, Cui M, Wang X, Ma H, Wei Q. Polydopamine-PEG-Folic Acid Conjugate Film Engineered TiO 2 Nanotube Arrays for Photoelectrochemical Sensing of Folate Binding Protein. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1877-1884. [PMID: 31816239 DOI: 10.1021/acsami.9b17630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Serum-soluble folate binding protein (FBP) is an important tumor marker, and the development of a simple biosensing method is highly needed. In this work, a photoelectrochemical (PEC) biosensor for the detection of FBP was proposed based on the construction of an antifouling interface and the unique ligand-protein recognition. The PEC sensing platform was prepared by the biomimetic polydopamine (PDA) coating on TiO2 nanotubes arrays (NTAs). A significant PEC enhancement effect was obtained due to the macroporous structures. Excellent antifouling performance was achieved by conjugation of amino-group-terminated 8-arm poly(ethylene glycol) (PEG). The incorporation of folic acid (FA) retains the antifouling property and shows recognition abilities toward FBP. The fabricated PEC biosensor shows good analytical performance. The combination of ligand-protein recognition and a PEC antifouling interface provides a good consideration for the development of FBP biosensors.
Collapse
Affiliation(s)
- Bobo Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qi Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Lulin Hu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Min Cui
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| |
Collapse
|
28
|
Ma Y, Fan GC, Cui M, Gu S, Liu Q, Luo X. Novel cathodic photoelectrochemical immnuosensor with high sensitivity based on 3D AuNPs/ZnO/Cu2O heterojunction nanowires. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Choi W, Kim D, Cho H, Kim M, Choi J, Jeon DY. A highly luminescent quantum dot/mesoporous TiO 2 nanocomplex film under controlled energy transfer. NANOSCALE 2019; 11:13219-13226. [PMID: 31066736 DOI: 10.1039/c9nr01044k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have prepared a highly luminescent quantum dot (QDs)-TiO2 nanocomplex film by the dip coating method. Because QDs with 3-mercaptopropionic acid as a ligand adsorb ionized Ti+ cations on the TiO2 particle, the average distance between the QDs can be changed through controlling the porosity in the film. The porosity is controlled using ethyl cellulose (EC). EC is the best material for well dispersing the hydroxyl functional group (-OH) in the chemical structure, and forming pores inside the film under the decomposition temperature (above 698 °F). As the porosity decreases, the average decay time controlled by the porosity increases to the maximum 91.2 ns. On the other hand, the amount of QDs decreased to 50%, hindering the increase of photo-luminescence (PL) intensity. Through this result, we have found that the PL intensity of the QD films is strongly related to the amount of the QDs and the resolution of aggregation. Consequently, we have optimized the porosity of the film and obtained high PL intensities up to approximately 17 times.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| | - Dodam Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| | - Hyunjin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| | - Moohyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| | - Jinyoung Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| | - Duk Young Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| |
Collapse
|
30
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Wang H, Yuan F, Wu X, Dong Y, Wang GL. Enzymatic in situ generation of covalently conjugated electron acceptor of PbSe quantum dots for high throughput and versatile photoelectrochemical bioanalysis. Anal Chim Acta 2019; 1058:1-8. [DOI: 10.1016/j.aca.2019.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
|
32
|
Wang S, Zhao J, Zhang Y, Yan M, Zhang L, Ge S, Yu J. Photoelectrochemical biosensor of HIV-1 based on cascaded photoactive materials and triple-helix molecular switch. Biosens Bioelectron 2019; 139:111325. [PMID: 31121436 DOI: 10.1016/j.bios.2019.111325] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 05/12/2019] [Indexed: 11/29/2022]
Abstract
In this work, an ultrasensitive photoelectrochemical (PEC) biosensor was proposed to detect nucleic acids on the basis of cascaded photoactive materials and triple-helix molecular switch. DNA sequence of human immunodeficiency virus type 1 (HIV-1) was chosen as the target DNA (T-DNA). Cascaded photoactive structure was formed via different sizes of CdTe quantum dots (QDs) sensitized ZnO nanorods (ZnO NRs), which was employed as a cascaded photoactive interface to amplify the photocurrent signal. A hairpin structure DNA (H-DNA) as capture probe was conjugated onto the photoactive interface through amide bond, and then a single-stranded DNA modified with gold nanoparticles labeled alkaline phosphatase (ALP-Au NPs-DNA) at each end was introduced to hybridize with the H-DNA to form a triple-helix conformation. The T-DNA detection was based on the photocurrent response change resulted from conformation change of the triple-helix molecule after hybridization with T-DNA. In the absence of T-DNA, the triple-helix molecule was in a closed state and the ALP of ALP-Au NPs-DNA could specifically catalyze the ascorbic acid 2-phosphate (AAP) to generate ascorbic acid (AA) as electron donors, which resulted in a significant photocurrent response due to the rapid electron transfer process. However, in the presence of T-DNA, the T-DNA hybridized with the ALP-Au NPs-DNA molecule, which caused triple-helix molecule in an opened state and compelled ALP-Au NPs-DNA away from the electrode surface, resulting in the absence of ALP which could catalyze AAP to generate AA. Subsequently, the photocurrent response significantly decreased. The proposed PEC biosensor not only had a wide detection range of 1fM-1nM and low detection limit (0.65 fM), but also showed excellent reproducibility, specificity and stability, which had great application prospect and opened up a new research method in the early clinical diagnosis and cancer research.
Collapse
Affiliation(s)
- Shaopeng Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jinge Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Yan Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| |
Collapse
|
33
|
Dang X, Zhang X, Zhao H. Signal amplified photoelectrochemical sensing platform with g-C3N4/inverse opal photonic crystal WO3 heterojunction electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Xue TY, Mei LP, Xu YT, Liu YL, Fan GC, Li HY, Ye D, Zhao WW. Nanoporous Semiconductor Electrode Captures the Quantum Dots: Toward Ultrasensitive Signal-On Liposomal Photoelectrochemical Immunoassay. Anal Chem 2019; 91:3795-3799. [PMID: 30789708 DOI: 10.1021/acs.analchem.9b00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liposomal photoelectrochemical (PEC) bioanalysis has recently emerged and exhibited great potential in sensitive biomolecular detection. Exploration of the facile and efficient route for advanced liposomal PEC bioanalysis is highly appealing. In this work, we report the split-type liposomal PEC immunoassay system consisting of sandwich immunorecognition, CdS quantum dots (QDs)-loaded liposomes (QDLL), and the release and subsequent capture of the QDs by a separated TiO2 nanotubes (NTs) electrode. The system elegantly operated upon the protein binding and lysis treatment of CdS QDLL labels within the 96-well plate, and then the CdS QDs-enabled sensitization of TiO2 NTs electrode. Exemplified by cardiac markers troponin I (cTnI) as target, the proposed system achieved efficient activation of TiO2 NTs electrode and thus the signal generation toward the split-type PEC immunoassay. This work features the first use of QDs for liposomal PEC bioanalysis and is expected to inspire more interests in the design and implementation of numerous QDs-involved liposomal PEC bioanalysis.
Collapse
Affiliation(s)
- Tie-Ying Xue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Li-Ping Mei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Heng-Ye Li
- School of Materials Science and Engineering , Yancheng Institute of Technology , Yancheng 224051 , China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
35
|
Zhang H, Fang W, Wang W, Qian N, Ji X. Highly Efficient Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6927-6936. [PMID: 30675780 DOI: 10.1021/acsami.8b18033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The balance between band structure, composition, and defect is essential for improving the optoelectronic properties of ternary and quaternary quantum dots and the corresponding photovoltaic performance. In this work, ascorbic acid (AA) as capping ligand is introduced into the reaction system to prepare green Zn-Cu-In-Se (ZCISe) quantum dots. Results show that the addition of AA can increase the Zn content while decrease the In content, resulting in enlarged band gap, high conduction band energy level, and suppressed charge recombination. When AA/Cu ratio is 1, the quantum dots possess the largest band gap of 1.49 eV and the assembled quantum dot-sensitized solar cells exhibit superior photovoltaic performance with ∼17% increment mainly contributed by the dramatically increased current density. The new record efficiencies of 10.44 and 13.85% are obtained from the ZCISe cells assembled with brass and titanium mesh-based counter electrodes, respectively.
Collapse
Affiliation(s)
- Hua Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenjuan Fang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenran Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Nisheng Qian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaohe Ji
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
36
|
High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens Bioelectron 2019; 127:64-71. [DOI: 10.1016/j.bios.2018.11.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
|
37
|
Zhou Y, Shi Y, Wang FB, Xia XH. Oriented Self-Assembled Monolayer of Zn(II)-Tetraphenylporphyrin on TiO2 Electrode for Photoelectrochemical Analysis. Anal Chem 2019; 91:2759-2767. [DOI: 10.1021/acs.analchem.8b04478] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Bin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
He C, Peng L, Lv L, Cao Y, Tu J, Huang W, Zhang K. In situ growth of carbon dots on TiO2 nanotube arrays for PEC enzyme biosensors with visible light response. RSC Adv 2019; 9:15084-15091. [PMID: 35516318 PMCID: PMC9064225 DOI: 10.1039/c9ra01045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) were grown in situ on secondary anodized TiO2 nanotube arrays (TiO2 NTAs) via a hydrothermal method. The combination of CDs and TiO2 NTAs enhanced the photoelectrochemical performance. Morphology, structure, and elemental composition of the CDs were characterized. No simple physical adsorption was found between the CDs and TiO2, but chemical bonds were formed. UV-vis absorption and fluorescence spectroscopy showed that the CDs could enhance the absorption of TiO2 in the visible and near-infrared regions. Owing to their up-conversion fluorescence properties, the CDs could convert low-energy photon absorption into high-energy photons, which may be used to excite TiO2 to produce a stronger photoelectric response. Moreover, the CDs could effectively transport electrons and accept holes, thus contributing to the effective separation of electrons and holes during photoexcitation. Finally, the PEC biosensor was prepared by immobilizing glucose oxidase (GOx) on the surface of the composite. The PEC biosensor exhibited a broad range of 0.1–18 mM with a detection limit of 0.027 mM under visible irradiation because the composite material reflected strong light absorption for visible light, good conductivity, and good biocompatibility. Carbon dots (CDs) were grown in situ on secondary anodized TiO2 nanotube arrays (TiO2 NTAs) via a hydrothermal method.![]()
Collapse
Affiliation(s)
- Cheng He
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Linkai Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Linzhe Lv
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
- Qiongtai Normal University
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| |
Collapse
|
39
|
Voltammetric immunoassay of human IgG based on the release of cadmium(II) from CdS nanocrystals deposited on mesoporous silica nanospheres. Mikrochim Acta 2018; 186:15. [PMID: 30542980 DOI: 10.1007/s00604-018-3142-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
Abstract
The authors describe a nanocomposite that was obtained by in-situ deposition of CdS nanocrystals on mesoporous silica nanospheres (MSNs), and its use in an electrochemical immunoassay of human immunoglobulin G (HIgG). The MCN/CdS nanocomposite was covalently modified with the antibodies against HIgG and then employed in a voltammetric immunoassay at antibody-functionalized magnetic beads. Through sandwich immunoreaction, the MCN/CdS nanoprobes are quantitatively captured onto the magnetic beads where numerous Cd(II) ions are released in an acidic solution. The Cd(II) can be detected by anodic stripping voltammetry at a typical working potential of -0.78 V (vs. Ag/AgCl). In combination with the high loading of CdS on MSNs, the use of the stripping voltammetric analysis renders the method high sensitivity. A wide linear range varying from 0.01 to 100 ng mL-1 is obtained for HIgG detection with a lower detection limit at 2.9 pg mL-1. In addition, the preparation of the nanoprobe is inexpensive. The magnetic bead-based assay does not require complex manipulations. Therefore, this method is deemed to possess a wide scope in that it may be applied to other immunoassays. Graphical abstract Graphical Abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.A TIFF file at 900 dpi resolution of the Graphical Abstract has been attached via this online system. Schematic presentation of the preparation of the mesoporous silica nanosphere (MSN)/CdS nanocomposite for the electrochemical immunoassay of human IgG at magnetic beads. The high decoration of CdS on MSN and the stripping voltammetric analysis of Cd(II) ions render the method high sensitivity.
Collapse
|
40
|
A photoelectrochemical sensing strategy based on single-layer MoS 2 modified electrode for methionine detection. J Pharm Biomed Anal 2018; 165:94-100. [PMID: 30522065 DOI: 10.1016/j.jpba.2018.11.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023]
Abstract
MoS2, a typical transition metal disulfide, is widely used in the photoelectrochemical (PEC) sensor construction. In general, MoS2 based PEC sensor are "signal-on" strategies. Surprisingly, we discovered that the PEC response of MoS2 was quenched by methionine greatly. Based on this discovery, a reduction PEC sensing strategy utilized MoS2 modified electrode for methionine detection was fabricated for the first time. Experimental factors, such as, bias potential, volume of MoS2 and pH were studied. Under optimized conditions, the decreased intensity of the photocurrent signal was proportional to the logarithmic value of methionine concentrations from 0.1 nM to 1 μM with the detection limit of 0.03 nM. Moreover, this method exhibited good performance of excellent selectivity. And it showed potential applications in the practical determination of methionine in real-life sample. This strategy not only expands the PEC detection method but also provides a simple, rapid response, good selectivity and high sensitivity way to detect methionine.
Collapse
|
41
|
Wang Y, Fan D, Zhao G, Feng J, Wei D, Zhang N, Cao W, Du B, Wei Q. Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein based on SnO2/SnS2/Ag2S nanocomposites. Biosens Bioelectron 2018; 120:1-7. [DOI: 10.1016/j.bios.2018.08.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023]
|
42
|
Quantum dots attached to graphene oxide for sensitive detection of ascorbic acid in aqueous solutions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:720-725. [DOI: 10.1016/j.msec.2018.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/23/2018] [Accepted: 07/07/2018] [Indexed: 12/26/2022]
|
43
|
Wang B, Mei LP, Ma Y, Xu YT, Ren SW, Cao JT, Liu YM, Zhao WW. Photoelectrochemical-Chemical-Chemical Redox Cycling for Advanced Signal Amplification: Proof-of-Concept Toward Ultrasensitive Photoelectrochemical Bioanalysis. Anal Chem 2018; 90:12347-12351. [DOI: 10.1021/acs.analchem.8b03798] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bing Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Ping Mei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Ma
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
44
|
Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Anal Chim Acta 2018; 1027:33-40. [DOI: 10.1016/j.aca.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
|
45
|
Song J, Lin P, Ruan Y, Zhao W, Wei W, Hu J, Ke S, Zeng X, Xu J, Chen H, Ren W, Yan F. Organic Photo-Electrochemical Transistor-Based Biosensor: A Proof-of-Concept Study toward Highly Sensitive DNA Detection. Adv Healthc Mater 2018; 7:e1800536. [PMID: 30117317 DOI: 10.1002/adhm.201800536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/30/2018] [Indexed: 11/10/2022]
Abstract
Organic bioelectronics have shown promising applications for various sensing purposes due to their significant advantages in term of high flexibility, portability, easy fabrication, and biocompatibility. Here, a new type of organic device, organic photo-electrochemical transistor (OPECT), is reported, which is the combination of an organic electrochemical transistor and a photo-electrochemical gate electrode modified with CdS quantum dots (QDs). Thanks to the inherent amplification function of the transistor, the OPECT-based biosensor exhibits much higher sensitivity than that of a traditional biosensor. The sensing mechanism of the OPECT is attributed to the charge transfer between the photosensitive semiconductor CdS QDs and the gate electrode. In an OPECT-based DNA sensor, target DNA is labeled with Au nanoparticles (NPs) and captured on the gate electrode, which can influence the charge transfer on the gate caused by the exciton-plasmon interactions between CdS QDs and Au NPs. Consequently, a highly sensitive and selective DNA sensor with a detection limit of around 1 × 10-15 m is realized. It is expected that OPECTs can be developed as a high-performance platform for numerous biological detections in the future.
Collapse
Affiliation(s)
- Jiajun Song
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative InnovationSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative InnovationSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Weiwei Wei
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Shanming Ke
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative InnovationSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative InnovationSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Wei Ren
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric ResearchXi'an Jiaotong University Xi'an 710049 China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic University Hong Kong China
| |
Collapse
|
46
|
Wen G, Dong W, Liu B, Li Z, Fan L. A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins. Biosens Bioelectron 2018; 117:91-96. [DOI: 10.1016/j.bios.2018.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
|
47
|
Zhang YH, Zheng YN, Li MJ, Hu T, Yuan R, Wei SP. Cosensitization Strategy with Cascade Energy Level Arrangement for Ultrasensitive Photoelectrochemical Protein Detection. Anal Chem 2018; 90:12278-12283. [DOI: 10.1021/acs.analchem.8b03740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan-Hui Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ying-Ning Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Meng-Jie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Tao Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Sha-Ping Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
48
|
Fan L, Zhang C, Shi H, Zhao G. Design of a simple and novel photoelectrochemical aptasensor for detection of 3,3',4,4'-tetrachlorobiphenyl. Biosens Bioelectron 2018; 124-125:8-14. [PMID: 30339976 DOI: 10.1016/j.bios.2018.09.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
In view of the urgent need of determining polychlorinated biphenyls in the environment, we developed a highly sensitive and selective photoelectrochemical (PEC) aptasensor for determination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) by immobilizing aptamer on N-doped TiO2 nanotubes (N-doped TiO2 NTs). To improve analytical performance of the PEC sensor, the complementary DNA functionalized CdS quantum dots (DNA-CdS QDs) were introduced onto N-doped TiO2 NTs by hybridization. In addition of PCB77, owing to high affinity of aptamer to PCB77, PCB77-aptamer complexes were formed by being bound of PCB77 whilst DNA-CdS QDs were released from the sensing surface. The complexes with poor conductivity hindered the interfacial electron transfer, leading to the photocurrent decrease. The more important is the release of DNA-CdS QDs enhanced the photocurrent decrease, playing the role of signal amplification. The photocurrent change was utilized to detect PCB77 quantitatively. The PEC aptasensor exhibited excellent analytical performance for detection of PCB77 with wide linear range of 0.1-100 ng/L and a low detection limit of 0.1 ng/L. It manifested outstanding selectivity for PCB77 in control experiments by employing six interferents which had similar structure or coexisted with PCB77. Besides, the PEC aptasensor was used to detect the content of PBC77 in the environment.
Collapse
Affiliation(s)
- Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Caiyun Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huijie Shi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
49
|
Zarifi MH, Wiltshire BD, Mahdi N, Shankar K, Daneshmand M. Distinguishing between Deep Trapping Transients of Electrons and Holes in TiO 2 Nanotube Arrays Using Planar Microwave Resonator Sensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29857-29865. [PMID: 29767958 DOI: 10.1021/acsami.8b03629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A large signal direct current (DC) bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel-type trap-mediated electrical injection of excess carriers into TiO2 nanotubes, which resulted in a near-constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then stepwise removed, the resonant frequency shifted due to trapping-mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80, 300-800, and ∼3000 s were present regardless of whether light or bias was applied and were also observed in the presence of a hole scavenger, which we attributed to oxygen adsorption and deep electron traps, whereas another characteristic lifetime >8000 s was only present when illumination was applied, and is attributed to the presence of hole traps.
Collapse
Affiliation(s)
- Mohammad H Zarifi
- School of Engineering , University of British Columbia , Kelowna , British Columbia V1V 1V7 , Canada
| | - Benjamin D Wiltshire
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Najia Mahdi
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Mojgan Daneshmand
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| |
Collapse
|
50
|
Cui L, Hu J, Wang M, Diao XK, Li CC, Zhang CY. Mimic Peroxidase- and Bi2S3 Nanorod-Based Photoelectrochemical Biosensor for Signal-On Detection of Polynucleotide Kinase. Anal Chem 2018; 90:11478-11485. [DOI: 10.1021/acs.analchem.8b02673] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Meng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xing-kang Diao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|