1
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Zhang X, Gao Y, Deng B, Hu B, Zhao L, Guo H, Yang C, Ma Z, Sun M, Jiao B, Wang L. Selection, Characterization, and Optimization of DNA Aptamers against Challenging Marine Biotoxin Gymnodimine-A for Biosensing Application. Toxins (Basel) 2022; 14:195. [PMID: 35324692 PMCID: PMC8949142 DOI: 10.3390/toxins14030195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Gymnodimines (GYMs), belonging to cyclic imines (CIs), are characterized as fast-acting toxins, and may pose potential risks to human health and the aquaculture industry through the contamination of sea food. The existing detection methods of GYMs have certain defects in practice, such as ethical problems or the requirement of complicated equipment. As novel molecular recognition elements, aptamers have been applied in many areas, including the detection of marine biotoxins. However, GYMs are liposoluble molecules with low molecular weight and limited numbers of chemical groups, which are considered as "challenging" targets for aptamers selection. In this study, Capture-SELEX was used as the main strategy in screening aptamers targeting gymnodimine-A (GYM-A), and an aptamer named G48nop, with the highest KD value of 95.30 nM, was successfully obtained by screening and optimization. G48nop showed high specificity towards GYM-A. Based on this, a novel aptasensor based on biolayer interferometry (BLI) technology was established in detecting GYM-A. This aptasensor showed a detection range from 55 to 1400 nM (linear range from 55 to 875 nM) and a limit of detection (LOD) of 6.21 nM. Spiking experiments in real samples indicated the recovery rate of this aptasensor, ranging from 96.65% to 109.67%. This is the first study to report an aptamer with high affinity and specificity for the challenging marine biotoxin GYM-A, and the new established aptasensor may be used as a reliable and efficient tool for the detection and monitoring of GYMs in the future.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
- College of Medicine, Shaoxing University, 900th Chengnan Avenue, Shaoxing 312000, China
| | - Yun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bowen Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Navy Medical University, Shanghai 200433, China;
| | - Luming Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Han Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Chengfang Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Zhenxia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| |
Collapse
|
3
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
4
|
Dillon M, Zaczek-Moczydlowska MA, Edwards C, Turner AD, Miller PI, Moore H, McKinney A, Lawton L, Campbell K. Current Trends and Challenges for Rapid SMART Diagnostics at Point-of-Site Testing for Marine Toxins. SENSORS (BASEL, SWITZERLAND) 2021; 21:2499. [PMID: 33916687 PMCID: PMC8038394 DOI: 10.3390/s21072499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
In the past twenty years marine biotoxin analysis in routine regulatory monitoring has advanced significantly in Europe (EU) and other regions from the use of the mouse bioassay (MBA) towards the high-end analytical techniques such as high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS). Previously, acceptance of these advanced methods, in progressing away from the MBA, was hindered by a lack of commercial certified analytical standards for method development and validation. This has now been addressed whereby the availability of a wide range of analytical standards from several companies in the EU, North America and Asia has enhanced the development and validation of methods to the required regulatory standards. However, the cost of the high-end analytical equipment, lengthy procedures and the need for qualified personnel to perform analysis can still be a challenge for routine monitoring laboratories. In developing regions, aquaculture production is increasing and alternative inexpensive Sensitive, Measurable, Accurate and Real-Time (SMART) rapid point-of-site testing (POST) methods suitable for novice end users that can be validated and internationally accepted remain an objective for both regulators and the industry. The range of commercial testing kits on the market for marine toxin analysis remains limited and even more so those meeting the requirements for use in regulatory control. Individual assays include enzyme-linked immunosorbent assays (ELISA) and lateral flow membrane-based immunoassays (LFIA) for EU-regulated toxins, such as okadaic acid (OA) and dinophysistoxins (DTXs), saxitoxin (STX) and its analogues and domoic acid (DA) in the form of three separate tests offering varying costs and benefits for the industry. It can be observed from the literature that not only are developments and improvements ongoing for these assays, but there are also novel assays being developed using upcoming state-of-the-art biosensor technology. This review focuses on both currently available methods and recent advances in innovative methods for marine biotoxin testing and the end-user practicalities that need to be observed. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid POST, indicating potential detection methods that will shape the future market.
Collapse
Affiliation(s)
- Michael Dillon
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
- Faculty of Health, Peninsula Medical School, University of Plymouth, Plymouth PL4 8AA, UK
| | - Maja A. Zaczek-Moczydlowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK;
| | - Peter I. Miller
- Plymouth Marine Laboratory, Remote Sensing Group, Prospect Place, Plymouth PL1 3DH, UK;
| | - Heather Moore
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - April McKinney
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| |
Collapse
|
5
|
Recent progress in micro/nano biosensors for shellfish toxin detection. Biosens Bioelectron 2020; 176:112899. [PMID: 33358058 DOI: 10.1016/j.bios.2020.112899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Shellfish toxins, as one kind of marine toxin, have attracted worldwide attention due to their severe threat to food safety and human health. Therefore, it is highly essential and urgent to develop a low-cost and convenient method to detect these toxins. With the rapid advance in microfabrication processes, micro/nano biosensors provide novel approaches to address this issue. In addition to their features of low cost, portability, easy operation, high efficiency and high bioactivity, micro/nano biosensors have great potential to realize on-the-spot, rapid detection of shellfish toxins. This review focuses on the most recent advances in the development of micro/nano biosensors for shellfish toxin detection. These biosensors are mainly classified into five categories according to their transducer detection principles, which include optical devices, electrochemical sensors, electrochemiluminescence, field-effect transistors, and acoustic devices. Sensor strategies, toxin analytes, biosensitive elements, coupling methods and field detection performance are highlighted to discuss the applications of shellfish toxin detection. With advances in sensor technology, biomaterials, microfabrication and miniaturized electronics, micro/nano biosensors applied to in-field fast detection of shellfish toxins are expected to play a critical role in food safety, environmental monitoring, and foreign trade in the foreseeable future. Finally, the current challenges and future development trends of micro/nano biosensors for shellfish toxin detection are discussed.
Collapse
|
6
|
Santillo MF. Trends using biological target-based assays for drug detection in complex sample matrices. Anal Bioanal Chem 2020; 412:3975-3982. [PMID: 32372275 DOI: 10.1007/s00216-020-02681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
In vivo, drug molecules interact with their biological targets (e.g., enzymes, receptors, ion channels, transporters), thereby eliciting therapeutic effects. Assays that measure the interaction between drugs and bio-targets may be used as drug biosensors, which are capable of broadly detecting entire drug classes without prior knowledge of their chemical structure. This Trends article covers recent developments in bio-target-based screening assays for detecting drugs associated with the following areas: illicit products marketed as dietary supplements, food-producing animals, and bodily fluids. General challenges and considerations associated with using bio-target assays are also presented. Finally, future applications of these assays for drug detection are suggested based upon current needs.
Collapse
Affiliation(s)
- Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (FDA), 8301 Muirkirk Rd, Laurel, MD, 20708, USA.
| |
Collapse
|
7
|
Rambla-Alegre M, Miles CO, de la Iglesia P, Fernandez-Tejedor M, Jacobs S, Sioen I, Verbeke W, Samdal IA, Sandvik M, Barbosa V, Tediosi A, Madorran E, Granby K, Kotterman M, Calis T, Diogene J. Occurrence of cyclic imines in European commercial seafood and consumers risk assessment. ENVIRONMENTAL RESEARCH 2018; 161:392-398. [PMID: 29197280 DOI: 10.1016/j.envres.2017.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Cyclic imines constitute a quite recently discovered group of marine biotoxins that act on neural receptors and that bioaccumulate in seafood. They are grouped together due to the imino group functioning as their common pharmacore, responsible for acute neurotoxicity in mice. Cyclic imines (CIs) have not been linked yet to human poisoning and are not regulated in the European Union (EU), although the European Food Safety Authority (EFSA) requires more data to perform conclusive risk assessment for consumers. Several commercial samples of bivalves including raw and processed samples from eight countries (Italy, Portugal, Slovenia, Spain, Ireland, Norway, The Netherlands and Denmark) were obtained over 2 years. Emerging cyclic imine concentrations in all the samples were analysed on a LC-3200QTRAP and LC-HRMS QExactive mass spectrometer. In shellfish, two CIs, pinnatoxin G (PnTX-G) and 13-desmethylspirolide C (SPX-1) were found at low concentrations (0.1-12µg/kg PnTX-G and 26-66µg/kg SPX-1), while gymnodimines and pteriatoxins were not detected in commercial (raw and processed) samples. In summary, SPX-1 (n: 47) and PnTX-G (n: 96) were detected in 9.4% and 4.2% of the samples, respectively, at concentrations higher than the limit of quantification (LOQ), and in 7.3% and 31.2% of the samples at concentrations lower than the LOQ (25µg/kg for SPX-1 and 3µg/kg for PnTX-G), respectively. For the detected cyclic imines, the average exposure and the 95th percentile were calculated. The results obtained indicate that it is unlikely that a potential health risk exists through the seafood diet for CIs in the EU. However, further information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway; National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, Canada B3H 3Z1
| | | | | | - Silke Jacobs
- Department of Agricultural Economics, Ghent University, Block A, Coupure Links 653, 9000 Gent, Belgium; Department of Public Health, Ghent University, UZ 4K3, De Pintelaan 185, 9000 Ghent, Belgium
| | - Isabelle Sioen
- Department of Food Safety and Food Quality, Ghent University, Block B, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Verbeke
- Department of Agricultural Economics, Ghent University, Block A, Coupure Links 653, 9000 Gent, Belgium
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Vera Barbosa
- Portuguese Institute for the sea and atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisbon, Portugal
| | | | - Eneko Madorran
- University of Maribor, Faculty of Medicine, Institute of Anatomy, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kit Granby
- Technical University of Denmark, National Food Institute, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - Michiel Kotterman
- IMARES Wageningen-UR, Haringkade 1, 1976 CP Ijmuiden, The Netherlands
| | - Tanja Calis
- AQUATT, Olympic House, Pleasants Street, Dublin 8, Ireland
| | - Jorge Diogene
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
8
|
|
9
|
Molgó J, Marchot P, Aráoz R, Benoit E, Iorga BI, Zakarian A, Taylor P, Bourne Y, Servent D. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. J Neurochem 2017; 142 Suppl 2:41-51. [PMID: 28326551 DOI: 10.1111/jnc.13995] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
Abstract
We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Jordi Molgó
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Rómulo Aráoz
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Evelyne Benoit
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, Gif-sur-Yvette, France
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yves Bourne
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Denis Servent
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Rodriguez I, Fraga M, Alfonso A, Guillebault D, Medlin L, Baudart J, Jacob P, Helmi K, Meyer T, Breitenbach U, Holden NM, Boots B, Spurio R, Cimarelli L, Mancini L, Marcheggiani S, Albay M, Akcaalan R, Köker L, Botana LM. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:645-654. [PMID: 27505279 DOI: 10.1002/etc.3577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/04/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Monitoring the quality of freshwater is an important issue for public health. In the context of the European project μAqua, 150 samples were collected from several waters in France, Germany, Ireland, Italy, and Turkey for 2 yr. These samples were analyzed using 2 multitoxin detection methods previously developed: a microsphere-based method coupled to flow-cytometry, and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The presence of microcystins, nodularin, domoic acid, cylindrospermopsin, and several analogues of anatoxin-a (ATX-a) was monitored. No traces of cylindrospermopsin or domoic acid were found in any of the environmental samples. Microcystin-LR and microcystin-RR were detected in 2 samples from Turkey and Germany. In the case of ATX-a derivatives, 75% of samples contained mainly H2 -ATX-a and small amounts of H2 -homoanatoxin-a, whereas ATX-a and homoanatoxin-a were found in only 1 sample. These results confirm the presence and wide distribution of dihydro derivatives of ATX-a toxins in European freshwaters. Environ Toxicol Chem 2017;36:645-654. © 2016 SETAC.
Collapse
Affiliation(s)
- Ines Rodriguez
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Maria Fraga
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Linda Medlin
- Microbia Environnement, Observatoire Océanologique, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Pauline Jacob
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Karim Helmi
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Thomas Meyer
- MariLim Aquatic Research, Schoenkirchen, Germany
| | | | - Nicholas M Holden
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Bas Boots
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Roberto Spurio
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Lucia Cimarelli
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Mancini
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Marcheggiani
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Meric Albay
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | | | - Latife Köker
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
11
|
Echterbille J, Gilles N, Araóz R, Mourier G, Amar M, Servent D, De Pauw E, Quinton L. Discovery and characterization of EII B, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry. Toxicon 2017; 130:1-10. [PMID: 28238803 DOI: 10.1016/j.toxicon.2017.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Animal toxins are peptides that often bind with remarkable affinity and selectivity to membrane receptors such as nicotinic acetylcholine receptors (nAChRs). The latter are, for example, targeted by α-conotoxins, a family of peptide toxins produced by venomous cone snails. nAChRs are implicated in numerous physiological processes explaining why the design of new pharmacological tools and the discovery of potential innovative drugs targeting these receptor channels appear so important. This work describes a methodology developed to discover new ligands of nAChRs from complex mixtures of peptides. The methodology was set up by the incubation of Torpedo marmorata electrocyte membranes rich in nAChRs with BSA tryptic digests (>100 peptides) doped by small amounts of known nAChRs ligands (α-conotoxins). Peptides that bind to the receptors were purified and analyzed by MALDI-TOF/TOF mass spectrometry which revealed an enrichment of α-conotoxins in membrane-containing fractions. This result exhibits the binding of α-conotoxins to nAChRs. Negative controls were performed to demonstrate the specificity of the binding. The usefulness and the power of the methodology were also investigated for a discovery issue. The workflow was then applied to the screening of Conus ermineus crude venom, aiming at characterizing new nAChRs ligands from this venom, which has not been extensively investigated to date. The methodology validated our experiments by allowing us to bind two α-conotoxins (α-EI and α-EIIA) which have already been described as nAChRs ligands. Moreover, a new conotoxin, never described to date, was also captured, identified and sequenced from this venom. Classical pharmacology tests by radioligand binding using a synthetic homologue of the toxin confirm the activity of the new peptide, called α-EIIB. The Ki value of this peptide for Torpedo nicotinic receptors was measured at 2.2 ± 0.7 nM.
Collapse
Affiliation(s)
- Julien Echterbille
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium
| | - Nicolas Gilles
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Romulo Araóz
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Gilles Mourier
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Muriel Amar
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium
| | - Loic Quinton
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium.
| |
Collapse
|
12
|
Marine Toxins Analysis for Consumer Protection. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Rapid Detection of Ochratoxin A in Malt by Cytometric Bead Array Based on Indirect Competition Principle. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60927-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Fraga M, Vilariño N, Louzao MC, Fernández DA, Poli M, Botana LM. Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods. Anal Chim Acta 2015; 903:1-12. [PMID: 26709295 DOI: 10.1016/j.aca.2015.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes.
Collapse
Affiliation(s)
- María Fraga
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Diego A Fernández
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mark Poli
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
15
|
Stivala CE, Benoit E, Aráoz R, Servent D, Novikov A, Molgó J, Zakarian A. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Nat Prod Rep 2015; 32:411-35. [PMID: 25338021 DOI: 10.1039/c4np00089g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.
Collapse
Affiliation(s)
- Craig E Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Silva M, Pratheepa VK, Botana LM, Vasconcelos V. Emergent toxins in North Atlantic temperate waters: a challenge for monitoring programs and legislation. Toxins (Basel) 2015; 7:859-85. [PMID: 25785464 PMCID: PMC4379530 DOI: 10.3390/toxins7030859] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
Abstract
Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
Collapse
Affiliation(s)
- Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| | - Vijaya K Pratheepa
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, Lugo 27002, Spain.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| |
Collapse
|
17
|
Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs 2014; 12:5719-63. [PMID: 25431968 PMCID: PMC4278199 DOI: 10.3390/md12125719] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/02/2022] Open
Abstract
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Lucía Soliño
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Olga Carnicer
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
18
|
Fraga M, Vilariño N, Louzao MC, Rodríguez LP, Alfonso A, Campbell K, Elliott CT, Taylor P, Ramos V, Vasconcelos V, Botana LM. Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Anal Chim Acta 2014; 850:57-64. [PMID: 25441160 DOI: 10.1016/j.aca.2014.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 02/02/2023]
Abstract
Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9±0.1μg L(-1) MC-LR, 1.3±0.1μg L(-1) CYN, 61±4μg L(-1) ANA-a, 5.4±0.4μg L(-1) STX and 4.9±0.9μg L(-1) DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC-IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC-IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.
Collapse
Affiliation(s)
- María Fraga
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura P Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Katrina Campbell
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK
| | - Christopher T Elliott
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0657, United States
| | - Vítor Ramos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, and Faculty of Sciences, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal
| | - Vítor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, and Faculty of Sciences, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
19
|
Nicolas J, Hendriksen PJM, Gerssen A, Bovee TFH, Rietjens IMCM. Marine neurotoxins: State of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood. Mol Nutr Food Res 2013; 58:87-100. [DOI: 10.1002/mnfr.201300520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Jonathan Nicolas
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
- RIKILT; Institute of Food Safety; Wageningen The Netherlands
| | | | - Arjen Gerssen
- RIKILT; Institute of Food Safety; Wageningen The Netherlands
| | | | | |
Collapse
|
20
|
High-throughput receptor-based assay for the detection of spirolides by chemiluminescence. Toxicon 2013; 75:35-43. [DOI: 10.1016/j.toxicon.2013.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022]
|
21
|
Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov 2013; 8:1203-23. [DOI: 10.1517/17460441.2013.822365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Fraga M, Vilariño N, Louzao MC, Rodríguez P, Campbell K, Elliott CT, Botana LM. Multidetection of Paralytic, Diarrheic, and Amnesic Shellfish Toxins by an Inhibition Immunoassay Using a Microsphere-Flow Cytometry System. Anal Chem 2013; 85:7794-802. [DOI: 10.1021/ac401146m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- María Fraga
- Departamento de
Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo,
Spain
| | - Natalia Vilariño
- Departamento de
Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo,
Spain
| | - M Carmen Louzao
- Departamento de
Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo,
Spain
| | - Paula Rodríguez
- Departamento de
Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo,
Spain
| | - Katrina Campbell
- Institute for Global
Food Security
(IGFS), School of Biological Sciences, Queen’s University Belfast, David Keir Building, Stranmillis
Road, Belfast, Northern Ireland, BT9 5AG
| | - Christopher T. Elliott
- Institute for Global
Food Security
(IGFS), School of Biological Sciences, Queen’s University Belfast, David Keir Building, Stranmillis
Road, Belfast, Northern Ireland, BT9 5AG
| | - Luis M. Botana
- Departamento de
Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo,
Spain
| |
Collapse
|
23
|
Vilariño N, Louzao MC, Fraga M, Rodríguez LP, Botana LM. Innovative detection methods for aquatic algal toxins and their presence in the food chain. Anal Bioanal Chem 2013; 405:7719-32. [PMID: 23820950 DOI: 10.1007/s00216-013-7108-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/17/2023]
Abstract
Detection of aquatic algal toxins has become critical for the protection of human health. During the last 5 years, techniques such as optical, electrochemical, and piezoelectric biosensors or fluorescent-microsphere-based assays have been developed for the detection of aquatic algal toxins, in addition to optimization of existing techniques, to achieve higher sensitivities, specificity, and speed or multidetection. New toxins have also been incorporated in the array of analytical and biological methods. The impact of the former innovation on this field is highlighted by recent changes in legal regulations, with liquid chromatography-mass spectrometry becoming the official reference method for marine lipophilic toxins and replacing the mouse bioassay in many countries. This review summarizes the large international effort to provide routine testing laboratories with fast, sensitive, high-throughput, multitoxin, validated methods for the screening of seafood, algae, and water samples.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain,
| | | | | | | | | |
Collapse
|