1
|
Zhang H, Zhang D, Hu M, Wang Q. Direct readout of mirror reflectivity for cavity-enhanced gas sensing using Pound-Drever-Hall signals. OPTICS LETTERS 2023; 48:5996-5999. [PMID: 37966772 DOI: 10.1364/ol.501675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/22/2023] [Indexed: 11/16/2023]
Abstract
The operation of cavity-enhanced techniques usually requires independent pre-calibration of the mirror reflectivity to precisely quantify the absorption. Here we show how to directly calibrate the effective mirror reflectivity without using any gas samples of known concentration or high-speed optical/electrical devices. Leveraging a phase modulator to generate sidebands, we are able to record Pound-Drever-Hall error signals shaped by cavity modes that can reveal the effective reflectivity after waveform analysis. As an example, we demonstrated the reflectivity calibration of a pair of near-infrared mirrors over 80 nm with a free spectral range-limited resolution, illustrating a reflectivity uncertainty of 2 × 10-5 in the center part of the refection wavelength range of the mirrors and larger at the edges. With an effective reflectivity of 0.9982 (finesse ∼1746) inferred at 1531.6 nm, a short ∼ 8-cm Fabry-Pérot cavity achieved a minimum detectable absorption coefficient of 9.1 × 10-9 cm-1 for trace C2H2 detection. This method, by providing convenient calibration in an almost real-time manner, would enable more practical cavity-enhanced gas measurement even with potential mirror reflectivity degradation.
Collapse
|
2
|
Chu W, Li Z, Gu J, Zhang Q, Chen Y, Zhao D. Continuous wave cavity ringdown spectroscopy incorporating with an off-axis arrangement, white noise perturbation, and optical re-injection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:114104. [PMID: 37947499 DOI: 10.1063/5.0172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
We present an ultra-sensitive continuous wave cavity ringdown spectroscopy (cw-CRDS) spectrometer to record high resolution spectra of reactive radicals and ions in a pulsed supersonic plasma. The spectrometer employs a home-made external cavity diode laser as the tunable light source, with its wavelength modulated by radio-frequency white noise. The ringdown cavity with a finesse of ∼105 is arranged with an off-axis alignment. The combination of the off-axis cavity and the white-noise perturbed laser yields quasi-continuum laser-cavity coupling without the need of mode matching. The cavity is further incorporated with an extra multi-pass cavity for optical re-injection of light reflected off the master cavity, which significantly increases the throughput power of the high-finesse cavity. A fast switchable semiconductor optical amplifier is used to modulate the cw laser beam to square wave pulses and to initialize timing controlled ringdown events, which are synchronized to the plasma pulses with an accuracy of ∼3 µs. The performance and potential of the cw-CRDS spectrometer are illustrated and discussed, based on the high resolution near-infrared spectroscopic detection of trace 13C13C radicals generated in a pulsed supersonic C2H2/Ar plasma with a pulse duration of ∼50 µs.
Collapse
Affiliation(s)
- Wangyou Chu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhenzhen Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jieqiong Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongfeng Zhao
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
3
|
Pangerl J, Moser E, Müller M, Weigl S, Jobst S, Rück T, Bierl R, Matysik FM. A sub-ppbv-level Acetone and Ethanol Quantum Cascade Laser Based Photoacoustic Sensor - Characterization and Multi-Component Spectra Recording in Synthetic Breath. PHOTOACOUSTICS 2023; 30:100473. [PMID: 36970564 PMCID: PMC10033733 DOI: 10.1016/j.pacs.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Trace gas analysis in breath is challenging due to the vast number of different components. We present a highly sensitive quantum cascade laser based photoacoustic setup for breath analysis. Scanning the range between 8263 and 8270 nm with a spectral resolution of 48 pm, we are able to quantify acetone and ethanol within a typical breath matrix containing water and CO2. We photoacoustically acquired spectra within this region of mid-infra-red light and prove that those spectra do not suffer from non-spectral interferences. The purely additive behavior of a breath sample spectrum was verified by comparing it with the independently acquired single component spectra using Pearson and Spearman correlation coefficients. A previously presented simulation approach is improved and an error attribution study is presented. With a 3σ detection limit of 6.5 ppbv in terms of ethanol and 250 pptv regarding acetone, our system is among the best performing presented so far.
Collapse
Affiliation(s)
- Jonas Pangerl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
- Institute of Analytical Chemistry, Chemo, and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Moser
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
- Faculty of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Max Müller
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
- Institute of Analytical Chemistry, Chemo, and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Stefan Weigl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
| | - Simon Jobst
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
- Institute of Analytical Chemistry, Chemo, and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Rück
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
| | - Rudolf Bierl
- Sensorik-ApplikationsZentrum (SappZ), Regensburg University of Applied Sciences, 93053 Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo, and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Singh J, Muller A. Ambient Hydrocarbon Detection with an Ultra-Low-Loss Cavity Raman Analyzer. Anal Chem 2023; 95:3703-3711. [PMID: 36744943 DOI: 10.1021/acs.analchem.2c04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of ambient outdoor trace hydrocarbons was investigated with a multipass Raman analyzer. It relies on a multimode blue laser diode receiving optical feedback from a retroreflecting multipass optical cavity, effectively creating an external cavity diode laser within which spontaneous Raman scattering enhancement occurs. When implemented with ultra-low-loss mirrors, a more than 20-fold increase in signal-to-background ratio was obtained, enabling proximity detection of trace motor vehicle exhaust gases such as H2, CO, NO, CH4, C2H2, C2H4, and C2H6. In a 10-min-long measurement at double atmospheric pressure, the limits of detection obtained were near or below 100 ppb for most analytes.
Collapse
Affiliation(s)
- J Singh
- Physics Department, University of South Florida, Tampa, Florida33620, United States
| | - A Muller
- Physics Department, University of South Florida, Tampa, Florida33620, United States
| |
Collapse
|
5
|
Zhang C, Zheng Y, Ding Y, Zheng X, Xiang Y, Tong A. A ratiometric solid AIE sensor for detection of acetone vapor. Talanta 2022; 236:122845. [PMID: 34635235 DOI: 10.1016/j.talanta.2021.122845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022]
Abstract
Acetone serves as a routine solvent and synthetic intermediate in chemical factories and laboratories. Monitoring the level of acetone vapor in working environment is of great necessity to employee health due to its strong volatility and toxicity, but there is still in lack of simple and easy-to-use portable sensors. In this study, we report a portable and intuitive indicator for real-time displaying acetone vapor concentration in air, based on the ratiometric fluorescence response of the designed organic molecule, PhB-SSB, to acetone. As an aggregation-induced emission (AIE) fluorophore, PhB-SSB underwent specific reaction with acetone through the salicylaldehyde Schiff base and phenylboronate groups to realize ratiometric fluorescence change from green to red after acetone vapor treatment. The reaction mechanism was proposed as acetone-induced breakage of the imine bond in PhB-SSB. We further fabricated PhB-SSB into a film fluorescent sensor for acetone vapor with good sensitivity and selectivity. Taking advantage of its intuitive fluorescent color contrast, acetone-specific response and small size, our sensor is practical in real-time alarming the acetone vapor hazard in the workplaces.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yue Zheng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Xiaokun Zheng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Singh J, Muller A. Isotopic trace analysis of water vapor with multipass cavity Raman scattering. Analyst 2021; 146:6482-6489. [PMID: 34581323 DOI: 10.1039/d1an01254a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cavity-enhanced spontaneous Raman scattering was investigated as a means of simple and inexpensive isotopic water analysis. A multimode blue laser diode equipped with a feedback-generating multipass cavity provided a 100-fold Raman enhancement at a pump linewidth of 3.5 cm-1. Samples containing trace amounts of 1H2H16O were probed at deuterium-hydrogen concentration ratios ranging from 157 parts-per-million (local seawater) down to 8 parts-per-million (deuterium depleted water). All measurements were performed in argon or dried air at atmospheric pressure at 1H2H16O concentrations nearing 100 parts per billion with an uncooled camera at exposure times as short as a few minutes.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA.
| | - Andreas Muller
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA.
| |
Collapse
|
7
|
Banik GD, Mizaikoff B. Exhaled breath analysis using cavity-enhanced optical techniques: a review. J Breath Res 2020; 14:043001. [PMID: 32969348 DOI: 10.1088/1752-7163/abaf07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cavity-enhanced absorption spectroscopies (CEAS) have gained importance in a wide range of applications in molecular spectroscopy. The development of optical sensors based on the CEAS techniques coupled with the continuous wave or pulsed laser sources operating in the mid-infrared or near-infrared spectral regime uniquely offers molecularly selective and ultra-sensitive detection of trace species in complex matrices including exhaled human breath. In this review, we discussed recent applications of CEAS for analyzing trace constituents within the exhaled breath matrix facilitating the non-invasive assessment of human health status. Next to a brief discussion on the mechanisms of formation of trace components found in the exhaled breath matrix related to particular disease states, existing challenges in CEAS and future development towards non-invasive clinical diagnostics will be discussed.
Collapse
Affiliation(s)
- Gourab D Banik
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
8
|
Selvaraj R, Vasa NJ, Nagendra SMS, Mizaikoff B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020; 25:molecules25092227. [PMID: 32397389 PMCID: PMC7249025 DOI: 10.3390/molecules25092227] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.
Collapse
Affiliation(s)
- Ramya Selvaraj
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
- Correspondence:
| | - Nilesh J. Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
9
|
Wang J, Tian X, Dong Y, Zhu G, Chen J, Tan T, Liu K, Chen W, Gao X. Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with radio frequency white noise for gas sensing. OPTICS EXPRESS 2019; 27:30517-30529. [PMID: 31684298 DOI: 10.1364/oe.27.030517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Injecting radio frequency (RF) white noise to the current driving of the laser can broaden the laser emission linewidth and efficiently suppress cavity-mode noise in off-axis integrated cavity output spectroscopy (OA-ICOS). The effect of the injected RF noise level on the cavity-mode noise and the deformation of the absorption line shape in off-axis integrated cavity output spectroscopy (OA-ICOS) with a distributed feedback laser (DFB) at 1.65 µm were investigated. We measured methane at different concentrations between 0.1 ppmv and 2 ppmv associated with a -20 dBm RF noise injection. A linear spectral response of the intensity of the cavity output spectra with the CH4 concentration was observed. A threefold improvement in the detection limit was achieved compared to unperturbed OA-ICOS. The response time of the improved OA-ICOS system is about 30 s and the minimum detectable concentration (MDC) of CH4 is 7.6 ppbv, which corresponds to a minimum detectable fractional absorption scaled to the path length of 7.3 × 10-10 cm-1. The noise equivalent absorption sensitivity of the system is 5.51 × 10-9 cm-1Hz-1/2.
Collapse
|
10
|
Kalidoss R, Umapathy S. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype. J Breath Res 2019; 13:036008. [PMID: 30794992 DOI: 10.1088/1752-7163/ab09ae] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several breath analysis studies have suggested a correlation between blood glucose (BG) levels and breath acetone, indicating acetone as a primary biomarker in exhaled breath for diabetes diagnosis. Herein, we have (i) fabricated and validated graphene-based chemi-resistive sensors for selective and sensitive detection of acetone, (ii) performed offline breath analysis by a static gas sensing set-up to acquire olfactory signals, and (iii) developed an LED-based portable on/off binary e-nose system for pre-screening diabetes through online analysis. The fabricated sensors showed selective detection for acetone with high sensitivity (5.66 for 1 ppm acetone vapor) and fast response and recovery times (10 s and 12 s) at low concentrations. The sensor responses of end tidal fractional breath (collected in Tedlar bags) in the fasting and postprandial conditions were compared with BG levels and glycated hemoglobin (HbA1c) levels taken at the same time in 30 volunteers (13 healthy and 17 diabetic subjects). The mean sensor responses of the diabetic subjects as obtained by offline analysis were 1.1 times higher than those of the healthy subjects. The optimal regression equation framed with the significant correlating variables for HbA1c estimation achieved an accuracy of 66.67%. The online breath analysis by on/off binary prototype exhibited an accuracy of 60.51%. Though there exists a minimal uncertainty in classification, the on/off type portable prototype is easy to operate, gives a quicker response with a refresh/recovery rate of 19 s and can be used for preliminary diagnosis, and can be used for preliminary diagnosis. This inexpensive sensor technology may revolutionize personalized medicine in the near future and greatly benefit the underprivileged.
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, SRM Institute of Science & Technology, Tamil Nadu, 603203, India
| | | |
Collapse
|
11
|
Kalidoss R, Umapathy S, Anandan R, Ganesh V, Sivalingam Y. Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO 2 Binary Nanocomposite for Detection of Acetone in Exhaled Breath. Anal Chem 2019; 91:5116-5124. [PMID: 30869871 DOI: 10.1021/acs.analchem.8b05670] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reduced graphene oxide/tin dioxide (RGO/SnO2) binary nanocomposite for acetone sensing performance was successfully studied and applied in exhaled breath detection. The influence of structural characteristics was explored by synthesizing the composite (RGO/SnO2) using the solvothermal method (GS-I) and the hydrothermal method (GS-II) by the chemical route and mechanical mixing, respectively. The nanocomposites characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform-infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) revealed that GS-I exhibited better surface area, surface energy and showed enhanced gas response than GS-II at an operating temperature of 200 °C. These sensors exhibited comparable response in humid environment as well, suitable for acetone sensing in exhaled breath that clearly distinguishes between healthy and diabetes subjects. The enhanced response at lower concentrations was attributed to the synergistic effect at the RGO/SnO2 interface. These results indicate that modification in the structural characteristics of RGO/SnO2 nanocomposite enhances the sensing property. Furthermore, it proved to be a promising material for potential application for point-of care, noninvasive diabetes detection.
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering , SRM Institute of Science & Technology , Kattankulathur , Tamilnadu 603203 , India
| | - Snekhalatha Umapathy
- Department of Biomedical Engineering , SRM Institute of Science & Technology , Kattankulathur , Tamilnadu 603203 , India
| | - Rohini Anandan
- Department of Physics and Nanotechnology , SRM Institute of Science & Technology , Kattankulathur , Tamilnadu 603203 , India
| | - Vattikondala Ganesh
- Department of Physics and Nanotechnology , SRM Institute of Science & Technology , Kattankulathur , Tamilnadu 603203 , India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology , SRM Institute of Science & Technology , Kattankulathur , Tamilnadu 603203 , India.,Laboratory for Sensors, Energy and Electronic Devices (Lab SEED), SRM Research Institute , SRM Institute of Science & Technology , Kattankulathur , Tamilnadu 603203 , India
| |
Collapse
|
12
|
Cascade laser sensing concepts for advanced breath diagnostics. Anal Bioanal Chem 2018; 411:1679-1686. [PMID: 30565171 DOI: 10.1007/s00216-018-1509-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/03/2023]
Abstract
With more than a thousand constituents at trace level concentrations, exhaled breath analysis (EBA) allows for non-invasive point-of-care (POC) disease diagnostics and metabolic status monitoring in or close to real-time. A number of biomarkers in breath may be used to not only identify diseases and disease progression but also to monitor therapeutic interventions. Although the relationship of selected breath components/biomarkers with certain disease pathologies is well established, diagnosing the exhaled breath composition remains an analytical and practical challenge due to the concentration levels of molecules of interest, i.e., low parts-per-billion (ppb) regime and below. Besides the analytical assessment of breath components via conventional methods such as gas chromatography coupled to mass spectrometry and related techniques, the application of cascade laser spectroscopy (CLS) is relatively new and exhibits several advantages when aiming for compact and user-friendly trace gas sensors with high molecular selectivity, the required sensitivity, and potentially reasonable instrumental costs. This trend article highlights the current status and potential of CLS in breath diagnostics with a focus on recent advancements in instrumentation and application along with future prospects and challenges. Graphical abstract Cascade laser technology in the mid-infrared spectral range enables sensitive and molecularly selective exhaled breath analysis with near real-time response, label-free detection, and point-of-care feasibility.
Collapse
|
13
|
Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018; 1024:18-38. [PMID: 29776545 PMCID: PMC6082128 DOI: 10.1016/j.aca.2018.01.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical health assessment tool. Although less common in comparison to contemporary bio-fluids analyses, breath has become an attractive diagnostic medium as sampling is non-invasive, unlimited in timing and volume, and does not require clinical personnel. Exhaled breath, exhaled breath condensate (EBC), and exhaled breath aerosol (EBA) are different types of breath matrices used to assess human health and disease state. Over the past 20 years, breath research has made many advances in assessing health state, overcoming many of its initial challenges related to sampling and analysis. The wide variety of sampling techniques and collection devices that have been developed for these media are discussed herein. The different types of sensors and mass spectrometry instruments currently available for breath analysis are evaluated as well as emerging breath research topics, such as cytokines, security and airport surveillance, cellular respiration, and canine olfaction.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Joachim D Pleil
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
14
|
Henderson B, Khodabakhsh A, Metsälä M, Ventrillard I, Schmidt FM, Romanini D, Ritchie GAD, te Lintel Hekkert S, Briot R, Risby T, Marczin N, Harren FJM, Cristescu SM. Laser spectroscopy for breath analysis: towards clinical implementation. APPLIED PHYSICS. B, LASERS AND OPTICS 2018; 124:161. [PMID: 30956412 PMCID: PMC6428385 DOI: 10.1007/s00340-018-7030-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/19/2018] [Indexed: 05/08/2023]
Abstract
Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.
Collapse
Affiliation(s)
- Ben Henderson
- Trace Gas Research Group, Molecular and Laser Physics, IMM, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Amir Khodabakhsh
- Trace Gas Research Group, Molecular and Laser Physics, IMM, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Markus Metsälä
- Department of Chemistry, University of Helsinki, PO Box 55, 00014 Helsinki, Finland
| | | | - Florian M. Schmidt
- Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden
| | - Daniele Romanini
- University of Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Grant A. D. Ritchie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | | | - Raphaël Briot
- University of Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
- Emergency Department and Mobile Intensive Care Unit, Grenoble University Hospital, Grenoble, France
| | - Terence Risby
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, USA
| | - Nandor Marczin
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre of Anaesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
| | - Frans J. M. Harren
- Trace Gas Research Group, Molecular and Laser Physics, IMM, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Simona M. Cristescu
- Trace Gas Research Group, Molecular and Laser Physics, IMM, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
15
|
Nadeem F, Mandon J, Khodabakhsh A, Cristescu SM, Harren FJM. Sensitive Spectroscopy of Acetone Using a Widely Tunable External-Cavity Quantum Cascade Laser. SENSORS 2018; 18:s18072050. [PMID: 29954082 PMCID: PMC6068499 DOI: 10.3390/s18072050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
Abstract
We employed a single-mode, widely tunable (~300 cm−1) external-cavity quantum cascade laser operating around 8 µm for broadband direct absorption spectroscopy and wavelength modulation spectroscopy where a modulation frequency of 50 kHz was employed with high modulation amplitudes of up to 10 GHz. Using a compact multipass cell, we measured the entire molecular absorption band of acetone at ~7.4 µm with a spectral resolution of ~1 cm−1. In addition, to demonstrate the high modulation dynamic range of the laser, we performed direct absorption (DAS) and second harmonic wavelength modulation spectroscopy (WMS-2f) of the Q-branch peak of acetone molecular absorption band (HWHM ~10 GHz) near 1365 cm−1. With WMS-2f, a minimum detection limit of 15 ppbv in less than 10 s is achieved, which yields a noise equivalent absorption sensitivity of 1.9 × 10−8 cm−1 Hz−1/2.
Collapse
Affiliation(s)
- Faisal Nadeem
- Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Julien Mandon
- Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Amir Khodabakhsh
- Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Simona M Cristescu
- Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Frans J M Harren
- Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Seichter F, Tütüncü E, Hagemann LT, Vogt J, Wachter U, Gröger M, Kress S, Radermacher P, Mizaikoff B. Online monitoring of carbon dioxide and oxygen in exhaled mouse breath via substrate-integrated hollow waveguide Fourier-transform infrared-luminescence spectroscopy. J Breath Res 2018; 12:036018. [DOI: 10.1088/1752-7163/aabf98] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Andrews BTE, Denzer W, Hancock G, Lunn AD, Peverall R, Ritchie GAD, Williams K. Measurement of breath acetone in patients referred for an oral glucose tolerance test. J Breath Res 2018; 12:036015. [PMID: 29643267 DOI: 10.1088/1752-7163/aabd88] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breath acetone concentrations were measured in 141 subjects (aged 19-91 years, mean = 59.11 years, standard deviation = 12.99 years), male and female, undergoing an oral glucose tolerance test (OGTT), having been referred to clinic on suspicion of type 2 diabetes. Breath samples were measured using an ion-molecule-reaction mass spectrometer, at the commencement of the OGTT, and after 1 and 2 h. Subjects were asked to observe the normal routine before and during the OGTT, which includes an overnight fast and ingestion of 75 g glucose at the beginning of the routine. Several groups of diagnosis were identified: type 2 diabetes mellitus positive (T2DM), n = 22; impaired glucose intolerance (IGT), n = 33; impaired fasting glucose, n = 14; and reactive hypoglycaemia, n = 5. The subjects with no diagnosis (i.e. normoglycaemia) were used as a control group, n = 67. Distributions of breath acetone are presented for the different groups. There was no evidence of a direct relationship between blood glucose (BG) and acetone measurements at any time during the study (0 h: p = 0.4482; 1 h: p = 0.6854; and 2 h: p = 0.1858). Nor were there significant differences between the measurements of breath acetone for the control group and the T2DM group (0 h: p = 0.1759; 1 h: p = 0.4521; and 2 h: p = 0.7343). However, the ratio of breath acetone at 1 h to the initial breath acetone was found to be significantly different for the T2DM group compared to both the control and IGT groups (p = 0.0189 and 0.011, respectively). The T2DM group was also found to be different in terms of ratio of breath acetone after 1 h to that at 2 h during the OGTT. And was distinctive in that it showed a significant dependence upon the level of BG at 2 h (p = 0.0146). We conclude that single measurements of the concentrations of breath acetone cannot be used as a potential screening diagnostic for T2DM diabetes in this cohort, but monitoring the evolution of breath acetone could open a non-invasive window to aid in the diagnosis of metabolic conditions.
Collapse
Affiliation(s)
- B T E Andrews
- Department of Vascular Surgery, Medway Maritime Hospital, Windmill Rd, Gillingham, ME7 5NY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Ruzsányi V, Péter Kalapos M. Breath acetone as a potential marker in clinical practice. J Breath Res 2017; 11:024002. [DOI: 10.1088/1752-7163/aa66d3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Tuzson B, Jágerská J, Looser H, Graf M, Felder F, Fill M, Tappy L, Emmenegger L. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser. Anal Chem 2017; 89:6377-6383. [PMID: 28514136 DOI: 10.1021/acs.analchem.6b04511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm-1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.
Collapse
Affiliation(s)
- Béla Tuzson
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf, Switzerland
| | - Jana Jágerská
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf, Switzerland.,Department of Physics and Technology, UiT-The Arctic University of Norway , 9019 Tromsø, Norway
| | - Herbert Looser
- Institute for Aerosol and Sensor Technology, Fachhochschule Nordwestschweiz (FHNW) , 5210 Windisch, Switzerland
| | - Manuel Graf
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf, Switzerland
| | | | | | - Luc Tappy
- Faculty of Biology and Medicine, Department of Physiology, Universite de Lausanne (UNIL) , 1005 Lausanne, Switzerland
| | - Lukas Emmenegger
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa) , 8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017; 46:5903-5924. [DOI: 10.1039/c7cs00403f] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the recent applications of QCLs in mid-IR spectroscopy of clinically relevant samples.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| | | | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| |
Collapse
|
21
|
Manfred KM, Hunter KM, Ciaffoni L, Ritchie GAD. ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry. Anal Chem 2016; 89:902-909. [PMID: 27936594 DOI: 10.1021/acs.analchem.6b04030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) using mid-infrared interband cascade lasers (ICLs) is a sensitive technique for trace gas sensing. The setup of a V-shaped optical cavity operating with a 3.29 μm cw ICL is detailed, and a quantitative characterization of the injection efficiency, locking stability, mode matching, and detection sensitivity is presented. The experimental data are supported by a model to show how optical feedback affects the laser frequency as it is scanned across several longitudinal modes of the optical cavity. The model predicts that feedback enhancement effects under strongly absorbing conditions can cause underestimations in the measured absorption, and these predictions are verified experimentally. The technique is then used in application to the detection of nitrous oxide as an exemplar of the utility of this technique for analytical gas phase spectroscopy. The analytical performance of the spectrometer, expressed as noise equivalent absorption coefficient, was estimated as 4.9 × 10-9 cm -1 Hz-1/2, which compares well with recently reported values.
Collapse
Affiliation(s)
- Katherine M Manfred
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford, United Kingdom
| | - Katharine M Hunter
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford, United Kingdom
| | - Luca Ciaffoni
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford, United Kingdom
| | - Grant A D Ritchie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
22
|
Lin CC, Sun DS, Lin YL, Tsai TT, Cheng C, Sun WH, Ko FH. A flexible and miniaturized hair dye based photodetector via chemiluminescence pathway. Biosens Bioelectron 2016; 90:349-355. [PMID: 27940238 DOI: 10.1016/j.bios.2016.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
A flexible and miniaturized metal semiconductor metal (MSM) biomolecular photodetector was developed as the core photocurrent system through chemiluminescence for hydrogen peroxide sensing. The flexible photocurrent sensing system was manufactured on a 30-µm-thick crystalline silicon chip by chemical etching process, which produced a flexible silicon chip. A surface texturization design on the flexible device enhanced the light-trapping effect and minimized reflectivity losses from the incident light. The model protein streptavidin bound to horseradish peroxidase (HRP) was successfully immobilized onto the sensor surface through high-affinity conjugation with biotin. The luminescence reaction occurred with luminol, hydrogen peroxide and HRP enzyme, and the emission of light from the catalytic reaction was detected by underlying flexible photodetector. The chemiluminescence in the miniaturized photocurrent sensing system was successfully used to determine the hydrogen peroxide concentration in real-time analyses. The hydrogen peroxide detection limit of the flexible MSM photodetector was 2.47mM. The performance of the flexible MSM photodetector maintained high stability under bending at various bending radii. Moreover, for concave bending, a significant improvement in detection signal intensity (14.5% enhancement compared with a flat configuration) was observed because of the increased photocurrent, which was attributed to enhancement of light trapping. Additionally, this detector was used to detect hydrogen peroxide concentrations in commercial hair dye products, which is a significant issue in the healthcare field. The development of this novel, flexible and miniaturized MSM biomolecular photodetector with excellent mechanical flexibility and high sensitivity demonstrates the applicability of this approach to future wearable sensor development efforts.
Collapse
Affiliation(s)
- Ching-Chang Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Da-Shiuan Sun
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Lin Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Tso Tsai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chieh Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Hsien Sun
- Material and Chemical Research Laboratories, Industrial technology Research Institute, Hsinchu, Taiwan
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
23
|
Blaikie TPJ, Couper J, Hancock G, Hurst PL, Peverall R, Richmond G, Ritchie GAD, Taylor D, Valentine K. Portable Device for Measuring Breath Acetone Based on Sample Preconcentration and Cavity Enhanced Spectroscopy. Anal Chem 2016; 88:11016-11021. [PMID: 27753485 DOI: 10.1021/acs.analchem.6b02837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A portable and compact device is demonstrated for measuring acetone in breath samples. The device features a 7 cm long high finesse optical cavity as an optical sensor that is coupled to a miniature adsorption preconcentrator containing 0.5 g of polymer material. Acetone is trapped out of breath and released into the optical cavity where it is probed by a near-infrared diode laser operating at ∼1670 nm. With an optical cavity mirror reflectivity of 99.994%, a limit of detection of 159 ppbv (1σ) is demonstrated on samples from breath bags. Initial results on direct breath sampling are presented with a precision of 100 ppbv. The method is validated with measurements made using an ion-molecule reaction mass spectrometer. Data are presented on elevated breath acetone from two individuals following an overnight fast and exercise, and from a third individual during several days of routine behavior.
Collapse
Affiliation(s)
- Thomas P J Blaikie
- Oxford Medical Diagnostics, Ltd. , Centre for Innovation and Enterprise, Begbroke Science Park, Begbroke Hill, Begbroke OX5 1PF, United Kingdom
| | | | | | | | | | | | | | - David Taylor
- Oxford Medical Diagnostics, Ltd. , Centre for Innovation and Enterprise, Begbroke Science Park, Begbroke Hill, Begbroke OX5 1PF, United Kingdom
| | | |
Collapse
|
24
|
Galán-Freyle NJ, Pacheco-Londoño LC, Román-Ospino AD, Hernandez-Rivera SP. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. APPLIED SPECTROSCOPY 2016; 70:1511-1519. [PMID: 27558366 DOI: 10.1177/0003702816662609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy.
Collapse
Affiliation(s)
- Nataly J Galán-Freyle
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, USA School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Leonardo C Pacheco-Londoño
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, USA Environmental Engineering Program, Vice-Rectory for Research, ECCI University, Bogotá, D.C., Colombia
| | | | - Samuel P Hernandez-Rivera
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, USA
| |
Collapse
|
25
|
A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management. SENSORS 2016; 16:s16081199. [PMID: 27483281 PMCID: PMC5017365 DOI: 10.3390/s16081199] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone, under a specifically controlled condition fast (<1 min) and portable breath acetone measurement can be used for screening abnormal metabolic status including diabetes, for point-of-care monitoring status of ketone bodies which have the signature smell of breath acetone, and for breath acetone related clinical studies requiring a large number of tests.
Collapse
|
26
|
Influence of Ethanol on Breath Acetone Measurements Using an External Cavity Quantum Cascade Laser. PHOTONICS 2016. [DOI: 10.3390/photonics3020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath. Talanta 2016; 146:603-8. [DOI: 10.1016/j.talanta.2015.07.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/04/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022]
|
28
|
Sun M, Chen Z, Gong Z, Zhao X, Jiang C, Yuan Y, Wang Z, Li Y, Wang C. Determination of breath acetone in 149 Type 2 diabetic patients using a ringdown breath-acetone analyzer. Anal Bioanal Chem 2015; 407:1641-50. [DOI: 10.1007/s00216-014-8401-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 12/28/2022]
|
29
|
Reyes-Reyes A, Horsten RC, Urbach HP, Bhattacharya N. Study of the Exhaled Acetone in Type 1 Diabetes Using Quantum Cascade Laser Spectroscopy. Anal Chem 2014; 87:507-12. [DOI: 10.1021/ac504235e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adonis Reyes-Reyes
- Optics Research Group, Faculty
of Applied Sciences, Delft University of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Roland C. Horsten
- Optics Research Group, Faculty
of Applied Sciences, Delft University of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - H. Paul Urbach
- Optics Research Group, Faculty
of Applied Sciences, Delft University of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Nandini Bhattacharya
- Optics Research Group, Faculty
of Applied Sciences, Delft University of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
30
|
Sukul P, Trefz P, Schubert JK, Miekisch W. Immediate effects of breath holding maneuvers onto composition of exhaled breath. J Breath Res 2014; 8:037102. [DOI: 10.1088/1752-7155/8/3/037102] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Leen JB, O'Keefe A. Optical re-injection in cavity-enhanced absorption spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:093101. [PMID: 25273701 PMCID: PMC4156580 DOI: 10.1063/1.4893972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.
Collapse
Affiliation(s)
- J Brian Leen
- Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041, USA
| | - Anthony O'Keefe
- Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041, USA
| |
Collapse
|
32
|
Ciaffoni L, Couper J, Hancock G, Peverall R, Robbins PA, Ritchie GAD. RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy. OPTICS EXPRESS 2014; 22:17030-17038. [PMID: 25090517 DOI: 10.1364/oe.22.017030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a novel strategy for suppressing mode structure which often degrades off-axis cavity enhanced absorption spectra. This strategy relies on promoting small, random fluctuations in the optical frequency by perturbing the injection current of the diode laser source with radio frequency (RF) bandwidth-limited white noise. A fast and compact oxygen sensor, constructed from a 764 nm vertical-cavity surface-emitting laser (VCSEL) and an optical cavity with re-entrant configuration, is employed to demonstrate the potential of this scheme for improving the sensitivity and robustness of a field-deployable cavity spectrometer. The RF spectral density of the current noise injected into the VCSEL has been measured, and correlated to the effects on the optical spectral signal-to-noise ratio (SNR) and laser linewidth for a range of re-entrant geometries. A fourfold gain in the SNR has been achieved using the RF noise perturbation for the optimal off-axis alignment, which led to a minimum detectable absorption (MDA) predicted from an Allan variance study as low as 4.3 × 10(-5) at 1 s averaging. For the optically forbidden oxygen transition under investigation, a limit of detection (SNR = 1) of 810 ppm was achieved for a 10 ms acquisition time. This performance level paves the way for a fast, sensitive, in-line oxygen spectrometer that lends itself to a range of applications in respiratory medicine.
Collapse
|
33
|
Hancock G, Langley CE, Peverall R, Ritchie GAD, Taylor D. Laser-based method and sample handling protocol for measuring breath acetone. Anal Chem 2014; 86:5838-43. [PMID: 24831456 DOI: 10.1021/ac500614n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A robust method is demonstrated to measure acetone in human breath at sub parts-per-million by volume (ppmv) concentrations using diode laser cavity enhanced absorption spectroscopy. The laser operates in the near-infrared at about 1690 nm probing overtone transitions in acetone in a spectral region relatively free from interference from common breath species such as CO2, water, and methane. Using an optical cavity with a length of 45 cm, bound by mirrors of 99.997% reflectivity, a limit of detection of ∼180 parts-per-billion by volume (ppbv) (1σ) of breath acetone is achieved. The method is validated with measurements made with an ion-molecule reaction mass spectrometer. A technique to calibrate the optical cavity mirror reflectivity using a temperature dependent water vapor source is also described.
Collapse
Affiliation(s)
- Gus Hancock
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Zhang L, Tian G, Li J, Yu B. Applications of absorption spectroscopy using quantum cascade lasers. APPLIED SPECTROSCOPY 2014; 68:1095-1107. [PMID: 25239063 DOI: 10.1366/14-00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
Collapse
Affiliation(s)
- Lizhu Zhang
- School of Science, Tianjin University of Technology and Education, Tianjin 300220, China
| | | | | | | |
Collapse
|
35
|
Trefz P, Schmidt M, Oertel P, Obermeier J, Brock B, Kamysek S, Dunkl J, Zimmermann R, Schubert JK, Miekisch W. Continuous Real Time Breath Gas Monitoring in the Clinical Environment by Proton-Transfer-Reaction-Time-of-Flight-Mass Spectrometry. Anal Chem 2013; 85:10321-9. [DOI: 10.1021/ac402298v] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Phillip Trefz
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Markus Schmidt
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Peter Oertel
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Juliane Obermeier
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Beate Brock
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Svend Kamysek
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Jürgen Dunkl
- Ionicon Analytik GmbH, Eduard-Bodem-Gasse 3, A-6020 Innsbruck, Austria
| | - Ralf Zimmermann
- Joint Mass Spectrometry
Centre, Chair of Analytical Chemistry, University of Rostock, Dr. Lorenz Weg
1, 18059 Rostock, Germany and Joint Mass Spectrometry Centre, Cooperation Group “Comprehensive
Molecular Analytics”, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Jochen K. Schubert
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Wolfram Miekisch
- Department of Anaesthesia
and Intensive Care, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|